Современные представления об эпидемиологии, клинико-патогенезу, иммунопатологии, дополнительных факторах поддержания воспаления, диагностике, лечению COVID-19 в условиях Высокогорья (обзор литературы)
Анализ данных по актуальному вопросу – пандемии COVID-19. Оценка интенсивного показателя по инфицированности населения. Доля смертности населения за весь период пандемии в Кыргызской Республике. Влияние климатического региона на исследуемые показатели.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 11.09.2024 |
Размер файла | 471,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
40. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia // New England journal of medicine. 2020. V. 382. №13. P. 1199-1207. https://doi.org/10.1056/NEJMoa2001316
41. Zhang Y., Chen C., Zhu S., Shu C., Wang D., Song J., Xu W. Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19) // China CDC weekly. 2020. V. 2. №8. P. 123-124. https://weekly.chinacdc.cn/en/article/doi/10.46234/ccdcw2020.033
42. Karimi-Zarchi M., Neamatzadeh H., Dastgheib S.A., Abbasi H., Mirjalili S.R., Behforouz A., Bahrami R. Vertical transmission of coronavirus disease 19 (COVID-19) from infected pregnant mothers to neonates: a review // Fetal and pediatric pathology. 2020. V. 39. №3. P. 246-250. https://doi.org/10.1080/15513815.2020.1747120
43. Alzamora M.C., Paredes T., Caceres D., Webb C., Valdez L., Huang C., Moss T. Severe COVID-19 during pregnancy and possible vertical transmission // American journal of perinatology. 2020. V. 37. №08. P. 861-865. https://doi.org/10.1055/s-0040-1710050
44. Kalyanasundaram S., Krishnamurthy K., Sridhar A., Narayanan V.K., Rajendra Santosh A.B., Rahman S. Novel corona virus pandemic and neonatal care: it's too early to speculate on impact! // SN Comprehensive Clinical Medicine. 2020. V. 2. №9. P. 1412-1418. https://doi.org/10.1007/s42399-020-00440-8
45. Martinez-Perez O., Vouga M., Melguizo S.C., Acebal L.F., Panchaud A., Munoz - Chapuli M., Baud D. Association between mode of delivery among pregnant women with COVID-19 and maternal and neonatal outcomes in Spain // Jama. 2020. V. 324. №3. P. 296-299. https://doi.org/10.1001/jama.2020.10125
46. Dong L. et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn // Jama. 2020. V. 323. №18. P. 1846-1848. https://doi.org/10.1001/jama.2020.4621
47. Chen Y., Peng H., Wang L., Zhao Y., Zeng L., Gao H., Liu Y. Infants born to mothers with a new coronavirus (COVID-19) // Frontiers in pediatrics. 2020. V. 8. P. 104.
48. Arnaez J., Montes M.T., Herranz-Rubia N., Garcia-Alix A. The impact of the current SARS-CoV-2 pandemic on neonatal care // Frontiers in Pediatrics. 2020. V. 8. P. 247. https://doi.org/10.3389/fped.2020.00247
49. Yi Y., Lagniton P.N., Ye S., Li E., Xu R.H. COVID-19: what has been learned and to be learned about the novel coronavirus disease // International journal of biological sciences. 2020. V. 16. №10. P. 1753. https://doi.org/10.7150% 2Fijbs.45134
50. Hoffmann M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells //BioRxiv. - 2020. - С. 2020.01. 31.929042. https://doi.org/10.1101/2020.01.31.929042
51. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia // Emerging microbes & infections. 2020. V. 9. №1. P. 727-732. https://doi.org/10.1080/22221751.2020.1746199
52. Wu Y., Huang X., Sun J., Xie T., Lei Y., Muhammad J., Zhang Q. Clinical characteristics and immune injury mechanisms in 71 patients with COVID-19 // Msphere. 2020. V. 5. №4. P. 10.1128/msphere. 00362-20. https://doi.org/10.1128/msphere.00362-20
53. Coccia E.M., Battistini A. Early IFN type I response: Learning from microbial evasion strategies // Seminars in immunology. Academic Press, 2015. V. 27. №2. P. 85-101. https://doi.org/10.1016/j.smim.2015.03.005
54. Hu G., Christman J.W. Alveolar macrophages in lung inflammation and resolution // Frontiers in immunology. 2019. V. 10. P. 2275. https://doi.org/10.3389/fimmu.2019.02275
55. Abdulkhaleq L.A., Assi M.A., Abdullah R., Zamri-Saad M., Taufiq-Yap Y.H., Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review // Veterinary world. 2018. V. 11. №5. P. 627. https://doi.org/10.14202% 2Fvetworld.2018.627-635
56. Fahey E., Doyle S.L. IL-1 family cytokine regulation of vascular permeability and angiogenesis // Front Immunol. 2019. V. 10. P. 1426.
57. Gonzales J.N., Lucas R., Verin A.D. The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches // Austin journal of vascular medicine. 2015. V. 2. №1.
