Multi-parameter Mueller-matrix tomography of histological samples of biological tissues as an accurate and effective method for determining the degree of blood loss
Resolution of the volume of blood loss in the context of judicial practice. Development of a complex of new forensic criteria for accurate determination of the volume of blood loss using the method of multichannel polarization Muller-matrix tomography.
Рубрика | Медицина |
Вид | статья |
Язык | английский |
Дата добавления | 05.09.2024 |
Размер файла | 3,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Bukovinian State Medical University
Multi-parameter Mueller-matrix tomography of histological samples of biological tissues as an accurate and effective method for determining the degree of blood loss
Bachynskyi V.T., Shilan K.V.
Chernivtsi, Ukraine
Summary
Establishing the volume of blood loss is extremely important in the context of forensic practice, as it can indicate various circumstances of death and is important in solving criminal cases. Consideration of modern methods of determining this parameter in the article is relevant and aims to reveal new opportunities and perspectives in this field of forensic medical examination.
Aim of the work. To develop a set of new forensic criteria for accurate determination of the volume of blood loss using the method of multichannel polarization Muller-matrix tomography of histological sections of parenchymal organs and human blood samples.
Materials and methods. Samples of parenchymal organs and human blood were collected from 76 corpses of both sexes with varying degrees of blood loss from 0 mm3 to 2500 mm3. The research was carried out using the method of multichannel polarization Muller-matrix linear dichroism tomography of biological tissue samples. blood judicial forensic
Results. For all studied biological samples, a decrease in the level of circular birefringence (CB) of formed blood elements against the background of a gradual necrotic decrease in distributions of linear birefringence (LB) of the optical anisotropy of parenchymal tissues and blood films was established for the process of blood loss. The range of sensitivity of the method of differential Mueller-matrix tomography with algorithmic reproduction of linear dichroism maps to changes in blood loss volume of the deceased, which is (0±2000) mm3, is determined.
Conclusions. The accuracy of the method of differential Mueller matrix mapping with algorithmic reproduction of linear dichroism maps of biological preparations was determined, which is 86-92 % in the range of the level of blood loss AV = (0±2000) mm3.
Keywords: forensic medicine, blood loss, polarimetry, diagnostics, Mueller's matrix.
Анотація
БАГАТОПАРАМЕТРИЧНА МЮЛЛЕР-МАТРИЧНА ТОМОГРАФІЯ ГІСТОЛОГІЧНИХ ЗРАЗКІВ БІОЛОГІЧНИХ ТКАНИН ЯК ТОЧНИЙ І ДІЄВИЙ МЕТОД У ВИЗНАЧЕННІ СТУПЕНЯ КРОВОВТРАТИ
Бачинський В. Т., Шилан К. В.
Буковинський державний медичний університет, м. Чернівці, Україна
Резюме. Встановлення об'єму крововтрати надзвичайно важливе в контексті судової практики, оскільки може вказувати на різні обставини смерті та мати велике значення при вирішенні кримінальних справ. Розгляд сучасних методів визначення цього параметра в статті є актуальним і має на меті розкрити нові можливості та перспективи в даній галузі судово- медичної експертизи.
Мета роботи. Розроблення комплексу нових судово-медичних критеріїв для точного встановлення об'єму крововтрати за допомогою методу багатоканальної поляризаційної Мюллер- матричної томографії гістологічних зрізів паренхіматозних органів і зразків крові людини.
Матеріали та методи. Забір зразків паренхіматозних органів і крові людини проводили від 76 трупів обох статей з різним ступенем крововтрати від 0 мм3 до 2500 мм3. Дослідження виконували, застосовуючи метод багатоканальної поляризаційної Мюллер-матричної томографії лінійного дихроїзму зразків біологічних тканин.
