Получение антибиотиков биотехнологическими методами

Антибиотики – как самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Изучение процессов производства антибиотиков и их применение и безопасность в агропромышленном комплексе. Методы культивирования продуцентов.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 31.10.2021
Размер файла 161,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Кыргызкой Республики

Кыргызкий национальный университет им. Ж. Баласагына

Факультет биологии

Кафедра ботаники и физиологии растений

Курсовая работа

Тема: Получение антибиотиков биотехнологическими методами

Выполнила: студент 2 курса Набиева У.

Проверила: Мамбетов Т.

Бишкек-2020

Содержание

Введение

Глава 1. Общая характеристика антибиотиков

1.1 Классификация антибиотиков

1.2 Применение антибиотиков

Глава 2. Технология получения антибиотиков

2.1 Стерилизация питательных сред

2.2 Подготовка посевного материала

2.3 Методы культивирования продуцентов антибиотиков

2.4 Ферментеры

2.5 Предварительная обработка культуральной жидкости, выделение и химическая очистка антибиотика

2.6 Сушка, контроль и расфасовка препарата

Глава 3. Производство пенициллина

3.1 Технологическая схема производства пенициллина

3.2 Подготовка инокулята

3.3 Процесс ферментации

3.4 Фильтрация

3.5 Предварительная обработка нативного раствора

3.6 Выделение кристаллических солей пенициллина

3.7 Отходы производства

Заключение

Список использованной литературы

Введение

Антибиотики - самый большой класс фармацевтических препаратов, которые синтезируются микроорганизмами. Некоторые из антибиотиков используют в сельском хозяйстве против различных сельскохозяйственных вредителей, другие - в медицинских целях.

С открытием и применением первого антибиотика началась новая эра в истории человечества. Использование антибиотиков не только спасло многие миллионы человеческих жизней, но и выявило их значительную эффективность в борьбе с заболеваниями животных и растений.

Эпоха антибиотиков рассматривается многими учёными как эпоха "демографического взрыва". Они считают, что именно антибиотики снизили смертность от инфекционных заболеваний, обеспечивая тем самым интенсивный рост народонаселения на нашей планете. Так же антибиотики приобрели социальное значение. Они увеличили среднюю продолжительность жизни, и изменили соотношение возрастных групп. Антибиотики повлияли и на экономику благодаря повышению эффективности массовых лечебных мероприятий, и на распределение сил и средств, которые были вовлечены в сеть лечебно-профилактических учреждений. фармацевтический антибиотик продуцент

До изобретения антибиотиков любое воспаление лёгких могло привести к смерти, любое ранение могло привести к заражению крови и как следствие к гибели, а скарлатина протекала очень тяжело, часто с тяжёлыми осложнениями и даже со смертельным исходом. Процент смертности от пневмонии до 1940-х составляла 20-30%. Множество раненных солдат во Вторую мировую войну погибали не на полях сражений, а в госпиталях от гангрены и заражения крови. Различные эпидемии уносили множество голов сельскохозяйственного скота, нанося огромный ущерб сельскому хозяйству.

С открытием антибиотиков врачи получили невиданные до этого возможности. Они оказались способными лечить сифилис, гонорею, пневмонию, туберкулёз. Многие заболевания кожи стали подчиняться простому лечению. Так же изменилась ситуация в сельском хозяйстве. Ещё в 1943 году были проведены первые опыты по использованию малых доз пенициллина для ускорения роста скота и домашней птицы. Эти опыты были крайне необходимы во время войны, так как недостаток продовольствия затронул практически все страны.

Вместе с тем, нисколько не умаляя ценности применения антибиотиков, необходимо трезво учитывать нежелательные явления, возникающие в результате применения антибиотиков. К таким последствиям можно отнести выработку микроорганизмами лекарственной устойчивости, нарушение в микроорганизме эволюционно сложившихся биоценозов резидентных микроорганизмов, повреждение антибиотиками ряда систем микроорганизма и в первую очередь иммунной системы, что ведёт к снижению его защитных сил, а также появление сенсибилизации.

Цель данной курсовой работы - изучить процессы производства антибиотиков и их применение и безопасность в агропромышленном комплексе.

Глава 1. Общая характеристика антибиотиков

Изначально, понятие "антибиотик" ввёл в 1942 году З. Ваксман. Он определил антибиотики как "химические вещества, образующихся микроорганизмами, которые обладают способностью подавлять рост и даже разрушать бактерии и другие микроорганизмы". Однако это понятие не совсем корректно. Оно не показывает различий между антибиотическими веществами и другими продуктами жизнедеятельности, которые обладают антимикробными действиями. Так на пример молочнокислые бактерии и Aspergillus niger выделяют молочную и лимонные кислоты, оказывающие подавляющее действие на микроорганизмы. К тому же антибиотики выделяют не только микроорганизмы, но и высшие растения и животные.

После установления высоких лечебных свойств первого антибиотика - пенициллина - сразу же возникла задача организации его производства в больших количествах. На первом этапе промышленное получение этого препарата носило примитивный, экономически нерентабельный характер. Выращивание продуцента антибиотика осуществлялось на средах, находящихся в небольших сосудах (матрацы, молочные бутылки, колбы и др.), при поверхностном культивировании гриба. Процесс развития гриба продолжался 8-10суток. Такой способ культивирования гриба при, большой затрате труда давал весьма низкий выход антибиотика, и себестоимость препарата была соответственно очень высокой. Безусловно, такое получение антибиотика не могло удовлетворить возрастающие запросы медицины. В результате поисков путей наиболее рационального способа производства антибиотика был предложен метод глубинного выращивания гриба в специальных емкостях ферментерах или танках - при продувании воздуха и перемешивании культуральной жидкости.

Производство антибиотиков - хорошо развитая отрасль. В настоящее время она занимает одно из ведущих мест в производстве лекарственных препаратов. В ряде стран (США, Япония, Англия, Франция и др.) производство антибиотических веществ- одна из прибыльных отраслей химико-фармацевтической промышленности. Так, в США ежегодно выпускается антибиотиков и их производных на сумму более 400 млн. долл.

Огромный спрос на антибиотические препараты со стороны медицины, сельского хозяйства, пищевой промышленности способствовал усиленному поиску новых антибиотиков и получению их в промышленных масштабах. Если в начале 40-х годов мировая промышленность выпускала всего лишь 2-3 антибиотика, то теперь это число превышает 200 названий.

1.1 Классификация антибиотиков

По характеру воздействия на бактериальную клетку антибиотики можно разделить на три группы:

- бактериостатические (бактерии живы, но не в состоянии размножаться),

- бактерициды (бактерии умертвляются, но физически продолжают присутствовать в среде),

- бактериолитические (бактерии умертвляются, и бактериальные клеточные стенки разрушаются).

