Физиология дыхания
Механизмы внешнего дыхания. Грудной и брюшной тип дыхания. Показатели легочной вентиляции. Функции воздухоносных путей и защитные дыхательные рефлексы. Обмен газов в легких. Рефлекторная и гуморальная регуляция дыхания. Гипербарическая оксигенация.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 21.12.2020 |
Размер файла | 25,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Физиология дыхания
Дыханием называется комплекс физиологических процессов, обеспечивающих обмен кислорода и углекислого газа между клетками организма и внешней средой. Оно включает следующие этапы:
1. Внешнее дыхание или вентиляция. Это обмен дыхательных газов между атмосферным воздухом и альвеолами.
2. Диффузия газов в легких. Т.е. их обмен между воздухом альвеол и кровью.
3. Транспорт газов кровью.
4. Диффузия газов в тканях. Обмен газов между кровью капилляров и внутриклеточной жидкостью.
5. Клеточное дыхание. Поглощение кислорода и образование углекислого газа в клетках.
Механизмы внешнего дыхания
Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха и выдоха, между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту. Вдох, это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина отодвигается вперед. Это ведет к увеличению сагитального и фронтального размеров грудной полости. Одновременно сокращаются мышцы диафрагмы. Ее купол опускается, и органы брюшной полости сдвигаются вниз, в стороны и вперед. За счет этого грудная полость увеличивается и в вертикальном направлении. После окончания вдоха дыхательные мышцы расслабляются. Начинается выдох. Спокойный выдох пассивный процесс. Во время него происходит возвращение грудной клетки в исходное состояние. Это происходит под действием ее собственного веса, натянутого связочного аппарата и давления на диафрагму органов брюшной полости. При физической нагрузке, патологических состояниях сопровождающихся одышкой (туберкулез легких, бронхиальная астма и т.д.) возникает форсированное дыхание. В акт вдоха и выдоха вовлекаются вспомогательные мышцы. При форсированном вдохе дополнительно сокращаются грудино-ключично-сосцевидные, лестничные, грудные и трапециевидные мышцы способствуют дополнительному поднятию ребер. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые усиливают опускание ребер т.е. это активный процесс.
Различают грудной и брюшной тип дыхания. При первом дыхание в основном осуществляется за счет межреберных мышц при втором за счет мыши диафрагмы. Грудной или реберный тип дыхания характерен для женщин. Брюшной или диафрагмальный для мужчин. Физиологически более выгоден брюшной тип, так как он осуществляется с меньшей затратой энергии. Кроме того движения органов брюшной полости при дыхании препятствуют их вос¬палительным заболеваниям. Иногда встречается смешанный тип дыхания.
Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости. При вдохе объем грудной полости возрастает. А так как плевральная изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного. Воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается. Давление в плевральной щели возрастает, воздух выходит из альвеол. Движения или экскурсии легких объясняются колебаниями отрицатель¬ного межплеврального давления. После спокойного выдоха оно ниже атмосферного на 4-6 мм.рт.ст. На высоте спокойного вдоха на 3-9 мм.рт.ст. После форсированного выдоха оно ниже на 1-3 мм.рт.ст. форсированного вдоха на 10-15 мм. рт. ст. Наличие отрицательного межплеврального давления объясняется эластической тягой легких. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол. Изнутри они покрыты пленкой сурфактанта. Это липопротеид вырабатываемый митохондриями альвеолярного эпителия. Благодаря особому строению его молекулы, на вдохе он повышает поверхностное натяжение альвеол, а на выдохе, когда их размеры уменьшаются, наоборот понижает. Это препятствует спадению альвеол, т.е. возникновению ателектаза. При генетической патологии. V некоторых новорожденных нарушается выработка сурфактанта. Возникает ателектаз и ребенок гибнет. В старости, а также при некоторых хронических заболеваниях легких, количество эластические волокон возрастает. Это явление называется пневмофиброзом. Дыхательные экскурсии затрудняются. При эмфиземе эластические волокна наоборот разрушаются и эластическая тяга легких снижается. Альвеолы раздуваются, величина экскурсий легких также уменьшается. При попадании воздуха в плевральную полость возникает пневмоторакс. Различают его следующие, виды:
1. По механизму возникновения: патологический (рак легких, абсцесс, проникающее ранение грудной клетки) и искусственный (лечение туберкулеза).
2. В зависимости оттого, какой листок плевры поврежден выделяют наружный и внутренний пневмоторакс.
