Нейроендокринні порушення при COVID-19 і постковідному синдромі й оеобливості їх лікування препаратами гамма-аміномасляної кислоти (огляд літератури і власні дані)

Основні патогенетичні механізми розвитку нейроендокринних порушень при COVID-19 і постковідному синдромі. Оптимізація терапії в пацієнтів з COVID-19, постковідним синдромом з нейроендокринною симптоматикою. Прояви ураження центральної нервової системи.

Рубрика Медицина
Вид статья
Язык украинский
Дата добавления 18.04.2022
Размер файла 268,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
РћР±Р·РѕСЂ

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

27. Helms J. et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020. 382. 2268-2270. doi: 10.1056/ NEJMc2008597.

28. Heneka M.T., Golenbock D, LatzE, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res. Ther. 2020. 12. 69.

29. Hwang J.M., Kim J.H., Park J.S., Chang M.C., Park D. Neurological diseases as mortality predictive factors for patients with COVID-19: a retrospective cohort study. Neurol. Sci. 2020. 41. 23172324. doi: 10.1007/s10072-020-04541-z.

30. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Euro J. Clin. Nutr. 2003. 57. 490-495.

31. Jacob F. et al. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. doi: 10.1101/2020.07.28.225151.

32. Lee N.J., Herzog H. Coordinated regulation of energy and glucose homeostasis by insulin and the NPY system. https://doi. org/10.1111/jne.12925.

33. Lu Y. et al. Cerebral Micro-Structural Changes in COVID-19 Patients -- An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020. 25. 100484.

34. Mao L. et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020. 77. 683-690.

35. Mao X.-Y., Jin W.-L. The COVID-19 Pandemic: Consideration for Brain Infection. Neuroscience. 2020. 437. 130-131.

36. Mehta P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. 395. 1033-1034. doi: 10.1016/ S0140-6736(20)30628-0.

37. Matschke J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020. doi: 10.1016/S1474-4422(20)30308-2.

38. Nigro E, Polito R., Alfieri A. et al. Molecular mechanisms involved in the positive effects of physical activity on coping with COVID-19. European Journal of Applied Physiology. 2020. Vol. 120. № 12. P. 2569-2582.

39. Ersilia N, Perrotta F, Polito R., D'Agnano V., Scialа F., Bianco A., Daniele A. Metabolic Perturbations and Severe COVID-19 Disease: Implication of Molecular Pathways. International Journal of Endocrinology. 2020. Vol. 2020.

40. Pinzon R.T., Wijaya V.O., Buana R.B., Al Jody A., Nunsio P.N. Neurologic characteristics in Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Front. Neurol. 2020. 11. 565. doi: 10.3389/fneur.2020.00565.

41. Rogers J.P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020. 7. 611-627.

42. Sasannejad C, Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit. Care. 2019. 23. 352. doi: 10.1186/s13054-019-2626~z.

43. Secades J.J. Гамалате В6 -- обзор ГАМКергического продукта. Міжнародний неврологічний журнал. 2020. Т. 16. № 5. С. 114-120.

44. Alonso-Lana S, Marquie М, Ruiz А., Merce Boada М. Cognitive and Neuropsychiatric Manifestations of COVID-19 and Effects on Elderly Individuals with Dementia. Front Aging Neurosci. 2020 Oct 26. 12. 588872.

45. Guftar Sh.M. Hypothalamic dysfunction (hypothalamic syndromes). Oxford Textbook of Endocrinology and Diabetes. 2011. P. 233-239.

46. Nepton S, Hongmin Q., Aleksic M. et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Natl Acad. Sci U.S.A 2011 Jul 12. 108(28). P. 1169211697.

47. Song E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv. 2020. doi: 10.1101/2020.06.25.169946.

48. Toscano G. et al. Guillain-Barre Syndrome Associated with SARS-CoV-2. N Engl. J. Med. 2020. 382. 2574-2576. doi: 10.1056/ NEJMc2009191.

49. Trindade P. et al. Short and long TNF-alpha exposure recapitulates canonical astrogliosis events in human-induced pluripotent stem cells-derived astrocytes. Glia. 2020. 68. 1396-1409.

50. Tsai S.T., Lu M.K., San S., Tsai C.H. The neurologic manifestations of Coronavirus disease 2019 pandemic: a systemic review. Front. Neurol. 2020. 11. 498. doi: 10.3389/fneur.2020.00498.

51. Turner D.A., Adamson D.C. Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J. Neuropathol. Exp. Neurol. 2011. 70. 167-176.

52. Varatharaj A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020. doi: 10.1016/S2215-0366(20)30287-X.

53. Walls A.B. et al. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J. Cereb. Blood Flow Metab. 2011. 31. 494-503.

54. World Health Organization. Coronavirus Disease (COVID-19) Situation Report-190. 2020. https://www.who.int/docs/ default-source/coronaviruse/situation-reports/20200928-weekly-epiupdate.pdf?sfvrsn=9e354665_6.

55. Wu Z, McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020. doi: 10.1001/ jama.2020.2648.

56. Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J. Neurochem. 2008. 107. 1482-1494. doi: 10.1111/j.1471-4159.2008.05723.x.

57. Xie Z, Xia S, Le G.W. Gamma-aminobutyric acid improves oxidative stress and function of the thyroid in high-fat diet fed mice. J. Funct. Foods. 2014. 80. 76-86.

58. Yuan B, Li W, Liu H, Cai X, Song S., Zhao J. Correlation between immune response and self-reported depression during convalescence from COVID-19. Brain Behav. Immun. 2020. 88. 39-43. doi: 10.1016/jMi.2020.05.062.

59. Zanin L. et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. (Wien). 2020. 162. 149-494. doi: 10.1007/s00701-020-04374-x.

60. Zeng Q, Cui Y.S., Zhang L. Studies of fluoride on the thyroid cell apoptosis and mechanism. Chinese J. Preventive Med. 2012. 46.233-236.

61. Zhang J., Lu H, Zeng H, Zhang S, Du Q., Jiang T. et al. The differential psychological distress of populations affected by the COVID-19 pandemic. Brain Behav. Immun. 2020. 87. 49-50. doi: 10.1016/j.bbi.2020.04.031.

62. Zubair A.S., Mcalpine L.S., Gardin T, Farhadian S, Kuruvilla D.E., Spudich S. Neuropathogenesis and neurologic manifestations of the Coronaviruses in the age of Coronavirus disease 2019: a review. JAMA Neurol. 2020. 77. 1018-1027. doi: 10.1001/jamaneurol.2020.2065.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.