По механизму биологического действия антибиотики делятся:

1. Антибиотики, ингибирующие синтез бактериальной стенки (пенициллины, цефалоспорины, бацитрацин, ванкомицин).

2. Антибиотики, нарушающие функционирование цитоплазматической мембраны (полипептиды, полиены, грамицидин).

3. Антибиотики, разрушающие рибосомальные субчастицы и сдерживающие синтез белка (тетрациклины, хлормицетины, аминогликозиды, макролиды).

4. Антибиотики, избирательно подавляющие синтез нуклеиновых кислот:

- ингибиторы синтеза РНК (актиномицин, гризеофульвин, канамицин, неомицин, новобиоцин и др.);

- ингибиторы синтеза ДНК (брунеомицин, саркомицин).

Антибиотики обладают избирательным действием, т.е. активны только в отношении микроорганизмов при сохранении жизнеспособности клеток хозяина и действуют не на все, а на определенные роды и виды микроорганизмов. С избирательностью тесно связано понятие о широте спектра активности антибиотиков. Традиционно по спектру антимикробного воздействия антибиотики делятся на препараты узкого спектра действия и широкого:

1. Антибиотики узкого спектра действия действуют только определенный вид бактерий. К ним относятся пенициллин, оксациллин, эритромицин.

2. Антибиотики с широким спектром действия эффективны в уничтожении не исключительно грамположительных и грамотрицательных бактерий, но также спирохет, лептоспир, риккетсий, крупных вирусов (трахомы, пситтакоза и других). К ним относят группы тетрациклина (тетрациклин, окситетрациклин, хлортетрациклин, глициклин, метациклин, морфоциклин, доксициклин) и левомицетина.

Выражение величин биологической активности антибиотиков обычно производят в условных единицах, содержащихся в 1 мл раствора (ед/мл) или в 1 мг препарата (ед/мг). За единицу антибиотической активности принимают минимальное количество антибиотика, способное подавить развитие или задержать рост стандартного штамма тест-микроба в определенном объеме питательной среды.

1.2 Применение антибиотиков

Антибиотики широко применяются в различных сферах человеческой деятельности: медицине, пищевой и консервной промышленности, сельском хозяйстве. Открытие антибиотиков вызвало переворот в медицине. Широко известно применение антибиотиков с бактерицидным и бактериостатическим действием; благодаря антибиотикам стали излечимыми многие инфекционные заболевания (чума, туберкулез, пневмония, брюшной тиф, холера). В течение многих лет антибиотики применяют в сельском хозяйстве в качестве стимуляторов роста сельскохозяйственных животных, средств борьбы с болезнями животных и растений. Антибиотические вещества также широко применяют для борьбы с посторонней микрофлорой в ряде бродильных производств и в консервной промышленности. Однако нельзя не отметить, что длительное и неконтролируемое применение антибиотиков приводит к возникновению и широкому распространению в микробных популяциях R-фактора устойчивости к антибиотикам, передающегося от одной бактериальной клетки к другой при помощи плазмид в процессе коньюгации. Средствами борьбы с проявлением лекарственной устойчивости к антибиотикам является обоснованное и строго контролируемое их применение и получение новых, модифицированных антибиотических препаратов, обладающих биологической активностью к резистентным формам.

Глава 2. Технология получения антибиотиков

Успехи антибиотической отрасли промышленности и качество выпускаемой продукции определяются уровнем основных стадий технологического процесса. Промышленное получение антибиотиков - это сложная многоступенчатая биотехнологическая система, состоящая из ряда последовательных стадий.

1) Стадия биосинтеза антибиотика. Это основная биологическая стадия сложного процесса получения антибиотического вещества. Главная задача на этой стадии - создание оптимальных условий для развития продуцента и максимально возможного биосинтеза антибиотика.

Высокая результативность стадии зависит от уровня биосинтетической активности продуцента антибиотика, времени его максимального накопления, стоимости сред для культивирования организма, в том числе стоимости применяемых предшественников, а также общих энергетических затрат на процессы, связанные с развитием продуцента антибиотического вещества.

2) Стадия предварительной обработки культуральной жидкости, клеток (мицелия) микроорганизма и фильтрации. Эффективность стадии во многом определяется составом среды для выращивания продуцента антибиотика, характером его роста, местом основного накопления биологически активного вещества (в культуральной жидкости или внутриклеточно).

3) Стадия выделения и очистки антибиотика. На этой стадии в зависимости от свойств антибиотика, его химического строения и основного места накопления антибиотического вещества применяются различные методы выделения и очистки. В качестве основных методов используются следующие: экстракция, осаждение, сорбция на ионообменных материалах, упаривание, сушка.

Особенность этой технологической стадии определяется тем, что на первом этапе работы приходится иметь дело с небольшой концентрацией (не более 1%) антибиотика в обрабатываемом растворе, тогда как на последующих этапах концентрация антибиотического вещества увеличивается до 20--30%. Все это требует применения различных емкостей и различных объемов используемых реагентов.

4) Стадия получения готовой продукции, изготовление лекарственных форм, расфасовка. Особенность стадии определяется очень высокими требованиями к качеству конечного продукта. При химической очистке антибиотических веществ необходимо соблюдать высокую чистоту помещений, оборудования, проводить систематическую дезинфекцию их. В случае выпуска антибиотиков, предназначенных для инъекций, препараты должны быть стерильными: получение таких антибиотических препаратов, приготовление различных лекарственных форм, дозировка и упаковка должны осуществляться в асептических условиях.

В современных условиях производства антибиотиков необходимо принимать меры к максимальному снижению себестоимости препаратов. Для этого необходимо:

1) внедрение в производство наиболее высокопродуктивных штаммов микроорганизмов - продуцентов антибиотиков;

2) создание и обеспечение самых благоприятных условий развития продуцента антибиотика на относительно дешевых средах;

3) широкое использование математических методов планирования процесса развития организма и электронно-вычислительной техники с целью оптимизации и моделирования условий его культивирования, обеспечивающих максимальный выход антибиотика;

4) применение современного оборудования на всех стадиях технологического процесса с автоматизированными контролирующими устройствами основных параметров развития организма и стадий биосинтеза антибиотика.

2.1 Стерилизация питательных сред

Для каждого продуцента антибиотика разрабатывается оптимальная питательная среда. В зависимости от природы используемого микроорганизма в качестве источника углерода возможно применение различных субстратов. Например, для получения пенициллина лучшим источником углерода и энергии является глюкоза и лактоза; грамицидина - глицерин и соли янтарной кислоты; стрептомицина и неомицина - глюкоза. Среда должна соответствовать определенным требованиям:

1) обеспечивать максимальное образование антибиотика;

2) состоять из относительно дешевых компонентов;

3) иметь хорошую фильтрующую способность;

4) обеспечивать применение наиболее экономичных приемов выделения и очистки антибиотиков.