3. По степени сообщения с атмосферой различают открытый пневмоторакс, когда плевральная полость постоянно сообщается с атмосферой. Закрытый, если произошло однократное попадание воздуха. Клапанный, когда на вдохе воздух из атмосферы входит в плевральную щель, а на выдохе отверстие закрывается.
4. В зависимости от стороны поражения - односторонний (правосторонний, левосторонний), двусторонний.
Пневмоторакс является опасным для жизни осложнением. В результате него легкое спадается и выключается из дыхания. Особенно опасен клапанный пневмоторакс.
Показатели легочной вентиляции
Суммарное количество воздуха, которое вмещают легкие после максимального вдоха, называется обшей емкостью легких (ОЕЛ). Она включает дыхательный объем, резервный объем вдоха, резервный объем выдоха и остаточный объем.
Дыхательный объем (ДО) - это количество воздуха поступающего в легкие во время спокойного вдоха. Его величина 300-800 мл. У мужчин в среднем 600-700 , мл, у женщин 300-500 мл.
Резервный объем вдоха (РОвдоха). Количество воздуха, которое можно дополнительно вдохнуть после спокойного вдоха. Он составляет 2000-3000 мл. Этот объем определяет резервные возможности дыхания, т.к. за счет него возрастает дыхательный объем при физической нагрузке.
Резервный объем выдоха (РОвыдоха). Это объем воздуха, который можно дополнительно выдохнуть после спокойного выдоха. Он равен 1000-1500 мл.
Остаточный объем (00). Это объем воздуха остающегося в легких после максимального выдоха. Его величина 1200-1500мл.
Функциональная остаточная емкость (ФОЕ)- это количество воздуха, остающегося в легких после спокойного выдоха, т.е. это сумма остаточного объема и резервного объема выдоха. С помощью ФОЭ выравниваются колебания концентрации О2 и С02 в альвеолярном воздухе в фазы вдоха и выдоха. В молодом возрасте она около 2500 мл старческом 3500 (пневмофиброз, эмфизема).
Сумма дыхательного объема, резервного объема вдоха и резервного объема выдоха составляет жизненную емкость легких (ЖЕЛ). У мужчин она составляет 3500-4500 мл, в среднем 4000 мл. У женщин 3000-3500 мл. Величину жизненной емкости легких и составляющих ее объемов можно измерить с помощью сухого и водяного спирометров, а также спирографа.
Для газообмена в лёгких имеет большое значение скорость обмена альвеолярного воздуха, т.е. вентиляция альвеол. Ее количественным показателем является минутный объем дыхания (МОД); Это произведение дыхательного объема на частоту дыханий в минуту. В покое МОД составляет 6-8 литров. Максимальной объем вентиляции - это объем воздуха проходящего через легкие при наибольшей глубине и частоте дыхания в минуту.
Нормальное дыхание называется эйпное, учащенное - тахипное, его урежение брадипное. Одышка диспное. Остановка дыхания - апное. Выраженная одышка в положении лежа, при недостаточности левого сердца - ортопное.
Функции воздухоносных путей. Защитные дыхательные рефлексы. Мертвое пространство
Воздухоносные пути делятся на верхние и нижние. К верхним относятся носовые ходы, носоглотка, к нижним гортань, трахея, бронхи. Трахея, бронхи и бронхиолы являются проводящей зоной легких. Конечные бронхиолы называются переходной зоной. На них имеется небольшое количество альвеол, которые вносят небольшой вклад в газообмен. Альвеолярные ходы и альвеолярные мешочки относятся к обменной зоне.
Физиологичным является носовое дыхание. При вдыхании холодного воздуха происходит рефлекторное расширение сосудов слизистой носа и сужение носовых ходов. Это способствует лучшему прогреванию воздуха. Его увлажнение происходит за счет влаги, секретируемой железистыми клетками слизистой, я также слезной влаги и воды, фильтрующейся через стенку капилляров. Очищение воздуха в носовых ходах происходит благодаря оседанию частиц пыли на слизистой.