Результати. Для всіх досліджених біологічних препаратів було встановлене характерне для процесу крововтрати зниження рівня циркулярного двопроменезаломлення (ЦД) формених елементів крові на тлі поступового некротичного зменшення розподілів лінійного двопроменезаломлення (ЛД) оптичної анізотропії паренхіматозних тканин і плівок крові. Був визначений діапазон чутливості методу диференційної Мюллер-матричної томографії з алгоритмічним відтворенням мап лінійного дихроїзму до зміни об'єму крововтрати померлих, що складав (0±2000) мм3.
Висновки. Була визначена величина точності методу диференційного Мюллер-матричного картографування з алгоритмічним відтворенням мап лінійного дихроїзму біологічних препаратів, що становила 86-92 % на діапазоні рівня крововтрати AV = (0±2000) мм3.
Ключові слова: судова медицина, крововтрата, поляриметрія, діагностика, матриця Мюллера.
Introduction
In forensic medical practice, determining the volume of blood loss is a key aspect for reconstructing the circumstances of death and establishing its cause, which makes it possible to make a significant contribution to the investigation of the case [1-3].
When determining the causes of death from blood loss, experts often have to deal with issues related to the causes of blood loss, its volume, severity of damage and the role of this factor in the dying process. When investigating such cases, the police turn to experts to find out about the possibility of active actions of dying persons, to determine the effectiveness of medical assistance. Establishing these aspects is often a challenge for experts. In many cases, the circumstances of death remain unknown or there are no medical documents that could help in retrospective analysis. At the same time, determining the volume of blood loss through morphometric analysis during autopsy is not sufficiently accurate and objective, nor is it sufficient to resolve issues related to the speed of development of this process [4, 5].
Modern methods, approaches and technologies contribute to improving the accuracy and objectivity of determining the amount of blood loss, which has a significant practical value for forensic experts and investigations of fatal cases. With the development of new technologies and analytical methods, which are aimed at the accurate determination of this indicator, the possibility of improving forensic investigations opens up [6, 7].
In this paper, we propose to consider the possibilities of multiparameter differential Mullermatrix tomography of linear dichroism of histological sections of parenchymal biological tissues and human blood samples in determining the volume of blood loss [8].
Aim of the work
To develop a set of new forensic medical criteria for accurate determination of the volume of blood loss using the method of multichannel polarization Muller-matrix tomography of histological sections of parenchymal organs and human blood samples.
Materials and methods. Samples of parenchymal organs and human blood were collected from 76 cadavers of both sexes aged 18 to 56 years with various degrees of blood loss.
Depending on the volume of blood loss (V), the following groups of samples were considered:
V = 0 mm3 - group 1 - control group (10 samples);
V = (500±100) mm3 - group 2 (6 samples);
V = (1000±100) mm3 - group 3 (12 samples);
V = (1500±100) mm3-group 4 (13 samples);
V = (2000±100) mm3 - group 5 (17 samples);
V = (2500±100) mm3-group 6 (18 samples).
The research was carried out using a laser polarimeter of the following structure (fig. 1) [6-8]:
Fig. 1. Functional block diagram of multiparameter differential Mueller-matrix tomography of biological samples:
- lighting unit (1 - laser; 2 - collimator);
- polarization filter (3 - polarizer; 4 - quarter-wave phase plate);
object unit (5 - biological sample);
projection unit (6 - polarizing microlens);
- polarization analysis unit (7 - polarizer; 8 - quarter-wave phase plate);
- photoelectronic registration unit (9 - digital camera);
- data processing unit (10 - personal computer).
Statistical data processing was carried out using MS® Excel® 2010™ and Statistica® 7.0 applications.
Results
Based on previous works, we believe that the process of blood loss leads to a decrease in the level of CB and dichroism of formed blood elements against the background of a gradual necrotic decrease in the distribution of LB and dichroism of optical anisotropy of fibrillar and parenchymal structures. Thus, the determination of the volume of lost blood is based on the establishment of relationships between changes in the distributions of parameters of various types of tomographically reproduced maps of phase and amplitude anisotropy and the level of blood loss of the deceased.
On a series of fragments of fig. 2 shows the experimentally determined coordinate distributions of random values of the dichroism value of the parenchymal structure of the histological sections of the spleen of the deceased from group 1 (1) and group 3.