Стерилизация питательных сред в промышленных условиях осуществляется двумя основными методами: периодическим и непрерывным.

Периодический метод стерилизации применяется при использовании небольших объемов среды и состоит в том, что среда нагревается до определенной температуры (120--130°С) непосредственно в ферментерах или в специальных котлах-стерилизаторах, выдерживается при этой температуре в течение 30--60 мин (в зависимости от объема среды и ее состава), после чего охлаждается до 27--30°С.

За время, затрачиваемое на нагрев среды до температуры, необходимой для стерилизации, и ее охлаждение, происходит разрушение значительного числа микроорганизмов. Хорошо известно, что для нагревания до температуры стерилизации больших объемов среды и затем ее охлаждения требуется больше времени, чем для маленьких объемов, а поэтому время, затрачиваемое на поддержание наиболее высокой стерилизующей температуры в больших объемах, может быть меньшим, чем для небольших объемов с тем же эффектом стерилизации.

Наилучший эффект стерилизации и сохранения термолабильных веществ среды получается в том случае, если стерилизация проводится при более высокой температуре и за более короткое время.

Непрерывный метод стерилизации целесообразно применять при использовании больших объемов среды. Приготовленная среда из специального сосуда с помощью насоса подается в стерилизационную колонку, через которую пропускается острый пар. Пар подается сверху по внутренней трубе, имеющей щелевидные прорези, благодаря чему пар поступает в среду и происходит быстрый ее нагрев. Среда в колонку подается снизу и движется по спирали вокруг внутренней трубы.

Среда, нагретая в колонке до температуры около 130°, поступает в специальный аппарат, где она выдерживается определенное время при температуре 125--130°С. Время выдержки зависит от состава среды и составляет 5--10 минут. Из выдерживателя стерильная среда поступает в змеевиковый холодильник, охлаждается до 30--35°С (на выходе) и поступает в ферментер.

Непрерывный метод стерилизации имеет ряд преимуществ по сравнению с периодическим:

1) при непрерывном методе стерилизации каждый элементарный объем среды находится при высокой температуре короткое время;

2) благодаря более высоким температурам стерилизации и короткой экспозиции деструкция компонентов питательной среды минимальна;

3) процесс стерилизации всего объема питательной среды растянут во времени, этим обеспечивается более равномерная разгрузка котельной;

4) процесс легко контролируем и управляем.

При применении в качестве отдельных компонентов субстрата термолабильных веществ их, как правило, следует стерилизовать отдельно в условиях более мягкого режима.

2.2 Подготовка посевного материала

Подготовка посевного материала - одна из ответственейших операций в цикле биотехнологического метода получения антибиотиков. От количества и качества посевного материала зависит как развитие культуры в ферментере, так и биосинтез антибиотика. Продуцент антибиотика обычно выращивается на богатых по составу натуральных средах, способных обеспечить наивысшую физиологическую активность микроорганизмов. Подготовка посевного материала - процесс многоступенчатый. Микроорганизм предварительно выращивают на агаризированной среде в пробирке, затем из пробирки делают высев в колбы с жидкой питательной средой и проводят две генерации при глубинном выращивании на качалках в течение 2--3 суток для каждой генерации. Из второй генерации культуры в колбе делают посев в небольшой инокулятор, после чего хорошо развившуюся культуру переносят в более крупный инокулятор, откуда и производят посев в основном ферментере. Для посева в основной ферментер используют от 5 до 10 объемных процентов посевного материала (инокулята). Однако в случае получения пенициллина споровый материал гриба, приготовленный на отрубях, рисовых зернах или пшене, засевают сразу в инокулятор.

2.3 Методы культивирования продуцентов антибиотиков

В современных условиях наиболее перспективным методом выращивания микроорганизмов - продуцентов антибиотиков признан метод глубинного культивирования. Метод состоит в том, что микроорганизм развивается в толще жидкой питательной среды, через которую непрерывно пропускается стерильный воздух, и среда перемешивается.

Можно указать четыре основные модификации глубинного способа выращивания микроорганизмов.

1) Периодическое культивирование. При этом способе весь процесс развития микроорганизмов полностью завершается в одном ферментере, после чего ферментер освобождается от культуральной жидкости, тщательно промывается, стерилизуется и вновь заполняется свежей питательной средой. Среда засевается изучаемым микроорганизмом, и процесс возобновляется.

2) Отъемный метод. Культивирование микроорганизмов осуществляется в ферментерах с периодическим отбором части объема культуральной жидкости (от 30 до 60% общего объема). Объем культуральной жидкости в ферментере при этом доводится свежей питательной средой до исходного уровня.

3) Батарейный способ. Развитие микроорганизмов проходит в ряду последовательно соединенных ферментеров. Культуральная жидкость на определенной стадии развития микроорганизма перекачивается из первого ферментера во второй, затем из второго - в третий.

Освобожденный ферментер немедленно заполняется свежей питательной средой, засеянной микроорганизмом. При этом способе выращивания микроорганизмов происходит более рациональное использование емкостей.

4) Непрерывное культивирование. Метод принципиально отличен от указанных модификаций глубинного культивирования продуцентов антибиотиков.

В основе этого метода лежит то, что развитие микроорганизма происходит в условиях непрерывного протока питательной среды, что позволяет поддерживать развитие микроорганизма на определенной стадии его роста.

2.4 Ферментеры

Для изучения условий образования антибиотиков и их производства в промышленных масштабах применяют ферментеры - специальные герметически закрытые емкости, в которых создаются хорошие условия для глубинного развития продуцента и биосинтеза антибиотика. Ферментер снабжен приспособления ми для достаточной аэрации и перемешивания культуры, поддержания необходимой температуры, а также контрольно-измерительными приборами

Аэрирование культуры происходит в результате подачи стерильного подогретого до необходимой температуры воздуха через специальные приспособления - барботеры - и перемешивания культуральной жидкости различного типа мешалками (пропеллерными, турбинными), а также использования отбойников.

Аэрация культуры повышается при использовании мешалок новых конструкций. Такие мешалки во время работы засасывают воздух, который затем струями выталкивается вместе с культуральной жидкостью на поверхность среды. При этом происходит большее растворение кислорода благодаря его лучшему диспергированию в среде.

Поддержание температуры, оптимальной для хорошего роста продуцента антибиотика и проявления им повышенной физиолого-биохимической активности, обеспечивается рубашкой ферментера или системой змеевиков. Змеевики используются также для подачи пара в процессе стерилизации или воды для охлаждения.