В воздухоносных путях возникают защитные дыхательные рефлексы. При вдыхании воздуха, содержащего раздражающие вещества, возникает рефлекторное урежение и уменьшение глубины дыхания. Одновременно суживается голосовая щель и сокращается гладкая мускулатура бронхов. При раздражении ирритантных рецепторов эпителия слизистой гортани, трахеи, бронхов, импульсы от них поступают по афферентным волокнам верхнегортанного, тройничного и блуждающего нервов к инспираторным нейронам дыхательного центра. Происходит глубокий вдох. Затем мышцы гортани сокращаются и голосовая щель смыкается. Активируются экспираторные нейроны, и начинается выдох. А так как голосовая щель сомкнута давление в легких нарастает. В определенный момент голосовая щель открывается, и воздух с большой скоростью выходит из легких. Возникает кашель. Все эти процессы координируется центром кашля продолговатого мозга. При воздействии пылевых частиц и раздражающих веществ на чувствительные окончания тройничного нерва, которые находятся в слизистой оболочке носа, возникает чихание. При чихании также первоначально активируется центр вдоха. Затем происходит форсированный выдох через нос.
Различают анатомическое, функциональное и альвеолярное мертвое пространство. Анатомическим называется объем воздухоносных путей - носоглотки, гортани, трахеи, бронхов, бронхиол. В нем не происходит газообмена. К альвеолярному мертвому пространству относят объем альвеол, которые не вентилируются или в их капиллярах нет кровотока. Следовательно, они также не участвуют в газообмене. Функциональным мертвым пространством является сумма анатомического и альвеолярного. У здорового человека объем альвеолярного мертвого пространства очень небольшой. Поэтому величина анатомического и функционального пространств практически одинакова и составляет около 30% дыхательного объема. В среднем 140 мл. При нарушении вентиляции и кровоснабжения легких объем функционального мертвого пространства значительно больше анатомического. Вместе с тем, анатомическое мертвое пространство играет важную роль в процессах дыхания. Воздух в нем согревается, увлажняется, очищается от пыли и микроорганизмов. Здесь формируются дыхательные защитные рефлексы - кашель, чихание. В нем происходит восприятие запахов, и образуются звуки.
Обмен газов в легких
В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа. 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеолокапиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст. а углекислого газа 40 мм.рт.ст. Напряжение (термин, применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа - 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону. Кроме того, скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло -капиллярной мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Где он диффундирует в 25раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давлений углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. У здорового человека напряжение дыхательных газов в альвеолярной крови, становится практически таким же, как их парциальное давление в альвеолярном воздухе. При нарушениях газообмена в альвеолах в крови повышается напряжение углекислого газа и снижается кислорода (пневмония, туберкулез, пневмосклероз).
Транспорт газов кровью
Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% кислорода. Основная его часть транспортируется в виде НВОз. Максимальное количество кислорода, которое может связать гемоглобин при его полном насыщении, называется кислородной емкостью крови. В норме она составляет 18-24 об.% Образование оксигемоглобина в легких и его распад в капиллярах тканей в основном обусловлены изменениями напряжения кислорода. В капиллярах легких, где напряжение его велико. Происходит его образование, в тканях, напряжение кислорода падает. Поэтому там оксигемоглобин диссоциирует на восстановленный гемоглобин и кислород. В норме связывание гемоглобина с кислородом определяется его парциальным давлением в альвеолярном воздухе, следовательно, напряжением в крови легочных капилляров.
Зависимость концентрации оксигемоглобина от напряжения кислорода в крови называется кривой диссоциации оксигемоглобина. Она не является прямо пропорциональной. При низком напряжении кислорода рост концентрации оксигемоглобина замедлен. При напряжении от 10 до 40 мм.рт.ст он практически прямо пропорционален, а выше снова замедляется. Поэтому кривая имеет S-образную форму. Кроме напряжения кислорода, на образование и распад оксигемоглобина влияют и другие факторы. При сдвиге реакции крови в кислую сторону, его диссоциация ускоряется. Ее ускоряет повышение напряжения углекислого газа и температуры. Эти изменения крови имеют место в капиллярах тканей. Поэтому там они способствуют ускоренной диссоциации оксигемоглобина и освобождению кислорода.