58. Rahman S., Montero M.T.V., Rowe K., Kirton R., Kunik Jr, F. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence // Expert review of clinical pharmacology. 2021. V. 14. №5. P. 601-621. https://doi.org/10.1080/17512433.2021.1902303
59. Bustin S.A., Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis // Clinical Science. 2005. V. 109. №4. P. 365-379. https://doi.org/10.1042/CS200500860050086
60. Tang Y.W., Schmitz J.E., Persing D.H., Stratton C.W. Laboratory diagnosis of COVID - 19: current issues and challenges // Journal of clinical microbiology. 2020. V. 58. №6. P. 10.1128/jcm. 00512-20. https://doi.org/10.1128/jcm.00512-20
61. Peeling R.W., Wedderburn C.J., Garcia P.J., Boeras D., Fongwen N., Nkengasong J., Heymann D.L. Serology testing in the COVID-19 pandemic response // The Lancet Infectious Diseases. 2020. V. 20. №9. P. e245-e249. https://doi.org/10.1016/S1473-3099 (20) 30517-X
62. Freeman B., Lester S., Mills L., Rasheed M.A.U., Moye S., Abiona O., Thornburg N.J. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance // Biorxiv. 2020. https://doi.org/10.1101% 2F2020.04.24.057323
63. Ospina-Tascon G.A., Calderon-Tapia L.E., Garcia A.F., Zarama V., Gomez-Alvarez F., Alvarez-Saa T..Effect of high-flow oxygen therapy vs conventional oxygen therapy on invasive mechanical ventilation and clinical recovery in patients with severe COVID-19: a randomized clinical trial // Jama. 2021. V. 326. №21. P. 2161-2171. https://doi.org/10.1001/jama.2021.20714
64. Carfi A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID-19 // Jama. 2020. V. 324. №6. P. 603-605. https://doi.org/10.1001/jama.2020.12603
65. Halpin S.J., McIvor C., Whyatt G., Adams A., Harvey O., McLean L., Sivan M. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A crosssectional evaluation // Journal of medical virology. 2021. V. 93. №2. P. 1013-1022. https://doi.org/10.1002/jmv.26368
66. Bowles K.H., McDonald M., Barron Y., Kennedy E., O'Connor M., & Mikkelsen M. Surviving COVID-19 after hospital discharge: symptom, functional, and adverse outcomes of home health recipients // Annals of internal medicine. 2021. V. 174. №3. P. 316-325. https://doi.org/10.7326/M20-5206
67. Wilder-Smith A., Freedman D.O. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019 - nCoV) outbreak // Journal of travel medicine. 2020. V. 27. №2. P. taaa020. https://doi.org/10.1093/jtm/taaa020
68. Guner H.R., Hasanoglu І., Akta§ F. COVID-19: Prevention and control measures in community // Turkish Journal of medical sciences. 2020. V. 50. №9. P. 571-577. https://doi.org/10.3906/sag-2004-146
69. Cirrincione L., Plescia F., Ledda C., Rapisarda V., Martorana D., Moldovan R.E., Cannizzaro E. COVID-19 pandemic: Prevention and protection measures to be adopted at the workplace // Sustainability. 2020. V. 12. №9. P. 3603. https://doi.org/10.3390/su12093603
70. Yao J.S., Paguio J.A., Dee E.C., Tan H.C., Moulick A., Milazzo C., Celi L.A. The minimal effect of zinc on the survival of hospitalized patients with COVID-19: an observational study // Chest. 2021. V. 159. №1. P. 108-111. https://doi.org/10.1016/j.chest.2020.06.082
71. Krause P., Fleming T.R., Longini I., Henao-Restrepo A.M., Peto R., Dean N.E., Henao - Restrepo A.M. COVID-19 vaccine trials should seek worthwhile efficacy // The Lancet. 2020. V. 396. №10253. P. 741-743. https://doi.org/10.1016/S0140-6736 (20) 31821-3
72. Koo J.R., Cook A.R., Park M., Sun Y., Sun H., Lim J.T., Dickens B.L. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study // The Lancet Infectious Diseases. 2020. V. 20. №6. P. 678-688. https://doi.org/10.1016/S1473-3099 (20) 30162-6
73. Rodriguez-Morales A.J., Cardona-Ospina J.A., Gutidrrez-Ocampo E., Villamizar-Pena R., Holguin-Rivera Y., Escalera-Antezana J.P., Sah R. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis // Travel medicine and infectious disease. 2020. V. 34. P. 101623. https://doi.org/10.1016/j.tmaid.2020.101623
74. Shim E., Tariq A., Choi W., Lee Y., Chowell G. Transmission potential and severity of COVID-19 in South Korea // International Journal of Infectious Diseases. 2020. V. 93. P. 339-344. https://doi.org/10.1016/j.ijid.2020.03.031
75. Bavli I., Sutton B., Galea S. Harms of public health interventions against covid-19 must not be ignored // Bmj. 2020. V. 371. https://doi.org/10.1136/bmj.m4074
76. Iwasaki A., Grubaugh N.D. Why does Japan have so few cases of COVID-19? // EMBO molecular medicine. 2020. V. 12. №5. P. e12481. https://doi.org/10.15252/emmm.202012481
77. Felsenstein S., Herbert J.A., McNamara P.S., Hedrich C.M. COVID-19: Immunology and treatment options // Clinical immunology. 2020. V. 215. P. 108448. https://doi.org/10.1016/_j.clim.2020.108448
78. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Laserson U. Immunology of COVID-19: current state of the science // Immunity. 2020. V. 52. №6. P. 910-941. https://doi.org/10.1016/_j.immuni.2020.05.002
79. Chuan Q., Luoqi Z., Ziwei H., Shuoqi Z., Sheng Y., Yu T., Dai-Shi T. Dysregulation of immune response in patients with COVID-19 in Wuhan, China // Clin Infect Dis. 2020. V. 10.
80. Tan M., Liu Y., Zhou R., Deng X., Li F., Liang K., Shi Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China // Immunology. 2020. V. 160. №3. P. 261-268. https://doi.org/10.1111/imm.13223
81. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen Y. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) // Frontiers in immunology. 2020. P. 827. https://doi.org/10.3389/fimmu.2020.00827
82. Wan S., Xiang Y.I., Fang W., Zheng Y., Li B., Hu Y., Yang R. Clinical features and treatment of COVID-19 patients in northeast Chongqing // Journal of medical virology. 2020. V. 92. №7. P. 797-806. https://doi.org/10.1002/jmv.25783
83. Haveri A., Smura T., Kuivanen S., Osterlund P., Hepojoki J., Ikonen N., Savolainen - Kopra C. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020 // Eurosurveillance. 2020. V. 25. №11. P. 2000266. https://doi.org/10.2807/1560-7917.ES.2020.25.11.2000266
84. Lou B., Li T.D., Zheng S.F., Su Y.Y., Li Z.Y., Liu W., Chen Y. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset // European Respiratory Journal. 2020. V. 56. №2. https://doi.org/10.1183/13993003.00763-2020
85. Wu Y.C., Chen C.S., Chan Y.J. The outbreak of COVID-19: An overview // Journal of the Chinese medical association. 2020. V. 83. №3. P. 217. https://doi.org/10.1097% 2FJCMA.0000000000000270
86. McGonagle D., Sharif K., O'Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease // Autoimmunity reviews. 2020. V. 19. №6. P. 102537. https://doi.org/10.1016/j.autrev.2020.102537
87. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // The lancet. 2020. V. 395. №10223. P. 497-506. https://doi.org/10.1016/S0140-6736 (20) 30183-5
88. Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L., Zhang Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia // The Journal of infectious diseases. 2020. V. 221. №11. P. 1762-1769. https://doi.org/10.1093/infdis/jiaa150
89. Tufan A., Guler A.A., Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposingantirheumatic drugs // Turkish journal of medical sciences 2020. V. 50. №9. P. 620-632. https://doi.org/10.3906/sag-2004-168
90. Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The immunology of macrophage activation syndrome // Frontiers in immunology. 2019. V. 10. P. 119. https://doi.org/10.3389/fimmu.2019.00119
91. Anka A.U., Tahir M.I., Abubakar S.D., Alsabbagh M., Zian Z., Hamedifar H., Azizi G. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management // Scandinavian journal of immunology. 2021. V. 93. №4. P. e12998. https://doi.org/10.1111/sji.12998
92. Ye Q., Wang B., Mao J. The pathogenesis and treatment of theCytokine Storm'in COVID - 19 // Journal of infection. 2020. V. 80. №6. P. 607-613. https://doi.org/10.1016/jjinf.2020.03.037
93. Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W., Lau Y.L. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells // Blood. 2005. V. 106. №7. P. 2366-2374. https://doi.org/10.1182/blood-2004-10-4166
94. Tynell J., Westenius V., Ronkko E., Munster V.J., Melen K., Osterlund P., Julkunen, I. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells // The Journal of general virology. 2016. V. 97. №Pt 2. P. 344. https://doi.org/10.1099% 2Fjgv.0.000351
95. Scheuplein V.A., Seifried J., Malczyk A.H., Miller L., Hocker L., Vergara-Alert J., Muhlebach M.D. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus // Journal of virology. 2015. V. 89. №7. P. 3859-3869. https://doi.org/10.1128/jvi.03607-14
96. Kim E.S., Choe P.G., Park W.B., Oh H.S., Kim E.J., Nam E.Y., Oh M.D. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection // Journal of Korean medical science. 2016. V. 31. №11. P. 1717-1725. https://doi.org/10.3346/jkms.2016.31.11.1717
97. Wang C.H., Liu C.Y., Wan Y.L., Chou C.L., Huang K.H., Lin H.C., Kuo H.P. Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS // Respiratory research. 2005. V. 6. P. 1-12. https://doi.org/10.1186/1465 - 9921-6-42
98. Garcia-Sastre A., Biron C.A. Type 1 interferons and the virus-host relationship: a lesson in detente // Science. 2006. V. 312. №5775. P. 879-882. https://doi.org/10.1126/science.1125676
99. Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack, M., Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes // The Journal of clinical investigation. 2019. V. 129. №9. P. 3625-3639. https://doi.org/10.1172/JCI126363
100. Coperchini F., Chiovato L., Croce L., Magri F., Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system // Cytokine & growth factor reviews. 2020. V. 53. P. 25-32. https://doi.org/10.1016/j. cytogfr.2020.05.003
101. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice // Cell host & microbe. 2016. V. 19. №2. P. 181-193. http://dx.doi.org/10.1016/j.chom.2016.01.007
102. Hogner K., Wolff T., Pleschka S., Plog S., Gruber A.D., Kalinke U., Herold S. Macrophage-expressed IFN-P contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia // PLoS pathogens. 2013. V. 9. №2. P. e1003188. https://doi.org/10.1371/journal.ppat.1003188
103. Rodrigue-Gervais I.G., Labbd K., Dagenais M., Dupaul-Chicoine J., Champagne C., Morizot A., Saleh M. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival // Cell host & microbe. 2014. V. 15. №1. P. 23-35. http://dx.doi.org/10.1016% 2Fj.chom.2013.12.003
104. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Zhang Y.Z. A new coronavirus associated with human respiratory disease in China // Nature. 2020. V. 579. №7798. P. 265-269. https://doi.org/10.1038/s41586-020-2008-3
105. Du Y., Tu L., Zhu P., Mu M., Wang R., Yang P., Xu G. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study // American journal of respiratory and critical care medicine. 2020. V. 201. №11. P. 1372-1379. https://doi.org/10.1164/rccm.202003-0543OC
106. Cao X. COVID-19: immunopathology and its implications for therapy // Nature reviews immunology. 2020. V. 20. №5. P. 269-270. https://doi.org/10.1038/s41577-020-0308-3
107. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C.,… & Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // The Lancet respiratory medicine. 2020. V. 8. №4. P. 420-422. https://doi.org/10.1016/S2213-2600 (20) 30076-X
108. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China // Jama. 2021. V. 323. №11. P. 1061-1069. https://doi.org/10.1001/jama.2020.1585
109. Li Y.X., Wu W., Yang T., Zhou W., Fu Y.M., Feng Q.M., Ye J.M. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 // Zhonghua nei ke za zhi. 2020. V. 59. №5. P. 372-374. https://doi.org/10.3760/cmaj.cn112138-20200221-00114
110. Lindsley A.W., Schwartz J.T., Rothenberg M.E. Eosinophil responses during COVID - 19 infections and coronavirus vaccination // Journal of Allergy and Clinical Immunology. 2020. V 146. №1. P. 1-7. https://doi.org/10.1016% 2Fj.jaci.2020.04.021
111. Tabachnikova A., Chen S.T. Roles for eosinophils and basophils in COVID-19? // Nature Reviews Immunology. 2020. V. 20. №8. P. 461-461. https://doi.org/10.1038/s41577-020 - 0379-1
112. Xiang-Hua Y., Le-Min W., Ai-Bin L., Zhu G., Riquan L., Xu-You Z., Ye-Nan W. Severe acute respiratory syndrome and venous thromboembolism in multiple organs // American journal of respiratory and critical care medicine. 2010. V. 182. №3. P. 436-437. https://doi.org/10.1164/ajrccm.182.3.436
113. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Zhang S. Coagulopathy and antiphospholipid antibodies in patients with Covid-19 // New England Journal of Medicine. 2020. V. 382. №17. P. e38. https://doi.org/10.1056/NEJMc2007575
114. Levi M., Nieuwdorp M., van der Poll T., Stroes E. Metabolic modulation of inflammation-induced activation of coagulation // Seminars in thrombosis and hemostasis // Thieme Medical Publishers. 2008. V. 34. №01. P. 026-032. https://doi.org/10.1055/s-2008-1066020
115. Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Penninger J.M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury // Cell. 2008. V. 133. №2. P. 235-249. https:ZZdoi.org/10.1016Zj.cen.2008.02.043
116. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.V., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis // The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004. V. 203. №2. P. 631-637. https://doi.org/10.1002/path.1570
117. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2 // Cardiovascular research. 2020. V. 116. №6. P. 1097-1100. https://doi.org/10.1093/cvr/cvaa078
118. CDC Covid-19 Response Team et al. Coronavirus disease 2019 in children-United States, february 12-april 2, 2020 // Morbidity and Mortality Weekly Report. 2020. V. 69. №14. P. 422-426.