Наблюдение за основными процессами жизнедеятельности организма осуществляется контрольно-измерительной аппаратурой, позволяющей поддерживать на заданном уровне температуру внутри ферментера, рН среды, количество пропускаемого воздуха, давление внутри ферментера и другие параметры. Применяются установки, позволяющие автоматически определять содержание азота в среде в ходе развития организма. Ферментеры снабжены приспособлениями для переноса инокулята, внесения дополнительных питательных веществ, необходимых для лучшего развития продуцента, пеногасителя и устройством для взятия проб. Б современных ферментерах контрольно-измерительная аппаратура соединена с электронно-вычислительной машиной, что позволяет автоматически контролировать весь биосинтетический процесс по заданной программе.

В зависимости от характера работ используют разные типы ферментеров: лабораторные, полупроизводственные, производственные.

Лабораторные ферментеры изготовляют из стекла или нержавеющей стали и имеют, как правило, емкость не более 30 л. Обычно стерилизуют такие ферментеры в автоклавах. Питательную среду, как правило, стерилизуют отдельно, а затем переносят в стерильный ферментер.

Полупроизводственные ферментеры имеют емкость 100 л, выполнены из нержавеющей стали.

Производственные ферментеры. В промышленных условиях получения антибиотиков применяют ферментеры различной емкости - от 500 л до 50 и 100 м 3.

Стерилизация полупроизводственных и производственных ферментеров, а также всех обслуживающих их коммуникаций осуществляется перегретым паром. Воздух, необходимый для аэрации, стерилизуют путем фильтрации через специальные, фильтры, заполненные стеклянной ватой или активированным древесным углем. Использование волокнистых фильтров (типа стеклянной ваты) - широко распространенный и экономически наиболее выгодный механический способ стерилизации воздуха, причем "ем меньший диаметр имеют волокна материала, тем лучше их фильтрующая способность.

Интересно, что проникновение в фильтр бактериальных клеток или спор, перемещающихся с воздушным потоком, зависит от скорости движения воздуха. Проникновение усиливается с повышением скорости воздуха и достигает максимума в границах 10-26см/с (в зависимости от плотности упаковки фильтра); при дальнейшем увеличении скорости движения воздуха проникновение частиц уменьшается.

2.5 Предварительная обработка культуральной жидкости, выделение и химическая очистка антибиотика

В процессе развития микроорганизмов образуемые ими антибиотики в большинстве случаев почти полностью выделяются из клеток в окружающую среду. Однако в ряде случаев в культуральную жидкость попадает лишь часть антибиотика, а другая часть сохраняется внутри клеток.

У ряда продуцентов антибиотик почти полностью содержится в клетках организма.

В зависимости от того, где антибиотическое вещество сосредоточено, применяют соответствующие методы его извлечения. Так, если антибиотик находится в культуральной жидкости, его выделяют методами экстракции, используя для этого растворители, не смешивающиеся с жидкой фазой, осаждают в виде нерастворимого соединения или сорбируют ионообменными смолами. Выделяют антибиотик из клеток микроорганизмов с помощью экстракции органическими растворителями. Если антибиотик содержится в культуральной жидкости и в клетках продуцента, то сначала антибиотик переводят в фазу, из которой наиболее целесообразно его изолировать. Например, антибиотик, содержащийся в культуральной жидкости, и клетки с антибиотическим веществом переводят в осадок, из которого антибиотик экстрагируют.

Отделение нативного раствора от биомассы и взвешенных частиц проводят методами фильтрации или центрифугирования. Для фильтрации применяют фильтр-пресс, нутч-фильтр, друк-фильтр, центрифуги, сепараторы. Фильтр-прессы употребляют для обработки больших объемов культуральной жидкости. Аппараты состоят из ряда чередующихся плит и рам и фильтрующих перегородок между ними. Процесс фильтрации осуществляется под давлением.

Для фильтрации небольших объемов культуральной жидкости обычно используют нутч-фильтры или друк-фильтры. Первый аппарат работает под вакуумом, а во втором процесс фильтрации осуществляется благодаря поддержанию давления над фильтрующей жидкостью.

Широко распространен и способ центрифугирования. Хорошие результаты получают в том случае, если при правильном выборе скорости подачи жидкости скорость вращения центрифуги достигает 15 000 об/мин. Отделять мицелий или другие взвешенные частицы можно также в сепараторах. При скорости вращения барабана сепаратора 7000-7500 об/мин благодаря центробежной силе твердые частицы устремляются к стенкам барабана и осаждаются там, а отсепарированная жидкость стремится к центру барабана и поднимается вверх в специальную камеру.

Цель химической очистки - извлечение антибиотика из нативной жидкости или из клеток продуцента, его концентрация и освобождение (собственно очистка) от сопутствующих примесей и в конечном счете получение высокоочищенного препарата, пригодного для соответствующего применения.

В ряде случаев антибиотические вещества под влиянием жестких внешних факторов (повышенная температура, высокая кислотность или щелочность и др.) теряют свои свойства, инактивируются. Поэтому при их выделении и очистке необходимо соблюдать.максимум осторожности.

Основные методы очистки антибиотиков следующие.

Метод экстракции. Нередко для очистки антибиотика от различных примесей его многократно переводят из одного растворителя в другой с предварительным осаждением (кристаллизацией). Такой прием носит название перекристаллизации.

Ионообменная сорбция. Метод состоит в том, что при пропускании водных растворов антибиотиков, являющихся по химической природе кислотами, основаниями или амфотерными соединениями, через колонки с соответствующими ионообменными смолами они сорбируются на них, а раствор с частью примесей, имеющих противоположный антибиотику заряд, проходит через колонку. Смолы в зависимости от положительного или отрицательного заряда их ионов называют катеонитами или аиионитами. Антибиотик (как отрицательно заряженный ион) будет сорбироваться на катионитной смоле и наоборот. Адсорбированный на смоле антибиотик элюируют (десорбируют), в результате чего получают значительно очищенный и концентрированный препарат. Затем раствор этого препарата можно вновь пропустить через ионообменную смолу, но имеющую противоположный заряд. При этом на смоле осядут примеси, а раствор более очищенного антибиотика пройдет через колонку.

Метод осаждения. Антибиотик связывают с органическими или неорганическими веществами для получения соединения, выпадающего в осадок; последний с помощью фильтров или центрифугирования отделяют от нативного раствора, промывают и в ряде случаев высушивают. Образовавшееся соединение растворяют, антибиотик экстрагируют или вновь осаждают (кристаллизуют).

Одна из стадий химической очистки антибиотиков - концентрирование полученных растворов; достигается отгонкой большей части растворителя, как правило, в высоком вакууме.