Напряжение углекислого газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови находится около 50 об% углекислого газа. В плазме растворяется 2,5 об.%. В виде карбогемоглобина, в соединении с глобином, переносится около 5 об%. Остальное количество транспортируется в виде гидрокарбонатов, находя1цихся в плазме и эритроцитах. В капиллярах тканей углекислый газ поступает в эритроциты. Там под влиянием фермента карбоангидразы он соединяется с катионами водорода и превращается в угольную кислоту. Она диссоциирует и большая часть гидрокарбонат анионов выходит в плазму. Там они образуют с катионами натрия гидрокарбонат натрия. Меньшая их часть соединяется в эритроцитах с катионами калия, образуя гидрокарбонат калия. В капиллярах легких напряжение углекислого газа падает, а напряжение кислорода возрастает. Образующийся в эритроцитах оксигемоглобин является более сильной кислотой, чем угольная. Поэтому он вытесняет из гидрокарбоната калия анионы угольной кислоты и образует с калием калиевую соль оксигемоглобина. Освобождающиеся анионы угольной кислоты соединяются с катионами водорода. Синтезируется свободная угольная кислота. При низком напряжении углекислого газа карбоангидраза действует противоположным образом, т.е. расщепляет ее на углекислый газ и воду, которые выдыхаются. Одновременно из плазмы в эритроциты поступают анионы угольной кислоты образующиеся в ходе диссоциации гидрокарбоната натрия. Они также образуют с катионами водорода угольную кислоту, которая расщепляется карбоангидразой на углекислый газ и воду. При дыхании из организма выводится около 200 мл углекислого газа в МИНУТУ. Это важный механизм поддержания кислотно-щелочного равновесия крови.
Обмен дыхательных газов в тканях
Обмен газов в капиллярах тканей происходит путем диффузии. Этот процесс осуществляется за счет разности их напряжения в крови, тканевой жидкости и цитоплазме клеток. Как и в легких для газообмена большое значение имеет величина обменной площади, т.е. количество функционирующих капилляров. В артериальной крови напряжение кислорода 96 мм.рт.ст в тканевой жидкости около 20 мм.рт.ст, а работающих мышечных клетках близко к 0. Поэтому кислород диффундирует из капилляров в межклеточное пространство, а затем клетки. Для нормального протекания окислительно-восстановительных процессов и митохондриях необходимо, чтобы напряжение кислорода в клетках было не менее 1 мм.рт.ст. Эта величина называется критическим напряжением кислорода в митохондриях. Ниже ее развивается кислородное голодание тканей. В скелетных мышцах кислород накапливает белок миоглобин, по строению близкий к гемоглобину. Напряжение углекислого газа в артериальной крови 40 мм.рт.ст. в межклеточной жидкости 46 мм.рт.ст. в цитоплазме 60 мм.рт.ст. Поэтому он выходит в кровь. Количество ки-слорода, которое используется тканями называется коэффициентом его утилизации. В состоянии покоя ткани используют около 40% кислорода или 8-10 об%.
Регуляция дыхания. Дыхательный центр
В 1885 году Казанский физиолог НА. Миславский обнаружил, что в продолговатом мозге находится центр обеспечивающий смену фаз дыхания. Этот бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. Во-первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные а- и Р-нейроны. Первые возбуждаются при вдохе. Одновременно к Р-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с а-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Это их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, а также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гаспинг - длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста - апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов ЦНС в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более ТОНКУЮ регуляцию дыхания.
Рефлекторная регуляция дыхания
Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:
1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахея и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.
2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз. Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.
3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях. Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к р-респираторным нейронам, которые в свою очередь тормозят а-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует пере¬растяжению легких.
Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.
Гуморальная регуляция дыхания
В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру воз¬растает. Частота и глубина дыхания увеличиваются. При снижении напряжения кислорода в крови, т.е гипоксии, хеморецепторы также возбуждаются и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.
Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на цен¬тральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.
Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.
Дыхание при пониженном атмосферном давлении. Гипоксия
Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, скоротечной потерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности высоте. Организм страдает, не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным. В процессе адаптации к хронической гипоксии выделяют 3-стадии. На первой аварийной, компенсация достигается за счет увеличения легочной вентиляции, усилении кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, У выгодный уровень адаптации. В стабильной стадии физиологиче¬ские показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них. За счет 2,3-фосфоглидерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин, имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает "функциональная эмфизема". Т.е. в дыхание включаются резервные альвеолы, и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов. Гипоксия это недостаточное снабжение тканей кислородом. Формы гипоксии:
1. Гипоксемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.).
2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород (анемии, угарное отравление).
3. Циркуляторная гипоксия. Наблюдается при нарушениях системного и местного кровотока (болезни сердца и сосудов).
4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами).
