Развитие познавательного интереса к математике как одно из условий формирования познавательных процессов старших дошкольников

Роль математического мышления в подготовке старших дошкольников к школе. Традиционные и нетрадиционные формы и методы обучения математике, условия развития познавательного интереса к ней. Проект работы по математическому развитию старших дошкольников.

Рубрика Педагогика
Вид курсовая работа
Язык русский
Дата добавления 30.04.2014
Размер файла 91,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Глава I. Теоретические основы проблемы математического развития детей на современном этапе

1.1 Анализ психолого-педагогической литературы по вопросам математического развития детей дошкольного возраста

1.2 Традиционные и нетрадиционные формы и методы обучения детей математике

1.3 Педагогические условия развития познавательного интереса к математике детей старшего дошкольного возраста

Выводы по I главе

Глава II. Проект работы по математическому развитию детей старшего дошкольного возраста

2.1 Изучение опыта работы воспитателей МБДОУ по математическому развитию детей старшего дошкольного возраста

2.2 Использование традиционных и нетрадиционных форм обучения в процессе математического развития детей старшего дошкольного возраста

Выводы по II главе

Заключение

Список литературы

Приложения

Введение

Третье тысячелетие, согласно прогнозам ученых, ознаменовано информационной революцией, когда знающие и образовательные люди станут цениться как истинное национальное богатство. Необходимость ориентироваться в возрастающем объеме знании предъявляет определенные требования к умственному воспитанию подрастающего поколения. Так, современная образовательная система на передний план выдвигает задачу формирования у подрастающего поколения способности к активной умственной деятельности.

Умственное развитие дошкольника - важнейшая составная часть его общего психического развития, подготовки к школе и ко всей будущей жизни. Но и само умственное развитие - сложный процесс - это формирование познавательных интересов, накопление разнообразных знаний и умений, овладение речью.

Задачи умственного развития детей дошкольного возраста:

1. формирование системы элементарных знаний о предметах и явлениях окружающей жизни как основы воспитания правильного отношения к ней

2. развитие элементарных навыков и умений умственной деятельности, познавательных процессов и способностей, развитие речи детей

3. формирование познавательных интересов и любознательности

4. приучение детей к умственному труду

«Ядром» умственного развития, его основным содержанием является развитие умственных способностей.

Умственные способности - это те психологические качества, которые определяют легкость и быстроту усвоения новых знаний и умений, возможности их использования для решения разнообразных задач.

Развитие умственных способностей имеет особое значение для подготовки детей к школьному обучению. Ведь важно не только, какими знаниями владеет ребенок ко времени поступления в школу, а готов ли он к получению новых знаний, умеет ли рассуждать, доказательно мыслить, догадываться, проявлять умственное напряжение, фантазировать, делать самостоятельные выводы, строить замыслы сочинений, рисунков, конструкций. Все это предполагает определенную степень сформированности познавательных процессов (память, мышление, воображение и т.д.). математика интерес старший дошкольник

Познавательные процессы (восприятие, память, мышление, воображение) - составная часть любой человеческой деятельности, которые обеспечивают ту или иную ее информацию. Они позволяют человеку намечать заранее цели, планы и содержание предстоящей деятельности, проигрывать в уме ход этой деятельности, свои действия и поведение, предвидеть результаты своих действий и управлять ими по мере выполнения.

Когда говорят об умственных способностях ребенка, то также имеют ввиду уровень развития и характерные особенности его познавательных процессов, ибо, чем лучше развиты у ребенка эти процессы, тем более способным он является, тем большими возможностями он обладает, от уровня его развития познавательных процессов зависит легкость и эффективность его учения.

Человек рождается с достаточно развитыми задатками к познавательной деятельности, однако познавательные процессы новорожденный осуществляет сначала неосознанно, инстинктивно. Ему еще предстоит развить свои познавательные возможности, научиться ими управлять. Поэтому уровень развития познавательных возможностей ребенка зависит не только от полученных при рождении задатков ( хотя они играют основополагающую роль), но и от характера воспитания и обучения ребенка в семье, в детском саду, от собственной его деятельности по саморазвитию своих интеллектуальных способностей.