Применяемые методы выделения и химической очистки, а также качество оборудования и используемых реактивов имеют большое значение прежде всего для улучшения качества получаемого антибиотика и увеличения выхода препарата.

2.6 Сушка, контроль и расфасовка препарата

После выделения и химической очистки антибиотика необходимо удалить из полученного препарата свободную и связанную воду.

Поскольку большинство антибиотиков в той или иной степени термолабильны, для их высушивания необходимо применять методы, не приводящие к потере биологической активности, не изменяющие цвета препарата. На современном этапе промышленного получения антибиотиков используют методы обезвоживания препаратов.

Лиофильная сушка антибиотиков - широко распространенный прием; проводится при сравнительно низких температурах (-8, -12°С).

Высушивание с применением распылительной сушилки - прогрессивный метод при работе с большими количествами антибиотика; раствор антибиотика пневматически распыляется до мельчайших капель в камере с потоком нагретого воздуха. Процесс высушивания антибиотиков протекает в течение нескольких секунд. При этом даже термолабильные препараты не меняют свойств.

Метод взвешенного слоя или сушка в вакуум-сушильных шкафах применяется для высушивания зернистых и пастообразных антибиотических препаратов.

Готовый антибиотик подвергается тщательному контролю: биологическому и фармакологическому.

Биологический контроль ставит задачей выяснение стерильности готового препарата. Для этого используют, как правило, два метода.

Первый - связан с инактивацией антибиотика и высевом его в соответствующую питательную среду.

Второй метод выяснения стерильности антибиотиков определяется тем, что для большинства этих соединений не имеется биологических инактиваторов их биологической активности. Поэтому у изучаемых препаратов выявляют наличие устойчивых к ним форм микроорганизмов, а также определяют возможное присутствие чувствительной микрофлоры.

Фармакологический контроль. К антибиотическим веществам, используемым в медицинской практике, предъявляются очень строгие требования. Каждый новый лекарственный препарат, прежде чем он будет разрешен к практическому применению, должен пройти всесторонние испытания на токсичность, пирогенность и на другие жизненно важные функции организма. Препарат изучают на разных видах животных в отношении его острой и хронической токсичности. Показатели острой токсичности являются одним из критериев качества антибиотического вещества. Только после всестороннего и тщательного изучения препарата он может быть рекомендован к практическому применению.

Расфасовка и упаковка антибиотика - следующий этап работы. Расфасованный и упакованный антибиотик с указанием показателя биологической активности, даты выпуска и срока годности поступает в продажу.

Глава 3. Производство пенициллина

Пенициллин был открыт в 1929 г. Александром Флемингом и был выделен в кристаллическом виде 1940 году. Установлено, что пенициллин оказывает антимикробное действие в отношении некоторых грамположительных бактерий (стафиллококков, стрептококков, диплококков и некоторых других) и практически неактивен в отношении грамотрицательных видов и дрожжей.

Способность образовывать пенициллин широко распространена среди многих плесневых грибов, относящихся к родам Penicillium и Aspergillus. Однако это свойство более характерно для группы Penicillium notatum-chrysogenum. Первые выделенные из естественных субстратов штаммы как наиболее активные продуценты пенициллина образовывали не более 20 единиц (12 мкг) антибиотика на 1 мл культуральной жидкости. В результате широкой научной работы по селекции новых активных штаммов продуцентов пенициллина получены различные штаммы Penicilliumchrysogenum, которые, в отличие от исходных штаммов, обладают высокой продуктивностью и используются в промышленности. В настоящее время в промышленных условиях получают культуральные жидкости с содержанием пенициллина более 15000 ед/мл, а отдельные штаммы способны синтезировать антибиотик в количестве до 25 тыс. ед/мл.

Под названием "пенициллин" объединена обширная группа веществ, которые являются N-ацильными производными гетероциклической аминокислоты. Из природных пенициллинов применяются бензилпенициллин и феноксиметилпенициллин.

3.1 Технологическая схема производства пенициллина

3.2 Подготовка инокулята

Подготовка посевного материала включает следующие стадии:

1) выращивание посевного мицелия 1-й генерации в аппаратах малой емкости (инокуляторах);

2) выращивание посевного мицелия 2-й генерации в аппаратах большой емкости.

Споровая культура, используемая для засева инокулятора, выращивается на пшене в стеклянных флаконах, высушивается и в таком виде хранится при комнатной температуре. Засев производят сухими спорами из 2-3 флаконов.

Основной задачей при культивировании продуцента пенициллина в посевных аппаратах на стадии подготовки инокулята является быстрое получение большой массы мицелия, способного обеспечить при пересеве в ферментер интенсивный рост и высокий выход антибиотика. Для осуществления этой задачи продуцент необходимо выращивать на средах, богатых легкоусвояемыми питательными веществами, в условиях хорошей аэрации, при оптимальной для роста микроорганизма температуре.

В качестве легкоусвояемого углерода выступает глюкоза, сахароза и т.д. В качестве второго источника углерода применяют в небольших количествах лактозу, присутствие которой в среде для выращивания посевного мицелия желательно по следующей причине: ее потребление начинается не сразу, а после некоторого периода адаптации (привыкания), в течение которого происходит образование фермента, расщепляющего лактозу. Посевной мицелий, выращенный на среде, содержащей лактозу, обладает более высокой ферментативной активностью по отношению к трудноусвояемой лактозе и быстрее потребляет ее, что положительно сказывается на ходе ферментации.

Потребность гриба в азоте легко удовлетворяется минеральным азотом - аммонийным или нитратным. Помимо неорганического азота, в состав посевных сред, применяемых в промышленности, входит богатое органическим азотом растительное сырье типа кукурузного экстракта. Растительное сырье характеризуется не только наличием органического азота, оно содержит дополнительный углерод, входящий в состав аминокислот, полипептидов и белков, а также минеральные элементы, витамины и ростовые вещества.

Кроме углерода и азота, для роста микроорганизма необходимы фосфор, сера, магний, калий и микроэлементы - марганец, цинк, железо, медь. Большинство известных посевных сред содержит почти все вышеуказанные элементы, но в различных соотношениях. В таблице 1 приведен пример среды, применяемой для выращивания посевного материала.

Таблица 1 - Состав одной из сред для выращивания посевного материала.

Вещество

%

Кукурузный экстракт

2 (на сухой вес)

Глюкоза

2

Лактоза

0,5

Азотнокислый аммоний

0,125

Однозамещенный фосфорнокислый калий

0,2

Сернокислый магний

0,025

Сернокислый натрий

0,05

Мел

0,5

Существенное влияние на рост мицелия оказывает рН среды. Наиболее благоприятное значение рН для роста мицелия лежит между 6,0-6,5. При более кислом или более щелочном рН рост и развитие микроорганизма замедляются.