119. Verdoni L., Mazza A., Gervasoni A., Martelli L., Ruggeri M., Ciuffreda M., D'Antiga L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study // The Lancet. 2020. V. 395. №10239. P. 1771-1778. https://doi.org/10.1016/S0140-6736 (20) 31103-X
120. Viner R.M., Whittaker E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic // The Lancet. 2020. V. 395. №10239. P. 1741-1743. https://doi.org/10.1016/S0140-6736 (20) 31129-6
121. Kato H., Sugimura T., Akagi T., Sato N., Hashino K., Maeno Y., Yamakawa R. Longterm consequences of Kawasaki disease: a 10-to 21-year follow-up study of 594 patients // Circulation. 1996. V. 94. №6. P. 1379-1385. https://doi.org/10.1161/01.CIR.94.6.1379
122. Aykac K., Ozsurekci Y., Yayla B.C.C., Gurlevik S.L., Oygar P.D., Bolu N.B., Ceyhan M. Oxidant and antioxidant balance in patients with COVID-19 // Pediatric pulmonology. 2021. V. 56. №9. P. 2803-2810. https://doi.org/10.1002/ppul.25549
123. Cecchini R., Cecchini A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression // Medical hypotheses. 2020. V. 143. P. 110102. https://doi.org/10.1016/_j.mehy.2020.110102
124. Pincemail J., Cavalier E., Charlier C., Cheramy-Bien J.P., Brevers E., Courtois A., Rousseau A.F. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study // Antioxidants. 2021. V. 10. №2. P. 257. https://doi.org/10.3390/antiox10020257
125. Karkhanei B., Ghane E.T., Mehri F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19 // New Microbes and New Infections. 2021. V. 42. P. 100897. https://doi.org/10.1016/_j.nmni.2021.100897
126. Gadotti A.C., Lipinski A.L., Vasconcellos F.T., Marqueze L.F., Cunha E.B., Campos A.C., Pinho R.A. Susceptibility of the patients infected with Sars-Cov2 to oxidative stress and possible interplay with severity of the disease // Free Radical Biology and Medicine. 2021. V. 165. P. 184-190. https://doi.org/10.1016/_j.freeradbiomed.2021.01.044
127. Martin-Fernandez M., Aller R., Heredia-Rodriguez M., Gomez-Sanchez E., Martinez - Paz P., Gonzalo-Benito H., Tamayo-Velasco A. Lipid peroxidation as a hallmark of severity in COVID-19 patients // Redox Biology. 2021. V. 48. P. 102181. https://doi.org/10.1016/j.redox.2021.102181
128. Sena C.M., Leandro A., Azul L., Seica R., Perry G. Vascular oxidative stress: impact and therapeutic approaches // Frontiers in physiology. 2018. V. 9. P. 1668. https://doi.org/10.3389/fphys.2018.01668
129. Suhail S., Zajac J., Fossum C., Lowater H., McCracken C., Severson N., Hati S. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: a review // The protein journal. 2020. V. 39. P. 644-656. https://doi.org/10.1007/s10930-020-09935-8
130. Lovren F., Pan Y., Quan A., Teoh H., Wang G., Shukla P.C., Verma S. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis // American Journal of Physiology-Heart and Circulatory Physiology. 2008. V. 295. №4. P. H1377-H1384. https://doi.org/10.1152/ajpheart.00331.2008
131. Daiber A., Hahad O., Andreadou I., Steven S., Daub S., Munzel T. Redox-related biomarkers in human cardiovascular disease-classical footprints and beyond // Redox biology. 2020. V. 42. P. 101875. https://doi. Org/10.1016/j.redox.2021.101875
132. Chen X., Kang R., Kroemer G., Tang D. Broadening horizons: the role of ferroptosis in cancer // Nature reviews Clinical oncology. 2021. V. 18. №5. P. 280-296. https://doi.org/10.1038/s41571 -020-00462-0
133. Chang Y.T., Chang W.N., Tsai N.W., Huang C.C., Kung C.T., Su Y.J., Lu C.H. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer's disease: a systematic review // BioMed research international. 2014. V. 2014. https://doi.org/10.1155/2014/182303
134. Notarnicola M., Osella A.R., Caruso M.G., Pesole P.L., Lippolis A., Tutino V., Messa C. Nonalcoholic fatty liver disease: Focus on new biomarkers and lifestyle interventions // International Journal of Molecular Sciences. 2021. V. 22. №8. P. 3899. https://doi.org/10.3390/ijms22083899
135. Gonzalo Benito H., Brieva Ruiz L., Tatzber F., Jovd Font M., Cacabelos Barral D., Cassanyd A., Portero Otin M. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism // Journal of Neurochemistry. 2012. V. 123. №4. P. 622-634. http://hdl.handle.net/10459.1Z58574
136. Paliogiannis P., Fois A.G., Sotgia S., Mangoni A.A., Zinellu E., Pirina P., Zinellu A. Circulating malondialdehyde concentrations in patients with stable chronic obstructive pulmonary disease: A systematic review and meta-analysis // Biomarkers in Medicine. 2018. V. 12. №7. P. 771-781. https://doi.org/10.2217/bmm-2017-0420