Умственное воспитание ребенка, как справедливо подчеркивал А.Н. Леонтьев, нельзя рассматривать в разрыве от психического развития, от богатства интересов, чувства других черт, образующих его духовный облик.

Ребенок старшего дошкольного возраста отличается активностью в познании окружающего, проявляет интерес к математике. У него начинают складываться представления о свойствах предметов: величине, форме, цвете, составе, количестве; о действиях, которые можно производить с ними, - уменьшить, увеличить, разделить, пересчитать, измерить.

Накопленный чувственный и интеллектуальный опыт ребенка может быть объемным, но неупорядоченным, неорганизованным. Направить его в нужное русло, сформировать частные и обобщенные способы познания и необходимо в процессе обучения и познавательного общения. Все это служит фундаментом дальнейшего математического образования детей. Исходя из этого проблема развития познавательного интереса к математике у детей старшего дошкольного возраста была и остается достаточно актуальной.

Проблема формирования познавательных процессов - одна из приоритетных задач дошкольного образования. Актуальность данной темы обусловлена, во-первых, социальным заказом в сфере образования, который отражает возрастающую потребность государства и общества в подготовке квалифицированных специалистов, умеющих продуктивно мыслить. В связи с этим в настоящее время особое значение приобретают требования к качественно новому уровню развития познавательных процессов, в том числе и на этапе дошкольного образования. Во-вторых, от качества знаний и умений, от уровня познавательных процессов и познавательной активности ребенка, сформированных в дошкольные годы, зависит развитие школьной зрелости старшего дошкольника, а, следовательно, и успешность последующего обучения в школе. Ведь дошкольный возраст является сенситивным периодом для развития памяти, внимания, мышления, речи, именно в этом возрасте закладывается фундамент формирования личности.

Анализируя существующие подходы к определению понятия (И.В. Дубровина, Л.И. Божович, Е.Е. Кравцова, Н.В. Нижегородцева, В.Д. Шадриков, Н.И. Гуткина, Л.А. Венгер, Л.С. Выготский и др. ), школьная зрелость представляет собой многофункциональное сложное структурное образование, которое включает, прежде всего, зрелость в интеллектуальном, эмоциональном и социальном отношениях.

Русские психологи С.Л. Рубинштейн и А.М. Матюшкин утверждали, что у детей развивается математическое мышление, которое имеет следующие особенности:

Склонность к операциям с числами и на еще более высоком уровне склонность и интерес к математическим проблемам;

Быстроту усвоения счетных правил;

Особенно сильное развитие абстрактного мышления, аналитико-синтетических комбинационных способностей в области оперирования числовой и знаковой символикой;

Развивающуюся самостоятельность и оригинальность в решении математических проблем и усиление творческого мышления;

Волевую активность и трудоспособность в области математического труда;

Переход склонности и интереса в увлечение, когда математическая работа становится призванием;

Продуктивную по количеству и качеству деятельность, позволяющую обнаружить все более опережающие сверстников показатели. (32)

Над данной проблемой работают следующие ученые педагоги и психологи: П.Я. Гальперин, Т.И. Ерофеева, Н.Н. Короткова, В.П. Новикова, Л.Н Павлова, М.Ю. Стожарова, Н.А. Ремнёва и многие другие.

Тема курсовой работы: "Развитие познавательного интереса к математике, как одно из условий формирования познавательных процессов старших дошкольников".

Объект исследования: воспитательно-образовательный процесс.

Предмет исследования: процесс развития познавательного интереса к математике детей старшего дошкольного возраста.

Цель исследования: Теоретически обосновать и разработать проект по развитию математических представлений, познавательного интереса к математике у детей старшего дошкольного возраста с использованием традиционных и нетрадиционных методов обучения.

