Neuroinflammatory penumbra in Parkinson’s disease
Study of the etiology and pathogenesis of Parkinson's disease. Critical review of available international data on the participation of inflammatory processes in the etiopathogenesis of the disease in the context of the results of our own research.
Рубрика | Медицина |
Вид | статья |
Язык | английский |
Дата добавления | 14.03.2022 |
Размер файла | 37,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Belorussian Medical Academy of Postgraduate Education, Minsk, the Republic of Belarus
Institute of Physiology of the National Academy of Sciences, Minsk, the Republic of Belarus
Neuroinflammatory penumbra in Parkinson's disease
V.V. Ponomarev
A.V. Boika
Z.A. Hladkova
T.Y. Kuznetsova
M.M. Sialitski
N.E. Aleinikava
V.A. Bahamaz
Abstract
To date, the etiology and pathogenesis of Parkinson's disease (PD) are not fully understood. In this publication, we present a critical review of the available international data on the involvement of inflammation processes in the etiopathogenesis of the disease in the context of our research results. The data obtained by us during modeling of parkinsonian syndrome of neuroinflammatory origin (lipopolysaccharide endotoxin was used) in laboratory rats (basic group, n = 21; control group, n = 7) indicate that intranasal administration of lipopolysaccharide in all three studied doses (1, 10 and 100 ^g/kg/ml) seven days after the end of the experiment (21 injections) causes the same moderate morphological degenerative and inflammatory changes in the histostructure of the substantia nigra, extending to the striatum area (p > 0.05). This fact can be best explained by the all-or-none law. The staged, sequential transition of primary reversible (neuroinflammatory) pathomorphological changes to secondary irreversible (neurodegenerative) ones in PD, as well as secondary activation of microglia during neuronal degeneration, allows proposing the term “neuroinflammatory penumbra”, which will best help understand the pathogenesis of the disease and the development of therapies that change the course of Parkinson's disease. Our data on the use of mesenchymal multipotent stromal cells in rats with neurotoxic (rotenone) parkinsonian syndrome (n = 10) and in PD individuals (n = 10) demonstrate a decrease in motor impairment, overall improvement of patients and an effect on laboratory parameters compared with control groups. We associate the early positive effect, observed already in the first week after the administration of mesenchymal multipotent stromal cells, with their paracrine action, including on the neuroinflammatory penumbra.
Keywords: Parkinson's disease;penumbra; multipotent stromal cells; review
Пономарьов В.В., Бойко А.В., ГладковаЖ.А., Кузнєцова Т.В., Селіцький М.М., Алейнікова Н.Е., Богомаз О.А.
Білоруська медична академія післядипломної освіти, м. Мінськ, Республіка Білорусь
Державна наукова установа «Інститут фізіології Національної академії наук Білорусі», м. Мінськ, Республіка Білорусь
Нейрозапальна пенумбра при хворобі Паркінсона
Резюме
pathogenesis parkinson's disease
На сьогодні етіологія і патогенез хвороби Паркінсона (ХП) до кінця не вивчені. У цій публікації ми наводимо критичний огляд доступних міжнародних даних щодо участі процесів запалення в етіопатогенезі захворювання в контексті результатів власних досліджень. Дані, отримані нами при моделюванні синдрому паркінсонізму нейрозапального генезу (використовувався ендотоксин ліпополісахарид) у лабораторних щурів (основна група, п = 21; контрольна група, п = 7), свідчать про те, що інтраназальне введення ліпополісахариду в усіх трьох досліджуваних дозах (1, 10 та 100 мкг/кг/мл) через сім діб після завершення експерименту (21 введення) викликає однакові помірні морфологічні дегенеративні і запальні зміни гістоструктури чорної субстанції головного мозку, що поширюються і на ділянку стріатума (р > 0.05). Цей факт найкраще може бути пояснений принципом «все або нічого». Стадійний, послідовний перехід первинних оборотних (нейрозапальних) патоморфологічних змін у вторинні необоротні (нейродегенеративні) при ХП, а також вторинна активація мікроглії при дегенерації нейронів дозволяють нам запропонувати термін «нейрозапальна пенумбра», що найкращим чином сприятиме розумінню патогенезу захворювання і розробці методів терапії, які змінюють перебіг ХП. Наші власні дані щодо застосування мезенхімальних мультипотентних стромальних клітин у щурів із синдромом паркінсонізму нейротоксичного (використовувався ротенон) генезу (п = 10) і в осіб із ХП (п = 10) демонструють зменшення моторних порушень, загальне поліпшення стану пацієнтів і вплив на лабораторні показники порівняно з контрольними групами. Ранній позитивний ефект, що спостерігався вже в перший тиждень після введення мезенхімальних мультипотентних стромальних клітин, ми пов'язуємо з їх паракринним впливом, у тому числі на нейрозапальну пенумбру.