137. Chan-Yeung M., Xu R.H. SARS: epidemiology. Respirology 8 (Suppl): S9-S14. 2003.
138. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. V. 181. №2. P. 271-280. e8. https://doi.org/10.1016/j.cell.2020.02.052
139. Magalhaes G.S., Rodrigues-Machado M.G., Motta-Santos D., Silva A.R., Caliari M.V., Prata L.O., Campagnole-Santos M.J. A ngiotensin - (1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation // British Journal of Pharmacology. 2015. V. 172. №9. P. 2330-2342. https://doi.org/10.1111/bph.13057
140. Chen Q., Yang Y., Huang Y., Pan C., Liu L., Qiu H. Angiotensin - (1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury // Journal of surgical research. 2013. V. 185. №2. P. 740-747. https://doi.org/10.1016/j.jss.2013.06.052
141. Li Y., Cao Y., Zeng Z., Liang M., Xue Y., Xi C., Jiang W. Angiotensin-converting enzyme 2/angiotensin - (1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-kB pathways // Scientific reports. 2015. V. 5. №1. P. 8209. https://doi.org/10.1038/srep08209
142. Meng Y., Yu C.H., Li W., Li T., Luo W., Huang S., Li X. Angiotensin-converting enzyme 2/angiotensin - (1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-kB pathway // American journal of respiratory cell and molecular biology. 2014. V. 50. №4. P. 723736. https://doi.org/10.1165/rcmb.2012-0451OC
143. Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J., Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase // Journal of Biological Chemistry. 2002. V. 277. №17. P. 14838-14843. https://doi.org/10.1074/jbc.M200581200
144. Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W.B., Wang S., Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration // American Journal of Physiology-LungCellular and Molecular Physiology. 2018. V. 314. №1. P. L17-L31. https://doi.org/10.1152/ajplung.00498.2016
145. Fraga-Silva R.A., Costa-Fraga F.P., Sousa F.B.D., Alenina N., Bader M., Sinisterra R.D., Santos R.A. An orally active formulation of angiotensin - (1-7) produces an antithrombotic effect // Clinics. 2011. V. 66. P. 837-841. https://doi.org/10.1590/S1807-59322011000500021
146. Marques F.D., Ferreira A.J., Sinisterra R.D., Jacoby B.A., Sousa F.B., Caliari M.V., Santos R.A. An oral formulation of angiotensin - (1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats // Hypertension. 2011. V. 57. №3. P. 477-483. https://doi.org/10.1161/HYPERTENSIONAHA.110.167346
147. Fraga-Silva R.A., Pinheiro S.V.B., Goncalves A.C.C., Alenina N., Bader M., Souza Santos R.A. The antithrombotic effect of angiotensin - (1-7) involves mas-mediated NO release from platelets // Molecular Medicine. 2008. V. 14. P. 28-35. https://doi.org/10.2119/2007-00073. Fraga-Silva
148. Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive care medicine. 2020. V. 46. P. 586-590. https://doi.org/10.1007/s00134-020 - 05985-9
149. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Penninger J.M. crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury // Nature medicine. 2005. V. 11. №8. P. 875-879. https://doi.org/10.1038/nm1267
150. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Penninger J.M. Angiotensinconverting enzyme 2 protects from severe acute lung failure // Nature. 2005. V. 436. №7047. P. 112-116. https://doi.org/10.1038/nature03712
151. Xie X., Chen J., Wang X., Zhang F., Liu Y. Erratum to «Age-and gender-related difference of ACE2 expression in rat lung» // Life Sciences. 2006. V. 26. №79. P. 2499. http://dx.doi.org/10.1016% 2Fj.lfs.2006.09.028
152. Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection // European journal of internal medicine. 2020. V. 76. P. 14-20.
153. Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010; 122:717-728. 718 p following 728. https://doi.org/10.1016/j.ejim.2020.04.037
154. Trask A.J., Averill D.B., Ganten D., Chappell M.C., Ferrario C.M. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin - (1-7) in transgenic Ren-2 hypertensive rats // American Journal of Physiology-Heart and Circulatory Physiology. 2007. V. 292. №6. P. H3019-H3024. https://doi.org/10.1152/ajpheart.01198.2006
155. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID - 19: consider cytokine storm syndromes and immunosuppression // The lancet. 2020. V. 395. №10229. P. 1033-1034. https://doi.org/10.1016/S0140-6736 (20) 30628-0
156. Akhmerov A., Marban E. COVID-19 and the heart // Circulation research. 2020. V. 126. №10. P. 1443-1455. https://doi.org/10.1161/CIRCRESAHA.120.317055
157. Кривошеев В.В., Столяров А.И. Атмосферное давление и COVID-19 // Санитарный врач. 2021. №7. С. 8-17. EDN: KGDRBD. https://doi.org/10.33920/med-08-2107-01
158. Pirouz B., Shaffiee Haghshenas S., Shaffiee Haghshenas S., Piro P. Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis // Sustainability. 2020. V. 12. №6. P. 2427. https://doi.org/10.3390/su12062427
159. Adhikari A., Yin J. Short-term effects of ambient ozone, PM2. 5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York // International journal of environmental research and public health. 2020. V. 17. №11. P. 4047. https://doi.org/10.3390/ijerph17114047
160. Li K. The link between humidity and COVID-19 caused death // Journal of Biosciences and Medicines. 2020. V. 8. №6. P. 50-55. https://doi.org/10.4236/jbm.2020.86005
161. Bashir M.F., Ma B., Komal B., Bashir M.A., Tan D., Bashir M. Correlation between climate indicators and COVID-19 pandemic in New York, USA // Science of the Total Environment. 2020. V. 728. P. 138835. https://doi.org/10.1016/j.scitotenv.2020.138835
162. Gupta A., Banerjee S., Das S. Significance of geographical factors to the COVID-19 outbreak in India // Modeling earth systems and environment. 2020. V. 6. P. 2645-2653. https://doi.org/10.1007/s40808-020-00838-2
163. Pani S.K., Lin N.H., RavindraBabu S. Association of COVID-19 pandemic with meteorological parameters over Singapore // Science of the Total Environment. 2020. V. 740. P. 140112. https://doi.org/10.1016/j.scitotenv.2020.140112
164. Cai Q.C., Lu J., Xu Q.F., Guo Q., Xu D.Z., Sun Q.W., Jiang Q.W. Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome // Public health. 2007. V. 121. №4. P. 258-265. https://doi.org/10.1016/j.puhe.2006.09.023