Выращивание посевного мицелия продолжается 36-50 часов до получения биомассы средней густоты. Мицелий, выращенный в инокуляторах, передается в количестве 10% по объему в посевные аппараты, где культивируется в течение 12-18 часов, а затем передается в большие ферментеры в количестве 15-20%. Процесс выращивания посевного мицелия 1-й и 2-й генерации осуществляется при температуре 24-26°.

Пенициллы - продуценты пенициллина являются типичными аэробами и требуют для своего роста и развития наличия кислорода. Для получения высокопродуктивного посевного мицелия наряду с оптимальной питательной средой необходимо обеспечить и достаточное снабжение гриба. В процессе производства пенициллина выращивание посевного мицелия осуществляют при непрерывном перемешивании и бесперебойной подаче воздуха в аппараты в количестве 1,2-1,5 объема воздуха на 1 объем среды в минуту.

3.3 Процесс ферментации

Ферментация является основной стадией в производстве пенициллина, на которой формируется целевой продукт. В промышленности применяется метод глубинной ферментации, при котором культура микроорганизма выращивается в питательной среде, заполняя весь ее объем. У различных штаммов потребность в источниках питания неодинакова. В связи с этим состав сред не является постоянным и универсальным для всех продуцентов, образующих пенициллин, и меняется с появлением новых штаммов.

Ферментационная среда должна быть составлена таким образом, чтобы развивающаяся культура, потребляя питательные вещества и выделяя продукты обмена, сама создавала необходимые условия и осуществляла переход от фазы роста мицелия к фазе пенициллинообразования. Желательно, чтобы вторая фаза была более продолжительной и чтобы процесс ферментации прекращался до наступления автолиза.

Для этого, как и при выращивании посевного материала необходимо одновременное присутствие в среде как легко-, так и трудноусвояемого углевода. Легкоусвояемый углевод обеспечивает быстрый рост и образование обильной биомассы; трудноусвояемый углевод создает условия, благоприятные для биосинтеза антибиотика.

При промышленном биосинтезе пенициллина наибольшее распространение в качестве легкоусвояемого углевода получила глюкоза или гидрол. Трудноусвояемым углеводом является лактоза. Лактоза является единственным углеводом, обеспечивающим полноценное протекание фазы пенициллинообразования. Высокий выход антитибиотика получают только при наличии в среде лактозыв качестве основного источника углевода. Лактоза находится в культуральной жидкости на протяжении всего процесса ферментации, благодаря чему мицелий обеспечен сахаром, биомасса в течение пенициллинообразования медленно растет, и накопление антибиотика достигает максимального уровня.

В состав ферментационных сред входит органический и минеральный азот. Отличным источником органического азота считается кукурузный экстракт, но он может быть с успехом заменен пшеничным экстрактом, различными жмыхами, соевой мукой, глютеном и другим растительным сырьем, богатым азотом.

Источником минерального азота обычно служат нитрат аммония, сернокислый аммоний и некоторые другие соли. При ассимиляции грибом аммонийного азота этих солей освобождаются анионы кислот, которые способствуют некоторому закислению среды.

Исключительно важную роль в обмене веществ клетки играет фосфор, который необходим не только для нормального роста и развития гриба, но и для осуществления самого процесса биосинтеза пенициллина. Для образования пенициллина требуется значительно более высокая концентрация фосфора в среде, чем для роста гриба.

Обязательным компонентом ферментационной среды является сера, входящая в состав важнейших аминокислот и ферментов. Сера необходима еще и потому, что она входит в состав молекулы пенициллина. В питательные среды сера вносится в виде солей серной кислоты и гипосульфита.

Из других элементов, необходимых для нормальной жизнедеятельности гриба и образования антибиотика, следует отметить калий, магний, цинк, железо, марганец, медь.

Также необходимо присутствие предшественников в среде. Предшественниками называются вещества, непосредственно включающиеся в молекулу получаемого продукта. Предшественником бензилпенициллина является фенилуксусная кислота (ФУК) или ее производные - фенилацетамид (ФАА), фенилэтиламин, фенилацетилглицин и другие вещества. Предшественником феноксиметилпенициллина является феноксиуксусная кислота (ФОУК). Оптимальная концентрация предшественника в среде устанавливается в зависимости от эффективности его использования для биосинтеза пенициллина данным штаммом.

Для биосинтеза пенициллина наиболее благоприятно нейтральное значение рН. Для поддержания в культуральной жидкости определенного уровня рН рекомендуется регулировать его с помощью автоматического добавления кислоты или щелочи либо путем установления правильного соотношения компонентов среды. В синтетических средах в качестве регуляторов рН чаще всего применяют органические кислоты, в комплексных средах - мел. Своеобразным регулятором рН при промышленном получении пенициллина является кашалотовый жир, который добавляется в среду в процессе ферментации как пеногаситель.

Для получения максимального выхода пенициллина основные компоненты среды должны входить в ее состав в строго определенных соотношениях и концентрациях. Состав некоторых сред, применяемых в производстве пенициллина представлен в таблице 2.

Таблица 2 - Состав сред, применяемых для получения пенициллина

Компоненты

Среда

кукурузная

жмыховая

жировая

Кукурузный экстракт

2,0 - 3,0

-

2,0 - 3,0

Жмыхи (арахисовый, подсолнечный, соевый и др.)

-

2,0 - 4,0

-

Лактоза

5,0

5,0

1,0

Глюкоза или гидрол

1,5

1,5

1,5

Кашалотовый жир или растительные масла

0,5 - 0,1

0,5 - 0,1

2,5 - 3,5

Азотнокислый аммоний

0,4

0,4

0,4

Сернокислый натрий

0,05

0,05

0,05

Фосфорнокислый калий однозамещенный

0,4

0,4

0,4

Сернокислый магний

0,025

0,025

0,025

Серноватистокислыый натрий (гипосульфит)

0,2

0,2

0,2

Мел

0,5 - 1,0

0,5 - 1,0

0,5 - 1,0

Предшественник

0,3 - 0,4

0,3 - 0,4

0,3 - 0,4

Основными показателями, свидетельствующими об окончании ферментации, являются полное исчезновение углеводов в культуральной жидкости и прекращение биосинтеза антибиотика. Процесс ферментации в производственных условиях осуществляется при температуре 26±10 С и продолжается обычно 120-125 часов.