Ключові слова: хвороба Паркінсона; пенумбра; мультипотентні стромальні клітини; огляд
Parkinson's disease (PD) is one of the most common ones in neurological practice, which are traditionally attributed to the group of conformational pathology of the brain (substantia nigra pars compacta) [1]. It has been more than 200 years since the first scientific description of this disease by the English doctor James Parkinson in 1817. Unfortunately, the exact etiology of the disease is not fully known until now. It is believed that mutations of some molecules, such as a-synuclein, parkin and ubiquitin C-terminal hydrolase L1 [2], correlate with early onset of PD and familial cases of PD, which represent only a very small part of the incidence, while most cases of disease (sporadic PD) are most likely associated with environmental toxins, mitochondrial dysfunction and oxidative stress [3]. Among the various factors that can provoke the degeneration of dopaminergic neurons of the substantia nigra and the clinical manifestation of PD, data on the possible involvement of inflammation in the brain (neuroinflammation) aroused great scientific and practical interest. Thus, postmortem studies of the brain of patients with PD indicate an increase in activated microglia and high levels of inflammatory factors (interleukin (IL) 1p, tumor necrosis factor a, nitric oxide, etc.) in the nigrostriatal system [4]. Numerous examples of microglial activation and high levels of inflammatory factors were found in the brains of animals with a PD model [5, 6]. So, can an infectious, viral or bacterial agent provoke the development of PD? In 2019, a team of European authors published an article in the journal “Frontiers in Neurology” entitled “Infectious etiologies of parkinsonism: pathomechanisms and clinical implications” [7] at the end of which the accumulated data in recent years indicated the role of infectious etiology in the development of parkinsonism and Parkinson's disease, but the authors caution against the conclusion that all cases of PD are associated with increased inflammatory reactions and underlying chronic infection. The authors suggest that further researches are needed to study the involvement and degree of involvement of pathogens and inflammatory cytokines in the etiopathogenesis of PD. For our experimental work in this direction, we decided to use a bacterial lipopolysaccharide (LPS). The choice was due to the fact that LPS is an integral part of the cell membrane of all Gram-negative bacteria and its introduction to experimental animals when modeling parkinsonial syndrome causes inflammation in the brain and induces neurodegeneration of dopaminergic neurons [8--10]. Qing He et al. [11] confirmed the activation of microglia and the release of tumor necrosis factor a and IL-1 p in the substantia nigra in mice after intranasal administration of LPS. The absence of a direct effect of LPS on neurons makes it an excellent tool for studying inflammation-mediated dopaminergic neurodegeneration, along with neurotoxic models of parkinsonism (rotenone, paraquat, etc.). Our data [12, 13] obtained by comparing the results of repeated laboratory studies of dopamine and homovanillic acid levels in the blood serum and cerebrospinal fluid of experimental animals (rats) on days 7 and 21 from the beginning of modeling parkinsonial syndrome of neuroinflammatory (LPS was used, n = 6) and neurotoxic (rotenone was used, n = 20) origin showed progressive neurotransmitter deficiency in animals of both groups, which indicates the validity of the neuroinflammatory and neurotoxic models of parkinsonism used to study the pathogenesis of PD [14, 15].