Fig. 2. Maps and histograms of size distributions of histological sections of the spleen of the control (1) and experimental (2) groups.
Quantitatively, the scenario of changes in the distribution of the size of the LB of the parenchymal structure of the histological sections of the spleen of the deceased with different degrees of blood loss illustrate the significance of the statistical points listed in table 1.
Table 1 Statistical structure of linear birefringence maps of histological sections of the spleen of deceased persons with various degrees of blood loss
Blood loss, mm3 |
0 |
(500±100) mm3 |
(1000±100) mm3 |
(1500±100) mm3 |
(2000±100) mm3 |
(2500±100) mm3 |
|
Average (SM1) |
0,16±0,007 |
0,145±0,006 |
0,12±0,005 |
0,099±0,005 |
0,082±0,004 |
0,095±0,006 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Dispersion (SM2) |
0,13±0,0064 |
0,097±0,004 |
0,065±0,003 |
0,036±0,001 |
0,015±0,001 |
0,026±0,001 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Asymmetry (SM3) |
1,02±0,046 |
1,36±0,057 |
1,74±0,074 |
2,15±0,104 |
2,51±0,12 |
2,21±0,106 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Excess (SM4) |
1,36±0,061 |
1,65±0,053 |
1,98±0,105 |
2,34±0,108 |
2,62±0,12 |
2,23±0,11 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
Thus, the value of the set of statistical moments of the 1st-4th order changes, according to the volume of blood loss, it is (0±2000) mm3.
In fig. 3 presents graphic dependencies - diagrams of changes in the value of statistical moments SM1.2.3.4, which characterize the distributions of the LB value of spleen samples due to blood loss for all groups of the deceased.
From the obtained results of the method of multichannel polarization Muller-matrix tomography (fig. 3), it can be seen that the dynamics of changes in the value of statistical moments SM?2.3.4, which characterize the distribution of LB values of histological sections of the spleen, change within the blood loss volume of (0±2000) mm3.
Fig. 3. Dependencies of the average (SM1), dispersion (SM2), asymmetry (SM3) and excess (SM4), which characterize linear birefringence maps of histological sections of the spleen for the deceased with different degrees of blood loss.
The statistical parameters most sensitive to changes in the degree of LB of optically anisotropic parenchymal structures of histological sections of the spleen are asymmetry and excess.
Maps and histograms of distributions of the value of LB of polycrystalline fibrillar networks of the structures of histological sections of the kidneys of the deceased from group 1 (1) and group 3 (2), which were obtained using multichannel differential Mueller matrix mapping (fig. 4).
Fig. 4. Maps and histograms of distributions of the value of LB of histological sections of the kidneys of the control (1) and experimental (2) groups of the deceased.
From the analysis of the obtained data, it was found that with an increase in the volume of blood loss and a corresponding decrease in the concentration of formed blood elements, the magnitude of the degree of linear dichroism of the optically anisotropic collagen nets of the kidney decreases (fig. 4). Statistically, this is manifested in a decrease in the average and variance values, which characterize the distributions of the LB value of histological sections of kidney tissue of all groups of the deceased.
Also, the scenario of increased blood loss is accompanied by inverse changes in the magnitude of the statistical moments SM3 and SM4, which characterize the asymmetry and excess of the distributions of the corresponding coordinate maps of the LB of histological sections of the kidney of the deceased in the range of the volume of blood loss up to V = (2000±100) mm3.
The results of the statistical analysis of changes in the structure of LB maps of histological sections of the kidneys of the deceased with different degrees of blood loss illustrate the statistical points SM1;2;3;4, the values of which are given in table 2.