Дыхание при повышенном атмосферном давлении. Кессонная болезнь
дыхание легочный рефлекс
Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание уряжается до 2-4 раз в минуту. Вдох укорачивается, а выдох удлиняется и затрудняется. Газообмен в легких немного ускоряется. При обычном атмосферном давлении в плазме крови находятся в растворенном состоянии около 1 об.% азота. Чем выше атмосферное давление, тем выше его растворимость, тем больше его накапливается, а крови. Увеличивается количество растворенного азота и по мере удлинения времени подводных работ. При быстром снижении давления, например экстренном подъеме водолаза. растворимость азота резко гадает. Он переходит в газообразную форму и образует в сосудах пузырьки - эмболы. Они закупоривают просвет мелких сосудов. Возникает газовая эмболия, и кровоснабжение тканей нарушается. Развивается кессонная болезнь, сопровождающаяся сильными болями в суставах, мышцах, головной болью ("залом"). Появляются рвота, параличи, пострадавший теряет сознание. Для ее лечения пострадавшего помешают в декомпрессионную камеру, где давление вновь поднимают до полного растворения азота. Затем очень медленно снижают его, чтобы азот успевал выходить через легкие. Профилактика этого состояния проводится путем использования ступенчатой декомпрессии. Т.е., когда водолаза поднимают на поверхность, то через каждые 10 м подъема делают остановки на строго определенное время. Для дыхания на глубине применяют также газовую смесь, в которой азот замешается на гелий. Он практически не растворяется в плазме крови. Кроме этого азот на глубине больше 70 м, а кислород 90 м приобретают наркотические свойства. Поэтому в гелиевой смеси всего 5% кислорода.
Гипербарическая оксигенация
Для лечения заболеваний сосудов, сердечной недостаточности и др. сопровождающихся гипоксией, используется кислород. Если дается чистый кислород при обычном атмосферном давлении, эта процедура называется изобарической оксигенацией (кислородная подушка). Если используется барокамера, в которой давление поднимается выше атмосферного, то этот метод называется гипербарической оксигенацией. Данные методы служат для увеличения напряжения кислорода в крови. При анемической гипоксии эта терапия бесполезна. При гипоксемической и циркуляторной положительно влияет на состояние больного. Изобарическую, а тем более гипербарическую оксигенацию можно использовать лишь в течение непродолжительного времени. Длительное использование кислорода сопровождается кислородным отравлением. При нормальном атмосферном давлении дышать кислородом можно не более 4 часов. Это связано с тем. что при длительном действии кислорода в клетках возникает гипероксия или кислородное отравление. Она сопровождается угнетением окисления углеводов. Кислородное отравление проявляется снижением почечного и мозгового кровотока, снижением систолического объема. Это приводит к потере сознания и судорогам. Одновременно повреждается легочная ткань, а как следствие нарушается диффузионная способность легких. Уменьшается количество сурфактанта в альвеолах, возникает отек легких. У новорожденных детей повреждаются клетки сетчатки. Поэтому при длительной оксигенации применяется не чистый кислород, а газовые смеси.
Размещено на Allbest.ru
...Подобные документы
Физиологические показатели дыхания. Регуляция внешнего дыхания. Функциональная система поддержания уровня кислорода в организме. Основные рецепторы легких. Активность разных типов нейронов в течение фаз дыхания. Рефлекторная активация центра вдоха.
презентация [7,1 M], добавлен 13.12.2013Основные этапы дыхания человека. Транспортная система дыхания, включающая систему внешнего дыхания, систему кровообращения и систему клеточного дыхания. Ветвление дыхательных путей. Спирограмма и плетизмография. Возрастная динамика легочных объемов.
презентация [1,5 M], добавлен 06.05.2014Значение дыхания для жизнедеятельности организма. Механизм дыхания. Обмен газов в легких и тканях. Регуляция дыхания в организме человека. Возрастные особенности и нарушения деятельности органов дыхания. Дефекты органов речи. Профилактика заболеваний.
курсовая работа [30,1 K], добавлен 26.06.2012Автоматизм дыхания: зарождение импульсов в стволе головного мозга. Дорсальная и вентральная дыхательные группы медуллярных нейронов. Гуморальная регуляция с помощью центральных и периферических хеморецепторов. Патогенез дыхательной недостаточности.
реферат [23,6 K], добавлен 21.09.2009Регуляция внешнего дыхания. Влияние внешнего дыхания на движения, его особенности при локомоциях, мышечной работе разной интенсивности. Сочетание фаз дыхания и движения. Эффективность синхронных и асинхронных соотношений темпа движений и частоты дыхания.