To date, it is known that numerous solid suspended particles (particulate matter) in the air can enter the brain through the nose, bypassing the blood-brain barrier [8]. The hypothesis of an olfactory vector of neurodegenerative diseases proposed in recent years is based on the fact that disorders in PD can be caused or catalyzed by agents that enter the brain directly through the nasal cavity [16]. To assess the applicability of this hypothesis to describe the development of PD, we, together with the staff of the Institute of Physiology of the National Academy of Sciences of the Republic of Belarus, conducted studies on the influence of chronic daily (21 days) intranasal administration of various concentrations of LPS (1, 10 or 100 ^g/kg/ml, the same concentration throughout the study in each group of animals) on the formation of morphological signs of neuroinflammation and neurodegeneration in the extrapyramidal system. The experiments were carried out on male Wistar rats with a body weight of 320--350 g (basic group, n = 21; controls, n = 7) who received water for injection for 21 days (JSC “Borimed”). All manipulations with animals were carried out in accordance with the European Convention for the Protection of Vertebrate Animals [17]. Seven days after the end of the experiment (21 injections), after decapitation, the biological material (brain) was taken, followed by a morphological blinded study. A month after the start of instillation, there were no differences in the clinical characteristics of the motor activity of rats in the basic and control groups (grooming, open field test, p > 0.05). The study of histological preparations with Nissl staining (the processing of the data was aimed to determine the severity and the volume of neuron damage [18]) revealed statistically significant differences in the morphological picture of degenerative and inflammatory changes in the control group compared to the basic group rats who received LPS (p < 0.05, Mann-Whitney U test). But there were no statistically significant differences in the morphological picture between rats receiving different doses of LPS (p > 0.05, Kruskal-Wallis test). In the animals of the basic group, the morphological picture was of the same type, most of the neurons had some signs of neurodegeneration. In our opinion, morphological damage to neurons under the influence of prolonged intranasal administration of LPS occurs according to the all-or-none law: different doses of LPS exceeding the threshold value (the minimum required amount that may cause neurodegenerative changes), when ingested in the same period, will lead to neuroinflammatory and neurodegenerative changes of the same severity.
The gradual, sequential transition of reversible (neuroinflammatory) pathomorphological changes to irreversible (neurodegenerative) ones in PD allows us to propose the term “neuroinflammatory penumbra”. Initially, the definition of penumbra referred to areas of the brain that were damaged, but have not yet dead, which makes it possible to restore them with the help of appropriate treatment, i.e. it indicates the potential reversibility of pathomorphological changes existing in tissues [19]. The term “penumbra” is currently widely used in vascular neurology to define the zone of ischemic penumbra that surrounds the necrosis zone in ischemic stroke. From our point of view, the term “neuroinflammatory penumbra” allows us to better understand/reflect the pathophysiological mechanisms of various types of neurotransmitter deficiency: a) degenerative or true, associated with the death of neurons that can be compensated only with replacement therapy, and b) inflammatory or secondary, associated with a violation of the neurotransmitter function of the neuron due to an inflammatory reaction of microglia and/or still reversible neuroinflammatory damage to the neuron, which can be corrected by immunomodulatory therapy. It is worth emphasizing that the classic symptoms of PD in patients begin to appear only after the loss of 50 % of all dopaminergic neurons and 75--80 % of striatal dopamines [8]. It is possible that in some patients, neurons are in a state of neuroinflammatory penumbra and clinical improvement in these individuals can be achieved not only with replacement neurotransmitter therapy but also the use of drugs that affect the processes of neuroinflammation.
Currently, studies of drugs that modify the course of PD due to the immunomodulatory effect are being actively conducted [20]. We proposed using autologous mesenchymal multipotent stromal cells (MMSCs) to modify the course of Parkinson's disease [21]. Different studies have shown that MMSCs, in addition to their substitution role, embedding in the nervous system, also have numerous paracrine effects on the body, particularly by influencing the immune system [22].