Table 2 Statistical structure of linear birefringence maps of histological sections of the kidneys of deceased persons with various degrees of blood loss
Blood loss, mm3 |
0 |
(500±100) mm3 |
(1000±100) mm3 |
(1500±100) mm3 |
(2000±100) mm3 |
(2500±100) mm3 |
|
Average (SM1) |
0,18±0,008 |
0,153±0,007 |
0,127±0,005 |
0,098±0,005 |
0,069±0,003 |
0,078±0,004 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Dispersion (SM2) |
0,13±0,005 |
0,11±0,004 |
0,093±0,004 |
0,071±0,003 |
0,043±0,002 |
0,056±0,002 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Asymmetry (SM3) |
1,14±0,046 |
1,38±0,056 |
1,61±0,073 |
1,81±0,087 |
2,09±0,095 |
1,84±0,085 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Excess (SM4) |
1,49±0,069 |
1,88±0,77 |
2,38±0,11 |
2,74±0,12 |
3,03±0,14 |
2,82±0,13 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
In fig. 5 presents graphical dependences of changes in the values of statistical moments SM1;2;3;4, which characterize the coordinate structure of distributions of random values of linear dichroism by optically anisotropic collagen networks of biological crystals of a representative set of samples of histological sections of the kidneys of the deceased from all groups according to the level of blood loss.
From the obtained data of the statistical analysis of the results of multi-parameter Mueller matrix tomography of changes in the optically anisotropic absorption of optically anisotropic grids of biological crystals, which is due to blood loss (fig. 5, table 2), it can be seen that the values of the average, dispersion, asymmetry and excess, which characterize the distributions of the LB value of histological kidney sections of the deceased, change within the blood loss volume of (0±2000) mm3.
The next stage of our work was the study of linear dichroism of polycrystalline blood films of corpses with different degrees of blood loss (fig. 6).
We would like to note that for the blood film, the main factor in changing the coordinate polycrystalline structure is the optical anisotropy of the shaped elements that scatter (depolarize) laser radiation against the background of the unchanged structural anisotropy of polycrystalline albumin - globulin networks [9]. Therefore, with a decrease in the concentration of formed blood elements in cases of blood loss, the value of linear dichroism of LB also decreases.
Fig. 5. Dependencies of the value of the mean (SM1), variance (SM2), asymmetry (SM3) and kurtosis (SM4), which characterize the LB maps of histological sections of the kidneys of the deceased with different degrees of blood loss.
Fig. 6. Maps and histograms of distributions of LB values of polycrystalline blood films of the control (1) and experimental (2) groups.
The results of the statistical analysis of the specified changes in the optically anisotropic linear dichroism of the polycrystalline blood films illustrate the statistical moments of the 1st to 4th orders, which are listed in table 3.
Table 3 Statistical structure of maps of linear birefringence of polycrystalline blood films of the corpses with different degrees of blood loss
Blood loss, mm3 |
0 |
(500±100) mm3 |
(1000±100) mm3 |
(1500±100) mm3 |
(2000±100) mm3 |
(2500±100) mm3 |
|
Average (SM1) |
0,21±0,009 |
0,183±0,008 |
0,152±0,007 |
0,121±0,005 |
0,092±0,005 |
0,063±0,003 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Dispersion (SM2) |
0,19±0,008 |
0,17±0,007 |
0,145±0,006 |
0,124±0,005 |
0,103±0,004 |
0,084±0,003 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Asymmetry (SM3) |
0,36±0,014 |
0,66±0,027 |
0,94±0,043 |
1,24±0,065 |
1,57±0,077 |
1,85±0,084 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
|
Excess (SM4) |
0,57±0,023 |
0,78±0,032 |
0,99±0,045 |
1,19±0,052 |
1,47±0,064 |
1,72±0,075 |
|
P |
<0,05 |
<0,05 |
<0,05 |
>0,05 |
>0,05 |
>0,05 |
The following statistical parameters turned out to be most sensitive to such changes in the concentration of formed elements - statistical moments of the 3rd and 4th orders, which characterize the asymmetry and excess of the linear dichroism value distributions of the polycrystalline blood films of the corpses, which change within the blood loss volume of (0±2000) mm3.
Thus, the analysis of the results of the study of the effectiveness of determining the degree of blood loss by the method of differential Mueller-matrix mapping of coordinate distributions of the linear dichroism value of histological sections of parenchymal (spleen, kidney) tissues and polycrystalline blood films revealed: for all studied biological preparations, the sensitivity range of the method is (0±2000) mm3.