курсовая работа [755,1 K], добавлен 25.06.2012Структура и основные элементы аппарата внешнего дыхания человека: воздухоносные пути и альвеолы легких, костно-мышечный каркас грудной клетки, малый круг кровообращения. Принципы регуляции дыхания. Механизм вдоха и выдоха. Закон Фика и его значение.
презентация [3,0 M], добавлен 23.11.2010Понятие внешнего дыхания. Области применения исследования функции внешнего дыхания. Оценка здоровья населения. Измерение легочных объемов и вентиляционной функции легких. Форсированная жизненная емкость легких. Максимальная произвольная вентиляция легких.
презентация [561,9 K], добавлен 03.12.2013Понятие процесса дыхания в медицине. Описание особенностей органов дыхания, краткая характеристика каждого из них, строение и функции. Газообмен в легких, профилактика заболеваний органов дыхания. Особенности строения органов дыхания у детей, роль ЛФК.
статья [639,4 K], добавлен 05.06.2010Понятие о дыхательной недостаточности и типах вентиляционных нарушений. Причины развития, основные механизмы формирования дыхательной недостаточности. Инструментальные методы диагностики нарушений функций внешнего дыхания, показатели легочной вентиляции.
реферат [16,3 K], добавлен 27.01.2010Строение и функции воздухоносных путей, полости носа, гортани, трахеи, легких, плевры. Вентиляция легких и внутрилегочной объем газов, факторы, влияющие на него. Принципы регуляции дыхания. Транспорт газов кровью. Исследование воздухоносных путей.
курсовая работа [61,5 K], добавлен 10.04.2014Возникновение болей в грудной клетке при пневмонии, воспаление плевры (плеврита). Заболевание органов брюшной полости. Перкуссия и аускультация легких. Проведение рентгеноскопии и рентгенографии грудной клетки. Исследование функции внешнего дыхания.
презентация [336,7 K], добавлен 06.10.2014Методика проведения анализа газов артериальной крови, факторы риска и возможные осложнения. Спирография как наиболее простой метод исследования внешнего дыхания, его назначение и условия применения. Виды и характеристика острых нарушений дыхания.
реферат [19,7 K], добавлен 03.09.2009Анатомическая характеристика и строение верхних и нижних дыхательных путей ребенка: носа, гортани, трахеи, плевры, легких. Механизм дыхания. Врожденные пороки развития. Искривление грудной клетки. Хирургическое лечение воронкообразной грудной клетки.
презентация [1,2 M], добавлен 18.11.2015Дыхание как совокупность процессов, обеспечивающих поступление в организм кислорода. Основные показатели функции аппарата внешнего дыхания. Особенности диагностики обструктивного, рестриктивного и смешанного типа нарушений вентиляционной функции легких.
презентация [1,3 M], добавлен 06.02.2014Изучение физиологических особенностей дыхания, включающих деятельность периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких. Факторы регуляции кислородной ёмкости. Функциональная классификация нейронов спинного мозга.
реферат [35,1 K], добавлен 23.12.2010Регулирование дыхания центром, расположенным в продолговатом мозге. Причины остановки дыхания. Дыхательные аналептики рефлекторного действия. Противокашлевые средства центрального и периферического действия. Средства, применяемые при бронхиальной астме.
реферат [25,3 K], добавлен 15.04.2012Процесс поглощения из воздуха кислорода и выделения углекислого газа. Смена воздуха в легких, чередование вдоха и выдоха. Процесс дыхания через нос. Что опасно для органов дыхания. Развитие смертельных заболеваний легких и сердца у курильщиков.
презентация [1,1 M], добавлен 15.11.2012Искусственная вентиляция легких (ИВЛ) как метод протезирования внешнего дыхания. Основные виды ИВЛ, показания к ее применению и контроль эффективности. Принципы работы аппаратов. Варианты вентиляции, дыхательные контуры. Параметры вентиляции легких.
презентация [479,5 K], добавлен 12.02.2017Функциональная дыхательная система и ее элементы. Структура и строение системы внешнего дыхания. Дыхательные мышцы как двигатель вентиляции. Транспорт газов кровью. Нейронный состав дыхательного центра, центральные и периферические хеморецепторы.
презентация [8,2 M], добавлен 18.06.2013Анализ методики аускультации легких как метода исследования структуры, функций аппарата внешнего дыхания. Акустические явления при исследовании дыхания - возникновение и распространение звуковых волн. Дополнительные патологические шумы, их характеристика.
презентация [404,0 K], добавлен 06.10.2014