Studies conducted on the basis of the vivarium of the State Educational Institution “Belarusian Medical Academy of Postgraduate Education” on rats (n = 10) with neurotoxic (rotenone) parkinsonial syndrome showed regression of motor symptoms (rigidity, postural instability and ptosis) and an increase in the level of dopamine and homovanillic acid in blood serum and spinal fluid on days 7 and 21 after intravenous single administration of allogeneic (rat) MMSCs. In patients with PD (n = 10, basic group), on the very next day after a single intravenous injection of autologous MMSCs, a statistically significant (p < 0.05) overall improvement was observed according to the Clinical Global Impression- Improvement scale and unidirectional changes in cytokines (IL-1 p, IL-10) of blood serum on day 7 were recorded. These changes were not observed in the group of patients with PD who received placebo (saline solution) once intravenously (n = 13, control group). We associate the positive effect of intravenous single administration of MMSCs in laboratory animals and patients with the paracrine effect of cell therapy, particularly on the neuroinflammatory penumbra.
Conclusions
The results of our research and the work of foreign colleagues confirm the data on the clinical heterogeneity and etiological multifactorial nature of PD. The application and further development of the concept of neuroinflammatory penumbra are important both for a more effective search for drugs that change the course of PD and for the development of a personalized approach to the choice of therapy for other diseases of the nervous system in the future. We agree with the opinion of foreign colleagues [23] that further study of etiological factors and pathogenetic mechanisms that reveal the variability of the development and progression of PD is a high priority area of research.
References
1. Illarioshkin S.N. Konformacionnye bolezni mozga. Moscow: Yanus-K, 2002. (in Russian).
2. Shadrina M.I., Slominsky P.A., Limborska S.A. Molecular mechanisms ofpathogenesis of Parkinson's disease. International Review of Cell and Molecular Biology. 2010. Vol. 281. P. 229-66.
3. Lonneke M.L. de Lau, Monique M.B. Breteler. Epidemiology of Parkinson's disease. Lancet Neurol. 2006. Vol. 5(6). P. 525-35. doi: 10.1016/S1474-4422(06)70471-9.
4. McGhee D.J., Royle P.L., Thompson P.A., Wright D.E., Zaji- cek J.P, Counsell C.E. A systematic review of biomarkers for disease progression in Parkinson's disease. BMC Neurol. 2013. Vol. 13. P. 35. doi: 10.1186/1471-2377-13-35.
5. Kohutnicka M., Lewandowska E., Kurkowska-Jastrzeb- ska I., Czlonkowski A., Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immu- nopharmacology. 1998. Vol. 39. P. 167-180. doi: 10.1016/s0162- 3109(98)00022-8.
6. Li F.-Q., Wang T., Pei Z., Liu B., Hong J.-S. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J. Neural Transm. 2005. Vol. 112(3). P. 331-347. doi: 10.1007/s00702- 004-0213-0.
7. Limphaibool N., Iwanowski P., Holstad M.J.V., Kobylarek D., Kozubski W. Infectious etiologies of parkinsonism: pathomechanisms and clinical implications. Front. Neurol. 2019. Vol. 10. P. 652. doi: 10.3389/fneur.2019.00652.
8. Dutta G., Zhang P., Liu B. The lipopolysaccharide Parkinson's disease animal model: mechanistic studies and drug discovery. Fundam. Clin. Pharmacol. 2008. Vol. 22. P. 453-464. doi: 10.1111/j.1472-8206.2008.00616.x.
9. Hui-Fang Zhou, Xian-Yu Liu, Dong-Bin Niu, Feng-Qiao Li, Qi-Hua He, Xiao-Min Wang. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol. Dis. 2005. Vol. 18. P. 441-449. doi: 10.1016/j.nbd.2004.12.005.
10. Hunter R.L., Baohua Cheng, Dong-Young Choi et al. Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J. Neurosci. Res. 2009. Vol. 87. P. 1913-1921. doi: 10.1002/ jnr.22012.
11. Qing He, Wenbo Yu, Jianjun Wu et al. Intranasal LPS-me- diated Parkinson's model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One. 2013. Vol. 8(11). P. e78418. doi: 10.1371/joumal.pone.0078418.
12. Boika A.V., Hladkova Z.A., Kuznetcova T.E., Ponomarev V.V. Modeling ofparkinsonism syndrome in rats with the introduction of lipopolysaccharide. Zhurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta. 2018. Vol. 6(16). P. 690-696. doi: 10.25298/22218785-2018-16-6-690-696. (in Russian).