The results of determining the accuracy of the proposed method are illustrated in tables 4-6.
Table 4 Accuracy of As (%) of determining the volume of blood loss (spleen)
Blood loss, mm3 |
(500±100) mm3 |
(1000±100) mm3 |
(1500±100) mm3 |
(2000±100) mm3 |
(2500±100) mm3 |
|
Average (SM1) |
86 |
86 |
84 |
82 |
66 |
|
Dispersion (SM2) |
92 |
92 |
90 |
88 |
70 |
|
Asymmetry (SM3) |
78 |
76 |
72 |
70 |
66 |
|
Excess (SM4) |
82 |
82 |
80 |
76 |
72 |
Table 5 Accuracy of As (%) of determining the volume of blood loss (kidney)
Blood loss, mm3 |
(500±100) mm3 |
(1000±100) mm3 |
(1500±100) mm3 |
(2000±100) mm3 |
(2500±100) mm3 |
|
Average (SM1) |
90 |
88 |
86 |
86 |
72 |
|
Dispersion (SM2) |
94 |
92 |
92 |
92 |
76 |
|
Asymmetry (SM3) |
92 |
90 |
88 |
86 |
74 |
|
Excess (SM4) |
84 |
82 |
82 |
80 |
68 |
Table 6 Accuracy of As (%) of determining the volume of blood loss (blood films)
Blood loss, mm |
(500±100) mm3 |
(1000±100) mm3 |
(1500±100) mm3 |
(2000±100) mm3 |
(2500±100) mm3 |
|
Average (SM1) |
78 |
76 |
74 |
70 |
62 |
|
Dispersion (SM2) |
84 |
82 |
80 |
80 |
68 |
|
Asymmetry (SM3) |
92 |
92 |
90 |
88 |
74 |
|
Excess (SM4) |
94 |
94 |
92 |
90 |
76 |
The accuracy of the method of differential Mueller-matrix tomography with algorithmic reproduction of linear dichroism maps of the polycrystalline structure of biological samples varies within:
Literature
1. Aghayev E, Sonnenschein M, Jackowski C, Thali M, Buck U, Yen K, et al. Postmortem radiology of fatal hemorrhage: measurements of cross-sectional areas of major blood vessels and volumes of aorta and spleen on MDCT and volumes of heart chambers on MRI. Am J Roentgenol. 2006;187(1):209-15.
2. Smith FR, Nicloux C, Brutin D. A new forensic tool to date human blood pools. Sci Rep [Internet]. 2020 May [cited 2022 Apr 18];10(1):8598.
3. Palmiere C, Binaghi S, Doenz F, Bize P, Chevallier C, Mangin P, et al. Detection of hemorrhage source: the diagnostic value of post-mortem CT-angiography. Forensic Sci Int. 2012;222(1-3):33-9.
4. Health. 2010;55(1):20-7.
5. Яланська ЛО. Розробка методів визначення об'єму крововтрати при проведенні судово- медичних експертиз. Вісник проблем біології і медицини. 2002;2:93-7.
6. Павлюкович ОВ. Методологічний аналіз розвитку науково-практичної проблеми судово- медичної діагностики давності настання смерті при механічній асфіксії та крововтраті. Буковинський медичний вісник. 2010; 14(2):134-7.
7. Prysyazhnyuk VP, Ushenko YuA, Dubolazov AV, Ushenko AG, Ushenko VA. Polarizationdependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl Opt. 2016;55(12): B126-32.
8. Kvasniuk D, Trifonyuk L, Stashkevich A, Kozan N, Ushenko V, Dunaiev O, et al. Detection of pathological changes in the architectonics of polycrystalline blood films using laser-induced polarization interferometry. In: Proc. SPIE 12126, Fifteenth International Conference on Correlation Optics, 1212629 [Internet]. 2021 Dec 20 [cited 2022 Apr 18].