Задачи исследования:

1.Провести анализ психолого-педагогической литературы по вопросам математического развития, познавательного интереса к математике детей.

2.Выделить традиционные и нетрадиционные формы и методы обучения детей математике с целью развития познавательного интереса.

3.Разработать серию нетрадиционных видов НОД по развитию математических представлений у детей старшего дошкольного возраста с использованием традиционных и нетрадиционных методов обучения математике.

4.Разработать серию игр и игровых упражнений для развития познавательного интереса к математике детей старшего дошкольного возраста.

Этапы исследования:

На I этапе исследования проводилась подборка и систематизация теоретического материала по теме исследования;

На II этапе изучался опыт педагогов в области математического развития дошкольников;

На III этапе составлялся комплекс НОД по развитию математических представлений у детей старшего дошкольного возраста.

База исследования: МБДОУ "Василек" р.п. Мулловка Мелекесского района Ульяновской области.

Структура курсовой работы: курсовая работа состоит из введения, 2-х глав, заключения, списка литературы и приложений.

Глава 1 Теоретические основы проблемы математического развития детей на современном этапе

1.1 Анализ психолого-педагогической литературы по вопросам математического развития детей старшего дошкольного возраста

Сложившаяся система обучения и воспитания в дошкольном возрасте, ее содержание и методы ориентировали в основном на развитие у детей предметных способов действий, узких навыков, связанных со счетом и простейшими вычислениями, что недостаточно обеспечивает подготовку к усвоению математических понятий в дальнейшем обучении, а так же недостаточного познавательного интереса к математике.

Необходимость пересмотра методов и содержания обучения обоснована в работах психологов и математиков, которые положили начало новым научным направлениям в разработке проблем математического развития дошкольников. Специалисты выясняли возможности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отметили необходимость повышения теоретического уровня осваиваемых детьми зданий.

В качестве основания для формирования начальных математических представлений и понятий П.Я. Гальперин разработал линию формирования начальных математических понятий и действий, построенную на введении мерки и определении единицы через отношение к ней.

В исследовании В. В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через, освоение детьми действий уравнивания и комплектования, измерения. Генезис понятия числа рассматривается на основе краткого отношения любой величины к ее части (Г.А. Корнеева).

В отличие от традиционных методов ознакомления с числом (число - результат счета), новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мера).

Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости научить детей обобщенным способам решения учебных задач, усвоению связей, зависимостей, отношений и логических операций (классификации и сериации). Для этого, предлагаются своеобразные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.

Математики-методисты настаивают на значительном пересмотре содержания знаний для детей старшего дошкольного возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д. (А.И. Маркушевич).

Методику первоначального обучения А. И. Маркушевич рекомендовал строить, основываясь на положениях теории множеств. Необходимо обучать дошкольников простейшим; операциями с множествами (объединение, пересечение, дополнение), формировать у них количественные и пространственные представления.

В настоящее время реализуется идея простейшей логической подготовки дошкольников (А.А. Столяр), разрабатывается методика введения детей в мир логико-математических представлений: свойства, отношения, множества, операции над множествами, логические операции (отрицание, конъюнкция, дизъюнкция) - с помощью специальной серии обучающих игр.

В последние десятилетия осуществляется педагогический эксперимент, направленный на выявление более эффективных методов математического развития детей дошкольного возраста, определение содержания обучения, выяснения возможностей формирования у детей представлений о величине, установлении взаимосвязей между счетом, и измерением (Р.Л. Берзина, Н.Г. Белоус, 3.Е. Лебедева, Р.Л. Непомнящая, Л.А. Левинова, Т.В. Тарунтаева, Е.И. Щербакова).

Возможности формирования количественных представлений у детей раннего возраста, пути совершенствования количественных представлений у детей дошкольного возраста изучены В.В. Даниловой, Л.И. Ермолаевой, Е.А. Тархановой.