13. Aleinikava N.Y., Boika A.V., Nizheharodava D.B., Ponomarev V.V., Vanslau M.I., Ustsiamchuk A.M., Ihnatovich T.V., Kuznetsova T.Y., Hladkova Z.A., Zafranskaya M.M. The obtaining of toxic chronic model ofparkinsonism syndrome in rats. Vestnik Vitebskogo Gosudarstvennogo Medicinskogo Universiteta. 2018. Vol. 6(17). P. 92-99. doi: 10.22263/2312-4156.2018.6.92. (in Russian).
14. Butowt R., Meunier N., Bryche B., von Bartheld C.S. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol. 2021. Vol. 141(6). P. 809-822. doi: 10.1007/s00401-021-02314-2.
15. Ppolo C., Bulfamante A.M., Schillaci A., Banchetti J., Cas- tellani L., Saibene A.M., Felisati G., Quadrio M. Through the back door: expiratory accumulation of SARS-Cov-2 in the olfactory mucosa as mechanism for CNS penetration. Int. J. Med. Sci. 2021. Vol. 18(10). P. 2102-2108. doi: 10.7150/ijms.56324.
16. Doty R.L. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann. Neurol. 2008. Vol. 63. P. 7-15. doi: 10.1002/ ana.21327.
17. European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. Strasbourg: European Treaty Series, 18 Mar 1986 (I-29468).
18. Chubinidze A.I. Arh. Patol. 1972. Vol. 11. P. 77-78. (in Russian).
19. Eng H. Lo. A new penumbra: transitioning from injury into repair after stroke. Nature Medicine. 2008. Vol. 14(5). P. 497-500. doi: 10.1038/nm1735.
20. P'isanu A., Lecca D, Mulas G, Wardas J, Simbula G, Spi- ga S, Carta A.R. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-y agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neu- robiol. Dis. 2014. Vol. 71. P. 280-91. doi: 10.1016/j.nbd.2014.08.011.
21. Boika A.V. Disease-modifying therapy of Parkinson's disease. Medicinskie Novosti. 2019. Vol. 1(292). P. 41-44. (in Russian).
22. Imran Ullah, Raghavendra Baregundi Subbarao, Gyu Jin Rho. Human mesenchymal stem cells -- current trends and future prospective. Biosci. Rep. 2015. Vol. 35(2). P. e00191. doi: 10.1042/ BSR20150025.
23. Blauwendraat C., Bandrйs-Ciga S., Singleton A.B. Predicting progression in patients with Parkinson's disease. Lancet Neurol. 2017. Vol. 16(11). P. 860-862. doi: 10.1016/S1474- 4422(17)30331-9.
Размещено на Allbest.ru
...Подобные документы
Anatomy of the liver. Botkin’s disease is a viral disease that destroys the liver and bile ducts. Causes and treatment of the disease. Vaccinations and personal hygiene are the main means of prevention. Signs and symptoms of the Botkin’s disease.
презентация [3,5 M], добавлен 22.04.2013Ulcer - is a defect of gastric or duodenal mucosa which interfere over lamina muscularis mucosae, submucosa. Pathogenesis of the disease, its provocative factors. Classification and types of ulcers. Symptoms of gastric ulcer disease, complications.
презентация [1,9 M], добавлен 16.04.2014Infectious hepatitis - a widespread acute contagious disease. Botkin’s Disease is a viral disease that destroys the liver and bile ducts. Anatomy of the liver. The value of the liver to the body. Causes and signs of the disease. Treatment and prevention.
презентация [4,0 M], добавлен 24.04.2014Areas with significant numbers of malaria cases: Africa, the Middle East, India, Southeast Asia, South America, Central America and parts of the Caribbean. Etiology, symptoms and diagnosis of the disease, methods of treatment and antimalarial immunity.
презентация [286,9 K], добавлен 02.10.2012Agranulocytosis - pathologic condition, which is characterized by a greatly decreased number of circulating neutrophils. Epidemiology and pathophysiology of this disease. Hereditary disease due to genetic mutations. Signs and symptoms, treatment.