9. Potente S, Ramsthaler F, Kettner M, Sauer P, Schmidt P Relative blood loss in forensic medicine - do we need a change in doctrine? Int J Legal Med. 2020;134(3):1123-31.
References
1. Aghayev E, Sonnenschein M, Jackowski C, Thali M, Buck U, Yen K, et al. Postmortem radiology of fatal hemorrhage: measurements of cross-sectional areas of major blood vessels and volumes of aorta and spleen on MDCT and volumes of heart chambers on MRI. Am J Roentgenol. 2006;187(1):209-15.
2. Smith FR, Nicloux C, Brutin D. A new forensic tool to date human blood pools. Sci Rep [Internet]. 2020 May [cited 2022 Apr 18];10(1):8598.
3. Palmiere C, Binaghi S, Doenz F, Bize P, Chevallier C, Mangin P, et al. Detection of hemorrhage source: the diagnostic value of post-mortem CT-angiography. Forensic Sci Int. 2012;222(1-3):33-9.
4. Schorn MN. Measurement of Blood Loss: Review of the Literature. J Midwifery Women's Health. 2010;55(1):20-7.
5. Yalans'ka LO. Rozrobka metodiv vyznachennia ob'iemu krovovtraty pry provedenni sudovo- medychnykh ekspertyz [Development of methods for determining the volume of blood loss during forensic examinations]. Visnyk problem biolohii i medytsyny. 2002;2:93-7. (in Ukrainian)
6. Pavliukovych OV. Metodolohichnyi analiz rozvytku naukovo-praktychnoi problemy sudovo- medychnoi diahnostyky davnosti nastannia smerti pry mekhanichnii asfiksii ta krovovtrati [Methodological analysis of the development of the scientific-practical problem of forensic- medical diagnostics of the prescription of death coming in case of mechanical asphyxia and a blood loss]. Bukovyns'kyi medychnyi visnyk. 2010; 14(2):134-7. (in Ukrainian)
7. Prysyazhnyuk VP, Ushenko YuA, Dubolazov AV, Ushenko AG, Ushenko VA. Polarizationdependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl Opt. 2016;55(12): B126-32.
8. Kvasniuk D, Trifonyuk L, Stashkevich A, Kozan N, Ushenko V, Dunaiev O., et al. Detection of pathological changes in the architectonics of polycrystalline blood films using laser-induced polarization interferometry. In: Proc. SPIE 12126, Fifteenth International Conference on Correlation Optics, 1212629 [Internet]. 2021 Dec 20 [cited 2022 Apr 18].
9. Potente S, Ramsthaler F, Kettner M, Sauer P, Schmidt P Relative blood loss in forensic medicine - do we need a change in doctrine? Int J Legal Med. 2020;134(3):1123-31.
Размещено на Allbest.ru
...Подобные документы
Coma - a life-threatening condition characterized by loss of consciousness, the lack of response to stimuli. Its classification, mechanism of development and symptoms. Types of supratentorial and subtentorial brain displacement. Diagnosis of the disease.
презентация [1,4 M], добавлен 24.03.2015Study of method of determining the amount of osteocyte lacunar and estimation of specific numerical closeness of lacunes by a three-dimensional impartial expecting method at the analysis of anisotropy of types of the vascular ductings of human bone.
реферат [8,6 K], добавлен 01.12.2010Features of the structure and anatomy of the heart, it's main functions and tasks in the body. Changes taking place in the human heart in the course of his life from birth to aging. Age-related disorders in the blood supply system and the heart.
презентация [725,8 K], добавлен 16.10.2016Classification of the resistance. External and internal barnry protecting the human body from pathological factors of the environment. The chemical composition of the blood, its role and significance. Influence the age on individual reactivity progeria.
презентация [4,5 M], добавлен 17.10.2016Control the doctors’ prescriptions. Microchip in Blood Pressure Pills Nags Patients Who Skip Meds. Microchip implants linked to cancer in animal. Microchip Implants, Mind Control, and Cybernetics. Some about VeriChip. TI microchip technology in medicine.