165. Kumar G., Kumar R.R. A correlation study between meteorological parameters and COVID-19 pandemic in Mumbai, India // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020. V. 14. №6. P. 1735-1742. https://doi.org/10.1016/j.dsx.2020.09.002
166. Deyal N., Tiwari V., Bisht N. Impact of climatic parameters on COVID-19 pandemic progression in India: analysis and prediction. 2020. https://doi.org/10.1101/2020.07.25.20161919
167. Leung N.Y., Bulterys M.A., Bulterys P.L. Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level // MedRxiv. 2020. P. 2020.05. 15.20101097. https://doi.org/10.1101/2020.05.15.20101097
168. Jaakkola K., Saukkoriipi A., Jokelainen J., Juvonen R., Kauppila J., Vainio O. Decline in temperature and humidity increases the occurrence of influenza in cold climate // Environmental Health. 2014. V. 13. P. 1-8. https://doi.org/10.1186/1476-069X-13-22
169. Liu J., Zhou J., Yao J., Zhang X., Li L., Xu X., Zhang K. (Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China // Science of the total environment. 2020. V. 726. P. 138513. https://doi.org/10.1016/j.scitotenv.2020.138513
170. Luo W., Majumder M.S., Liu D., Poirier C., Mandl K.D., Lipsitch M., Santillana M. The role of absolute humidity on transmission rates of the COVID-19 outbreak // MedRxiv. 2020. P. 2020.02. 12.20022467. https://doi.org/10.1101/2020.02.12.20022467
171. Briz-Redon A., Serrano-Aroca A. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain // Science of the total environment. 2020. V. 728. P. 138811. https://doi.org/10.1016/j.scitotenv.2020.138811
References
1. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y.,… & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395 (10223), 497-506. https://doi.org/10.1016/S0140-6736 (20) 30183-5
2. Mahase, E. (2020). Covid-19: WHO declares pandemic because of «alarming levels» of spread, severity, and inaction. Bmj, 368 (8), 1036. https://doi.org/10.1136/bmj.m1036
3. Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D., Jin, H.J.,… & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Military medical research, 7, 1-10. https://doi.org/10.1186/s40779-020-00240-0
4. Chakraborty, I., & Maity, P. (2020). COVID-19 outbreak: Migration, effects on society, global environment and prevention. Science of the total environment, 728, 138882. https://doi.org/10.1016/j. scitotenv.2020.138882
5. Ye, Z.W., Yuan, S., Yuen, K.S., Fung, S.Y., Chan, C.P., & Jin, D.Y. (2020). Zoonotic origins of human coronaviruses. International journal of biological sciences, 16 (10), 1686. https://doi.org/10.7150% 2Fijbs.45472
6. Li, H., Liu, S.M., Yu, X.H., Tang, S.L., & Tang, C.K. (2020). Coronavirus disease 2019 (COVID-19): current status and future perspectives. International journal of antimicrobial agents, 55 (5), 105951. https://doi.org/10.1016/j.ijantimicag.2020.105951
7. Mackenzie, J.S., & Smith, D.W. (2020). COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don't. Microbiology Australia, 41 (1), 45-50. https://doi.org/10.1071/MA20013
8. Pan, A., Liu, L., Wang, C., Guo, H., Hao, X., Wang, Q.,… & Wu, T. (2020). Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. Jama, 323 (19), 1915-1923. https://doi.org/10.1001/jama.2020.6130
9. Global guidance for surgical care during the COVID-19 pandemic (2020). Journal of British Surgery, 107 (9), 1097-1103. https://doi.org/10.1002/bjs.11646
10. Nuccetelli, M., Pieri, M., Grelli, S., Ciotti, M., Miano, R., Andreoni, M., & Bernardini, S. (2020). SARS-CoV-2 infection serology: a useful tool to overcome lockdown?. Cell Death Discovery, 6 (1), 38. https://doi.org/10.1038/s41420-020-0275-2
11. Paules, C.I., Marston, H.D., & Fauci, A.S. (2020). Coronavirus infections-more than just the common cold. Jama, 323 (8), 707-708. https://doi.org/10.1001/jama.2020.0757
12. Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus, 12 (3). https://doi.org/10.7759/cureus.7423
13. Wang, Q., Qiu, Y., Li, J.Y., Zhou, Z.J., Liao, C.H., & Ge, X.Y. (2020). A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019 - nCoV) potentially related to viral transmissibility. Virologica Sinica, 35, 337-339. https://doi.org/10.1007/s12250-020-00212-7
14. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S.,… & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581 (7807), 215220. https://doi.org/10.1038/s41586-020-2180-5
15. Millet, J.K., & Whittaker, G.R. (2015). Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus research, 202, 120-134. https://doi.org/10.1016/j.virusres.2014.11.021
16. Wang, N., Shang, J., Jiang, S., & Du, L. (2020). Subunit vaccines against emerging pathogenic human coronaviruses. Frontiers in microbiology, 11, 298. https://doi.org/10.3389/fmicb.2020.00298
17. Kim, D., Lee, J.Y., Yang, J.S., Kim, J.W., Kim, V.N., & Chang, H. (2020). The architecture of SARS-CoV-2 transcriptome. Cell, 181 (4), 914-921. https:ZZdoi.org/10.1016Zj.cell.2020.04.011
18. Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., & Wang, H. (2020). The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Frontiers in immunology, 11, 576622. https://doi.org/10.3389/fimmu.2020.576622
19. Schoeman, D., & Fielding, B.C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16 (1), 1-22. https://doi.org/10.1186/s12985-019-1182-0
20. Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., & Huang, T.H. (2014). The SARS coronavirus nucleocapsid protein-forms and functions. Antiviral research, 103, 39-50. https://doi.org/10.1016/j. antiviral.2013.12.009
21. Hoffmann, M., Kleine-Weber, H., & Pohlmann, S. (2020). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular cell, 78 (4), 779-784. https:ZZdoi.org/10.1016Zj.molcel.2020.04.022
22. Hayashi, T., Ura, T., Abiko, K., Mandan, M., Yaegashi, N., & Konishi, I. (2020). Reasons why new coronavirus, SARS-CoV-2 infections are likely to spread. Journal of Genetic Medicine and Gene Therapy, 3 (1), 001-003. https://dx.doi.org/10.29328/journal.jgmgt.1001005
23. Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O.,… & McLellan, J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367 (6483), 1260-1263. https://doi.org/10.1126/science.abb2507
24. Li, F., Li, W., Farzan, M., & Harrison, S.C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309 (5742), 1864-1868. https://doi.org/10.1126/science.1116480
25. Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray Jr, P.B., & Gallagher, T. (2016).
26. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proceedings of the National Academy of Sciences, 113 (43), 12262-12267. https://doi.org/10.1073/pnas.1608147113
27. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W.,… & Shi, Z.L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579 (7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7
28. Hamming, I., Timens, W., Bulthuis, M.L.C., Lely, A.T., Navis, G.V., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 203 (2), 631-637. https://doi.org/10.1002/path.1570
29. Watanabe, Y., Bowden, T.A., Wilson, I.A., & Crispin, M. (2019). Exploitation of glycosylation in enveloped virus pathobiology. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863 (10), 1480-1497. https://doi.org/10.1016/j.bbagen.2019.05.012
30. Barile, E., Baggio, C., Gambini, L., Shiryaev, S.A., Strongin, A.Y., & Pellecchia, M. (2020). Potential therapeutic targeting of coronavirus spike glycoprotein priming. Molecules, 25 (10), 2424. https://doi.org/10.3390/molecules25102424
31. Tang, T., Bidon, M., Jaimes, J.A., Whittaker, G.R., & Daniel, S. (2020). Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral research, 178, 104792. https://doi.org/10.1016/j.antiviral.2020.104792
32. Astuti, I. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (4), 407-412. https://doi.org/10.1016/j.dsx.2020.04.020
33. Liu, J., Zheng, X., Tong, Q., Li, W., Wang, B., Sutter, K.,… & Yang, D. (2020). Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. Journal of medical virology, 92 (5), 491-494. https://doi.org/10.1002/jmv.25709
34. Sorci, G., Faivre, B., & Morand, S. (2020). Explaining among-country variation in COVID-19 case fatality rate. Scientific reports, 10 (1), 18909. https://doi.org/10.1038/s41598-020 - 75848-2
35. Riou, J., & Althaus, C.L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance, 25 (4), 2000058. https://doi.org/10.2807/1560-7917.es.2020.25.7.20200220c
36. Zhao, S., Lin, Q., Ran, J., Musa, S.S., Yang, G., Wang, W.,… & Wang, M.H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International journal of infectious diseases, 92, 214-217. https://doi.org/10.1016/j.ijid.2020.01.050
37. Zhou, T., Liu, Q., Yang, Z., Liao, J., Yang, K., Bai, W.,… & Zhang, W. (2020). Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019 - nCoV. Journal of Evidence-Based Medicine, 13 (1), 3-7. https://doi.org/10.1111/jebm.12376
38. Chan, J.F.W., Yuan, S., Kok, K.H., To, K.K.W., Chu, H., Yang, J.,… & Yuen, K.Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The lancet, 395 (10223), 514-523. https://doi.org/10.1016/S0140-6736 (20) 30154-9
39. Okada, P., Phuygun, S., Thanadachakul, T., Parnmen, S., Wongboot, W., Waicharoen, S., … & Maurer-Stroh, S. (2020). Early transmission patterns of coronavirus disease 2019 (COVID-19) in travellers from Wuhan to Thailand, January 2020. Eurosurveillance, 25 (8), 2000097. https://doi.org/10.2807/1560-7917.ES.2020.25.8.2000097
40. Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z.,… & Wu, J. (2020). SARS - CoV-2 viral load in upper respiratory specimens of infected patients. New England journal of medicine, 382 (12), 1177-1179. https://doi.org/10.1056/NEJMc2001737
41. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y.,… & Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England journal of medicine, 382 (13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316
42. Zhang, Y., Chen, C., Zhu, S., Shu, C., Wang, D., Song, J.,… & Xu, W. (2020). Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC weekly, 2 (8), 123-124. https://weekly.chinacdc.cn/en/article/doi/10.46234/ccdcw2020.033
43. Karimi-Zarchi, M., Neamatzadeh, H., Dastgheib, S.A., Abbasi, H., Mirjalili, S.R., Behforouz, A.,… & Bahrami, R. (2020). Vertical transmission of coronavirus disease 19 (COVID - 19) from infected pregnant mothers to neonates: a review. Fetal and pediatric pathology, 39 (3), 246-250. https://doi.org/10.1080/15513815.2020.1747120
44. Alzamora, M.C., Paredes, T., Caceres, D., Webb, C., Valdez, L., Huang, C.,… & Moss, T. (2020). Severe COVID-19 during pregnancy and possible vertical transmission. American journal of perinatology, 37 (08), 861-865. https://doi.org/10.1055/s-0040-1710050
45. Kalyanasundaram, S., Krishnamurthy, K., Sridhar, A., Narayanan, V.K., Rajendra Santosh, A.B., & Rahman, S. (2020). Novel corona virus pandemic and neonatal care: it's too early to speculate on impact!. SN Comprehensive Clinical Medicine, 2 (9), 1412-1418. https://doi.org/10.1007/s42399-020-00440-8
46. Martinez-Perez, O., Vouga, M., Melguizo, S.C., Acebal, L.F., Panchaud, A., Munoz - Chapuli, M., & Baud, D. (2020). Association between mode of delivery among pregnant womenwith COVID-19 and maternal and neonatal outcomes in Spain. Jama, 324 (3), 296-299. https://doi.org/10.1001/jama.2020.10125
47. Dong, L., Tian, J., He, S., Zhu, C., Wang, J., Liu, C., & Yang, J. (2020). Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. Jama, 323 (18), 1846-1848. https://doi.org/10.1001/jama.2020.4621
48. Chen, Y., Peng, H., Wang, L., Zhao, Y., Zeng, L., Gao, H., & Liu, Y. (2020). Infants born to mothers with a new coronavirus (COVID-19). Frontiers in pediatrics, 8, 104. https://doi.org/10.3389/fped.2020.00104
49. Arnaez, J., Montes, M.T., Herranz-Rubia, N., & Garcia-Alix, A. (2020). The impact of the current SARS-CoV-2 pandemic on neonatal care. Frontiers in Pediatrics, 8, 247. https://doi.org/10.3389/fped.2020.00247
50. Yi, Y., Lagniton, P.N., Ye, S., Li, E., & Xu, R.H. (2020). COVID-19: what has been learned and to be learned about the novel coronavirus disease. International journal of biological sciences, 1d(10), 1753. https://doi.org/10.7150% 2Fijbs.45134
51. Hoffmann, M., Kleine-Weber, H., Kruger, N., Muller, M., Drosten, C., & Pohlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv, 2020-01. https://doi.org/10.1101/2020.01.31.929042
52. Lin, L., Lu, L., Cao, W., & Li, T. (2020). Hypothesis for potential pathogenesis of SARS - CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerging microbes & infections, 9 (1), 727-732. https://doi.org/10.1080/22221751.2020.1746199
53. Wu, Y., Huang, X., Sun, J., Xie, T., Lei, Y., Muhammad, J.,… & Zhang, Q. (2020). Clinical characteristics and immune injury mechanisms in 71 patients with COVID-19. Msphere, 5 (4), 10-1128. https://doi.org/10.1128/msphere.00362-20
54. Coccia, E.M., & Battistini, A. (2015, March). Early IFN type I response: Learning from microbial evasion strategies. In Seminars in immunology (Vol. 27, No. 2, pp. 85-101). Academic Press. https://doi.org/10.1016/j.smim.2015.03.005
55. Hu, G., & Christman, J.W. (2019). Alveolar macrophages in lung inflammation and resolution. Frontiers in immunology, 10, 2275. https://doi.org/10.3389/fimmu.2019.02275
56. Abdulkhaleq, L.A., Assi, M.A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y.H., & Hezmee, M.N.M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary world, 11 (5), 627. https://doi.org/10.14202% 2Fvetworld.2018.627-635
57. Fahey, E., & Doyle, S.L. (2019). IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front Immunol, 10, 1426.
58. Gonzales, J.N., Lucas, R., & Verin, A.D. (2015). The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches. Austin journal of vascular medicine, 2 (1).