презентация [1,8 M], добавлен 25.02.2014Pneumonia is an inflammatory condition of the lung—affecting primarily the microscopic air sacs known as alveoli. The bacterium Streptococcus pneumoniae is a common cause of pneumonia. Symptoms, diagnostics, treatment and prevention of this disease.
презентация [279,8 K], добавлен 12.11.2013The major pathogens and symptoms of cholera - an acute intestinal anthroponotic infection caused by bacteria of the species Vibrio cholerae. Methods of diagnosis and clinical features of disease. Traditional methods of treatment and prevention of disease.
презентация [1,0 M], добавлен 22.09.2014Gastroesophageal reflux disease. Factors contributing to its the development. Esophageal symptoms of GERD. Aim of treatment. Change the life style. A basic medical treatment for GERD includes the use of prokinetic drugs with antisecretory agents.
презентация [390,7 K], добавлен 27.03.2016The etiology of bronchitis is an inflammation or swelling of the bronchial tubes (bronchi), the air passages between the nose and the lungs. Signs and symptoms for both acute and chronic bronchitis. Tests and diagnosis, treatment and prevention disease.
презентация [1,8 M], добавлен 18.11.2015Coma - a life-threatening condition characterized by loss of consciousness, the lack of response to stimuli. Its classification, mechanism of development and symptoms. Types of supratentorial and subtentorial brain displacement. Diagnosis of the disease.
презентация [1,4 M], добавлен 24.03.2015The concept and the main causes of atherosclerosis, primary symptom. The mechanisms of atherosclerosis, main causes The symptoms and consequences, prevention. Atherosclerosis treatments. Basic approaches to diagnosis and treatment of this disease.
презентация [813,1 K], добавлен 21.11.2013Analysis of factors affecting the health and human disease. Determination of the risk factors for health (Genetic Factors, State of the Environment, Medical care, living conditions). A healthy lifestyle is seen as the basis for disease prevention.
презентация [1,8 M], добавлен 24.05.2012Causes of ischemic stroke. Assessment of individual risk for cardiovascular disease in humans. The development in patients of hypertension and coronary heart disease. Treatment in a modern hospital disorders biomarkers of coagulation and fibrinolysis.
статья [14,8 K], добавлен 18.04.2015Teratology is the science of the etiology, pathogenesis, clinical and morphological characteristics, prevention and treatment of congenital malformations. History and the stages of its formation and development. Etiology of congenital malformations.
презентация [873,8 K], добавлен 23.09.2014Concept and characteristics of focal pneumonia, her clinical picture and background. The approaches to the diagnosis and treatment of this disease, used drugs and techniques. Recent advances in the study of focal pneumonia. The forecast for recovery.
презентация [1,5 M], добавлен 10.11.2015Risk Factors. The following symptoms may indicate advanced disease. A barium contrast study of the small intestine. Surgical removal is the primary treatment for cancer of the small intestine. The association of small bowel cancer with underlying.
презентация [4,1 M], добавлен 28.04.2014Testosterone is the primary male sex hormone that is present in both men and women. How to get a test for testosterone correctly. Testosterone in men: the norm and deviation. What diseases involve reduction of testosterone. Too much testosterone.
презентация [498,5 K], добавлен 26.05.2013Etiology and pathogenesis, types, treatment of pulpits. Inflammation of dental pulp. An infection (microorganisms) which penetrats in the cavity of pulp chamber. Test of healthy pulp. Tapping of tooth directly. Root canal treatment. Tooth extraction.
презентация [851,9 K], добавлен 31.05.2016Disease of the calcified tissues of the teeth. Demineralization of the mineral portion of enamel and dentine followed by disintegration of their organic material. Classification of caries. Prevention and treatment of caries. The composition of the pulp.
презентация [424,6 K], добавлен 14.12.2016Principles and types of screening. Medical equipment used in screening. identify The possible presence of an as-yet-undiagnosed disease in individuals without signs or symptoms. Facilities for diagnosis and treatment. Common screening programmes.
презентация [921,2 K], добавлен 21.02.2016