Интенсивность биосинтеза пенициллина зависит от количества мицелия, образуемого в процессе ферментации. Большая биомасса образует больше пенициллина, поэтому содержание углеводов, азота, фосфора и серы в среде должно быть достаточно высоким, чтобы обеспечить максимальное образование мицелия. Однако большая биомасса еще не гарантирует высокого выхода антибиотика. Гриб необходимо обеспечить не только достаточным количеством питательных веществ, но и необходимым количеством кислорода. Питание гриба и аэрация являются двумя сторонами одного процесса - чем больше питательных веществ в среде, тем больше требуется кислорода для их окисления. С другой стороны, повышение концентрации питательных веществ в среде ведет к увеличению биомассы, для дыхания которой требуется пропорционально большее количество кислорода. Состав питательной среды и аэрация взаимообусловлены. Максимальное количество пенициллина может быть получено только на средах с высокой концентрацией компонентов в условиях достаточного снабжения культуры растворенным кислородом.

Важным условием успешного проведения процесса биосинтеза пенициллина является строгое соблюдение условий асептики, так как попадание посторонних микроорганизмов может резко снизить выход антибиотика. Многие распространенные микроорганизмы способны образовывать фермент пенициллиназу, расщепляющий пенициллины. Попадание даже небольшого числа бактерий, способных вырабатывать пенициллиназу, приводит к полной инактивации пенициллина, в связи чемследует уделять особое внимание стерильности питательных сред, воздухаи вспомогательных материалов.

Необходимость обеспечения условий стерильности процессов при технологических связях агрегатов между собой коллекторными системами загрузки питательных сред, передачи посевного материала из инокуляторов в ферментаторы накладывает более высокие требования к уровню автоматизации этих процессов.

3.4 Фильтрация

Обычно для отделения мицелия от культуральной жидкости применяют вакуум-барабанные фильтры непрерывного действия. Фильтрацию начинают до начала автолиза мицелия, поскольку при фильтрации автолизированной культуры мицелий не образует плотной пленки на фильтрующей поверхности барабана, а налипает в виде отдельных тонких комков, которые сами не отходят в зоне "отдувки" фильтра, и их приходится удалять вручную. При этом продолжительность фильтрации увеличивается в 2 - 3 раза, выход фильтрата резко падает, а сам фильтрат получается очень мутным.

Необходимо тщательно соблюдать условия, препятствующие разрушению пенициллина во время фильтрации, - охлаждение нативного раствора до 4-6°С и систематическая (после каждой загрузки) обработка фильтра, коммуникаций и сборников антисептиками, например хлорамином. Фильтр также должен систематически стерилизоваться острым паром.

3.5 Предварительная обработка нативного раствора

Нативный раствор (фильтрат культуральной жидкости) представляет собой более или менее мутную, окрашенную в желто-коричневый или зеленовато-коричневый цвет жидкость. Величина рН среды в зависимости от штамма продуцента, состава среды и продолжительности процесса ферментации обычно колеблется от 6,2 до 8,2.

Очень важной характеристикой нативного раствора является содержание в нем белковых веществ, определяемых осаждением трихлоруксусной кислотой или другим соответствующим методом.

Применяется несколько способов предварительной обработки нативного раствора с целью освобождения от белковых примесей: осаждение солями многовалентных металлов (например, А 13+ Fе 3+ или Zn2+), коагуляция танином, термическая коагуляция при температуре 60-75°С и рН 5,5 - 6,0, осаждение примесей катионными детергентами типа четвертичных аммониевых оснований (например, цетилпиридиний-бромидом или додецилтриметиламмонийхлоридом и т.п.). Применение этих методов приводит к потерям антибиотика. Обычно в результате коагуляции и последующей фильтрации или сепарирования теряется от 5 до 15%) пенициллина. При этом коагуляция солями металлов позволяет удалять не более 50% общего количества белковых веществ.

Экстракция и очистка пенициллина.

Нативный раствор содержит 3-6% сухих веществ. На минеральные вещества приходится 30-40% сухого остатка, от 15 до 30% приходится на пенициллин, а остальное представляет сложную смесь органических веществ, включая белки, полипептиды, низкомолекулярные азотистые соединения, углеводы, различные органические кислоты и, в зависимости от штамма продуцента, то или иное количество пигмента. Для выделения пенициллина из этой сложной смеси можно пользоваться методами, основанными на адсорбции, экстракции или осаждении.

В промышленности извлечение активного вещества из нативного раствора основано на экстракции не смешивающимся с водой растворителем при подавленной диссоциации карбоксильной группы пенициллина. В растворитель, кроме пенициллина, переходит большая часть органических кислот. Минеральные загрязнения, большая часть азотистых соединений и других органических веществ остаются в водной фазе, так что в результате экстракции чистота продукта увеличивается в 4-6 раз.

К растворителям, применяемым для экстракции пенициллина, предъявляются следующие основные требования:

1) малая растворимость в воде;

2) отсутствие взаимодействия с пенициллином;

3) низкая упругость пара при температуре 5--30°С;

4) возможность регенерации при температуре не выше 120 - 140°;

5) низкая стоимость.

С учетом этих и ряда других показателей основными растворителями-экстрагентами были приняты бутилацетат и амилацетат.

При кислых значениях рН пенициллин нестабилен, поэтому при экстракции пенициллина в органический растворитель необходимо строго контролировать рН, поддерживая его в пределах 1,9-2,0, проводить экстракцию в возможно короткое время, охлаждать жидкости.

При экстракции пенициллина из нативного раствора образуются весьма стойкие, трудноразделяемые эмульсин, что обусловлено наличием в нативном растворе поверхностно-активных веществ. Это требует применения специальных дезэмульгаторов. Обычно для этой цели применяют анионные детергенты, например сульфированные жирные или нафтеновые кислоты. Обычно выбор детергента определяется его доступностью и экономическими соображениями. Для разделения эмульсии в экстракторах-сепараторах, как правило, достаточно добавлять к нативному раствору 0,05--0,1% детергента.

На стадии экстракции пенициллина из нативного раствора используются либо многоступенчатые экстракторы-сепараторы типа "Лувеста" и "Россия", либо двухступенчатая схема экстрагирования (контактирование подкисленного нативного раствора с бутилацетатом в специальных смесителях и разделение эмульсии на центробежных сепараторах типа САЖ-3). Применение эффективных центробежных экстракторов-сепараторов (с производительностью 4000--5000 л/час), обеспечивающих по крайней мере две ступени экстракции в одной машине и хорошее разделение фаз, сводит до минимума время пребывания пенициллина в кислой водной среде и, следовательно, повышает выход антибиотика. Применение двухступенчатой схемы при экстракции пенициллина из нативного раствора, безусловно, нежелательно не только вследствие более длительного времени пребывания пенициллина в неблагоприятных условиях в этом случае, но и вследствие того, что применение сепараторов САЖ-3 (производительность которых колеблется в пределах 800-- 1000 л/час) не всегда обеспечивает достаточно полное разделение фаз. Это влечет за собой ухудшение качества бутилацетатного экстракта (загрязнение нативным раствором) и увеличение потерь бутилацетата с отработанным нативным раствором. Соотношение фаз при проведении бутилацетатной экстракции пенициллина из нативного раствора составляет 1,0:0,3--0,45, температура 4--3°С.