...Подобные документы
Медико-демографические показатели Иссык-кульской области. Анализ показателей здравоохранения. Показатели материнской и младенческой смертности. Анализ обеспеченности населения врачами и другими специалистами. Обеспеченность населения больничными койками.
курсовая работа [483,5 K], добавлен 10.12.2014Факторы социально-экономического характера, влияющие на качество жизни населения. Изучение путей решения проблемы снижения заболеваемости, инвалидности и смертности населения в Чувашской Республике. Внедрение современных методов диагностики и лечения.
курсовая работа [31,6 K], добавлен 13.03.2015Оценка общественного здоровья населения: 4 группы показателей здоровья населения. Переписи - основной источник сведений о численном составе населения. Механическое движение населения и миграционный процесс. Внутренняя и внешняя миграция населения.
методичка [54,5 K], добавлен 17.04.2009Общая характеристика уровня и структуры заболеваемости населения в Республике Беларусь. Индекс материнства и репродуктивного здоровья студенческой молодежи. Формирование группировок районов по уровню заболеваемости ВИЧ и младенческой смертности.
дипломная работа [2,7 M], добавлен 20.05.2014Изучение состояния здоровья населения города. Динамика демографических показателей. Причины детской смертности. Показатели общей заболеваемости населения в разных возрастных группах. Характеристика сети и деятельности учреждений здравоохранения города.
дипломная работа [650,9 K], добавлен 13.04.2016Влияние политических и социально-экономических факторов на здоровье населения России в 90-е годы ХХ в., причины его резкого ухудшения. Статистика алкоголизма и наркомании, инвалидизации и инвалидности, общей смертности. Взгляд в недалекое будущее.
реферат [28,1 K], добавлен 24.07.2010Тенденции онкологической заболеваемости населения Республики Беларусь. Закономерности распространения опухолей. Расчет темпа прироста. Методические подходы к оценке зависимости смертности и заболеваемости. Расчет интенсивных и экстенсивных показателей.
дипломная работа [3,8 M], добавлен 29.10.2015Структура населения района по полу и месту жительства. Показатели рождаемости, младенческой и материнской смертности; общей и инфекционной заболеваемости; обеспеченности населения района врачами, средним медицинским персоналом и больничными койками.
курсовая работа [922,2 K], добавлен 17.01.2014Выявление влияния уровня санитарно-гигиенического воспитания населения на формирование санитарно-гигиенической культуры и на показатели инфекционной заболеваемости. Характеристика работы медсестры по санитарно-гигиеническому просвещению населения.
курсовая работа [1,1 M], добавлен 15.06.2019Охрана здоровья населения как одна из основ конституционного строя, ее современное состояние в РФ. Анализ медико-демографических показатели, в том числе показателей заболеваемости населения и связанных со здоровьем матери и ребенка, пути их оптимизации.
курсовая работа [992,1 K], добавлен 24.02.2010Изучение основных видов лабораторных исследований по гриппу, обеспечивающих возможность раннего распознавания этиологии пандемии, с последующим проведением всего комплекса противоэпидемических и профилактических мероприятий. Выделение вирусов гриппа.
доклад [15,7 K], добавлен 08.01.2011Влияние загрязненного воздуха, питьевой воды, шума и радиации на показатели заболеваемости. Основные понятия и этапы оценки риска воздействия химических факторов окружающей среды на здоровье населения. Управление риском и распространение информации о нем.
реферат [33,0 K], добавлен 20.01.2014Гломерулонефрит: понятие и клиническая картина, распространенность и формы протекания у беременных. Оценка опасности для матери и плода, прогноз на благополучное вынашивание и влияющие на него факторы. Современные подходы к диагностике и лечению.
презентация [5,4 M], добавлен 29.09.2022Причины и этапы возникновения рака, его клиническая диагностика. Традиционные и нетрадиционные подходы к лечению онкологических заболеваний. Классификация осложнений химиотерапии злокачественных опухолей. Представления населения о методах лечения рака.
курсовая работа [53,7 K], добавлен 11.12.2010Система социально-гигиенического мониторинга для управления здоровьем населения Западной Сибири. Потенциальные факторы риска возникновения чрезвычайных ситуаций в Ханты-Мансийском автономном округе и их влияние на медико-санитарные последствия региона.
автореферат [710,4 K], добавлен 21.11.2011Краткие сведения о вирусе гриппа А. Пандемии гриппа в новейшей истории человечества. Статистические характеристики заболеваемости вирусом гриппа А/H1N1. Разработка вакцин против пандемического гриппа H1N1. Эффективность противовирусных препаратов.
реферат [33,1 K], добавлен 27.08.2012Возрастная структура населения, показатели его заболеваемости и обращаемости в лечебно-профилактические медицинские учреждения. Статистические методы исследования здоровья населения. Разработка плана организационных мероприятий по обучению студентов.
курсовая работа [2,4 M], добавлен 11.09.2015Роль фельдшера в клинико-лабораторной диагностике болезней крови. Анализ результатов исследования больных с гематологическими заболеваниями. Оценка эффективной профессиональной деятельности фельдшера в ранней диагностике онкологических болезней крови.
дипломная работа [152,6 K], добавлен 06.01.2016Представление об этиологии, лечении и профилактике вирусного гепатита, его социальный, медицинский и психологический аспекты. Общая характеристика показателей здоровья населения, статистика его заболеваемости, потери трудоспособности и смертности.
контрольная работа [25,3 K], добавлен 23.12.2010Распространение и убытки, причиняемые маститом. Классификация маститов по А.П. Студенцову. Дифференциальный подход к лечению при разных типах воспаления и его обоснование. Ультразвукотерапия по методу В.В. Парикова. Лечение при отдельных типах воспаления.
курсовая работа [36,7 K], добавлен 05.05.2009