курсовая работа [732,8 K], добавлен 12.01.2012Blood Vessel Wall. Classes of Arteries. Atheromatous plaque. Risk Factors for Atherosclerosis. Age as a risk factor. Factors affecting plasma lipid levels. Additional Risk Factors. Pathogenesis of Atherosclerosis. Components of Atherosclerotic plaque.
презентация [2,1 M], добавлен 20.11.2013Tachycardia is a heart rate that exceeds the normal range. Symptoms and treatment methods of tachycardia. An electrocardiogram (ECG) is used to classify the type of tachycardia. It's important to get a prompt, accurate diagnosis and appropriate care.
презентация [596,2 K], добавлен 20.11.2014The complement system - part of the immune system as a set of complex proteins. History of the concept. Its biological functions, regulation, role in diseases. Stages of activation: the alternative and lectin pathway. Mannose-binding Lectin deficiency.
презентация [932,7 K], добавлен 17.03.2017Addiction as a brain disease. Why Some are Addicted and others not. Symptoms of drug addiction. Local treatment facilities. Tips for recovery. Interesting statistics. Mental disorders, depression or anxiety. Method of drug use: smoking or injecting.
презентация [4,7 M], добавлен 26.03.2016Nature of infrared analysis and nature of mass spectrometry. Summary of the uses in forensic analysis. Critical comparison of infrared analysis and spectrometry. Gathering of the information about positional isomers with the help of infrared analysis.
эссе [21,8 K], добавлен 08.12.2011Disease of the calcified tissues of the teeth. Demineralization of the mineral portion of enamel and dentine followed by disintegration of their organic material. Classification of caries. Prevention and treatment of caries. The composition of the pulp.
презентация [424,6 K], добавлен 14.12.2016Physical meaning of electron paramagnetic resonance and nuclear magnetic resonance. Splitting of energy levels. Zeeman effect. Spin probe. Device and mechanism of spectrometer and introscopy. The usage of EPR specters, NMR in medico-biological researches.
контрольная работа [153,5 K], добавлен 15.12.2015The physiological, hygienic and epidemiological value of water. Diseases associated with water factor. Measures to prevent transmission of infectious diseases through the water. Influence of biological factors on survival of microorganisms in water.
презентация [762,9 K], добавлен 17.05.2016General characteristics, objectives and functions of medical ethics as a scientific discipline. The concept of harmlessness and its essence. Disagreement among physicians as to whether the non-maleficence principle excludes the practice of euthanasia.
презентация [887,6 K], добавлен 21.02.2016The brain as one of the largest and most complex organ in the human body. The physiological function of the brain, its divisions and share. The cerebral cortex of man. The principles of domination of the right and left hemispheres of different people.
презентация [1,1 M], добавлен 20.11.2014Помещение и условия хранения фармацевтической продукции. Особенности контроля качества лекарственных средств, правила Good Storage Practice. Обеспечение качества лекарственных препаратов и средств в аптечных организациях, их выборочный контроль.
реферат [33,6 K], добавлен 16.09.2010Analysis of factors affecting the health and human disease. Determination of the risk factors for health (Genetic Factors, State of the Environment, Medical care, living conditions). A healthy lifestyle is seen as the basis for disease prevention.
презентация [1,8 M], добавлен 24.05.2012The development of modern medicine. The creation of internal organs, implants. The use of modern orthopaedics mechanical devices. The replacement of lost parts of the human body by means of surgical operations. Bridge denture. The use of prostheses.
презентация [5,0 M], добавлен 31.05.2016A brief sketch of the life and professional development of Botkin as the Russian scientist, a gifted doctor. Botkin's value in world medicine, assessment of its scientific achievements. Analysis and themes of famous doctor, the direction of its research.
презентация [1,7 M], добавлен 10.12.2014Teratology is the science of the etiology, pathogenesis, clinical and morphological characteristics, prevention and treatment of congenital malformations. History and the stages of its formation and development. Etiology of congenital malformations.
презентация [873,8 K], добавлен 23.09.2014