После проведения бутилацетатной экстракции пенициллина из нативного раствора производят извлечение пенициллина из бутилацетатного экстракта водным раствором бикарбоната натрия или буферным раствором при рН 6,6--7,2. На этой стадии также применяют многоступенчатые экстракционные машины или используют двухступенчатую противоточную экстракцию с разделением эмульсии на сепараторах с отношением растворительно-водная фаза 1.0:0,35. Выход по бутилацетатной и буферной экстракциям составляет около 90-92%.

Для дальнейшей очистки пенициллин повторно извлекают из буферного экстракта органическим растворителем (чаще всего бутилацетатом или хлороформом) при рН 2,0. Процесс ведется аналогично бутилацетатной экстракции из нативного раствора. Эта стадия технологически оформляется также с применением многоступенчатых экстракционных машин или осуществляется в виде двухступенчатой противоточной экстракции с разделением фаз на сепараторах. Выход составляет около 86% от количества пенициллина, содержащегося в нативном растворе.

...

Подобные документы

  • Изучение лекарственных препаратов под общим названием "антибиотики". Антибактериальные химиотерапевтические средства. История открытия антибиотиков, механизм их действия и классификация. Особенности применения антибиотиков и их побочные действия.

    курсовая работа [51,4 K], добавлен 16.10.2014

  • История открытия антибиотиков. Механизм действия антибиотиков. Избирательное действие антибиотиков. Резистентность по отношению к антибиотикам. Основные группы известных на сегодняшний день антибиотиков. Основные побочные реакции на прием антибиотиков.

    доклад [30,0 K], добавлен 03.11.2009

  • Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.

    презентация [488,1 K], добавлен 04.12.2015

  • Характеристика хроматографических методов идентификации антибиотиков и их отнесения к той или иной группе антибактериальных препаратов. Анализ исследований ученых мира в сфере выявления и классификации антибиотиков в различных медицинских препаратов.

    курсовая работа [29,6 K], добавлен 20.03.2010

  • Первооткрыватели антибиотиков. Распространение антибиотиков в природе. Роль антибиотиков в естественных микробиоценозах. Действие бактериостатических антибиотиков. Устойчивость бактерий к антибиотикам. Физические свойства антибиотиков, их классификация.

    презентация [3,0 M], добавлен 18.03.2012

  • Классификация и характеристика феназинов. Применение феназиновых антибиотиков и их продуцентов. Пути биосинтеза феназиновых антибиотиков. Выделение феназина из культуральной жидкости. Подбор оптимальных условий хранения феназиновых антибиотиков.

    курсовая работа [790,8 K], добавлен 18.05.2013

  • Изучение химиотерапевтического спектра действия при опухолевых заболеваниях ряда средств из группы антибиотиков, алкалоидов и гормональных препаратов. Анализ химической структуры, основных свойств и механизма действия противоопухолевых антибиотиков.

    реферат [1,3 M], добавлен 26.05.2012

  • Антибиотики - самый большой класс фармацевтических соединений. Наиболее распространенные с коммерческой точки зрения соединения, их принцип получения. Использование ферментных препаратов типа "контейнер". Антидепрессивное воздействие зеленого чая.

    презентация [295,6 K], добавлен 04.12.2011

  • Биологическая активность антибиотиков, применяемых в современной химиотерапии. Классификация антибиотиков по спектру биологических действий. Отличительные свойства новых бетта-лактамных антибиотиков. Бактериальные осложнения при ВИЧ-инфекции, их лечение.

    реферат [22,5 K], добавлен 21.01.2010

  • Антибиотики: сущность, механизм действия и классификация. Антагонизм в мире микроорганизмов. Применение антибиотиков в сельском хозяйстве. Антибиотикорезистентность как феномен устойчивости штамма возбудителей инфекции к действию лекарственных препаратов.

    курсовая работа [35,0 K], добавлен 09.05.2013

  • Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация [354,6 K], добавлен 18.12.2016

  • Валидация методики количественного определения антибиотиков. Общие сведения о лекарственном средстве Капреомицин. Аттестация, хранение и реализация стандартных образцов на антибиотики. Установление специфичности в тестах "Количественное определение".

    реферат [152,8 K], добавлен 15.04.2015

  • История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат [54,1 K], добавлен 24.04.2013

  • Фармакологическое действие, спектр активности, показания и противопоказания к применению, побочные действия, способ применения и дозы пенициллиновых антибиотиков. Применение антибиотиков других групп, препаратов висмута, йода при лечении сифилиса.

    презентация [581,5 K], добавлен 08.09.2016

  • Механизм действия антибиотиков на микробную клетку, направления и этапы исследования данной тематики, современные достижения. Влияние антибиотиков на макроорганизм. Антибиотикорезистентность и пути ее преодоления. Возможные осложнения при их применении.

    реферат [34,4 K], добавлен 25.08.2013

  • Особенности использования антибактериальных средств для лечения и профилактики инфекционных заболеваний, вызванных бактериями. Классификация антибиотиков по спектру противомикробного действия. Описания отрицательных последствий применения антибиотиков.

    презентация [5,6 M], добавлен 24.02.2013

  • Лекарственные формы антибиотиков и виды сырья, используемые в их производстве. Аппаратурно-технологическое оформление процесса ферментации антибиотиков, процессы химической очистки и сушки. Биологические методы контроля производства антибиотиков.

    курсовая работа [332,6 K], добавлен 14.06.2012

  • Характеристика действия основных групп антибиотиков на организм человека. Анализ факторов уменьшения эффективности антибактериальной терапии. Рассмотрение принципов разумного применения антибиотиков в историческом, бытовом и академическом аспектах.

    реферат [38,3 K], добавлен 07.04.2010

  • Антибиотики из группы циклических полипептидов. Препараты группы пенициллинов, цефалоспоринов, макролидов, тетрациклинов, аминогликозидов и полимиксинов. Принципы комбинированного применения антибиотиков, осложнения, возникающие при лечении ими.

    реферат [33,3 K], добавлен 08.04.2012

  • Спектр активности антимикробных средств. Принцип действия антибактериальных, противогрибковых и антипротозойных препаратов. Способы получения антибиотиков. Структуры клетки, служащие мишенями для антибактериальных химиотерапевтических препаратов.

    презентация [1,1 M], добавлен 27.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.