В настоящее время исследуются возможности использования наглядного моделирования в процессе обучения решению арифметических задач (Н.И. Непомнящая), познания детьми количественных и функциональных зависимостей (Л.Н Бондаренко, Р.Л. Непомнящая, А.И. Кириллова), способности дошкольников к наглядному моделированию при ознакомлении с пространственными отношениями (Р.И. Говорова, О.М. Дьяченко, Т.В. Лаврентьева, Л.М. Хализева).

В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных технологий, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста.

В этой связи, с теоретической и практической точек зрения все более актуализируется проблема разработки концептуальных подходов к построению системы непрерывного преемственного математического образования дошкольников, определения целей и оптимальных границ образовательного содержания дошкольных программ.

Понятие «математическое развитие» дошкольников трактуется в основном как формирование и накопление математических знаний и умений. Следует отметить, что основа такой трактовки понятия «математическое развитие» дошкольников была заложена еще в работах Л.А. Венгера и др.( 7, с 48 )

Такое понимание математического развития устойчиво сохраняется в работах специалистов дошкольного образования. Например, в исследованиях В.В. Абашиной понятию математического развития ребенка дошкольного возраста посвящена целая глава. В этой работе дается определение понятию «математическое развитие»: «математическое развитие дошкольника - это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий». (2, с.56)

Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей. (2, с.56)

В настоящее время прослеживаются два подхода к определению содержания обучения. Ряд авторов (Г.А. Корнеева, Э.Ф. Николаева, Е.В. Родина) эффективность математического развития детей связывают с расширением информационной насыщенности занятий. Другие же (П.Я. Гальперин, А.Н. Федорова) стоят на позиции обогащения содержания, направленного на развитие интеллектуальных способностей и формирование содержательных, научных представлений и понятий. (12, с.68)

Познание и отображение в представлениях общих связей и отношений дошкольники осуществляют посредством наглядно-действенного и наглядно-образного мышления (А. В. Запорожец, Л.А. Венгер, Н. Н. Поддьяков, С. Л. Новоселова и др.). Мы разделяем точку зрения, согласно которой все виды мышления развиваются одновременно и имеют непреходящее значение на протяжении всей человеческой жизни. Внешние, пробующие действия - исходная форма для развития действий образного и логического типа (Н.Н. Поддьяков). (20, с.56)

Организованный процесс наглядно-образного мышления - ознакомление с численными характеристиками пространства и времени - может быть основой развития предпосылок логического мышления. Решение мыслительных задач на установление пространственных и временных связей, причинных зависимостей, количественных отношений будет способствовать интеллектуальному развитию, формированию познавательных процессов в целом.

Математика должна занимать особое место в интеллектуальном развитии детей, в формировании познавательных процессов, должный уровень которых определяется качественными особенностями усвоения детьми таких исходных математических представлений и понятий, как счет, число, измерение, величина, геометрические фигуры, пространственные отношения. Отсюда очевидно, что содержание обучения должно быть направлено на формирование у детей этих основных математических представлений и понятий и вооружение их приемами математического мышления - сравнением, анализом, рассуждением, обобщением, умозаключением. (18,с.47)

В практике работы дошкольных учреждений накоплен достаточный опыт использования игр и игровых упражнений при обучении детей математике. В последние годы проведены исследования игр с математическим содержанием: сюжетно-дидактические игры математического содержания (А.А. Смоленцева); обучающие игры с элементами информатики и моделирования (А.А. Столяр); игры, направленные на интеллектуальное развитие детей (А.А. Зак, 3.А. Михайлова); строительно-конструктивные игры. Кроме этого, активно используются сюжетно-дидактические игры математического содержания, отражающие бытовые явления («Магазин», «Детский сад», «Путешествие», «Поликлиника» и др.), общественные события и традиции («Встреча гостей», «Праздник пришел» и др.).(27, с.124)

В процессе знакомства с новым содержанием и новыми действиями (сравнение предметов по величине, уравнивание количества, измерение) нужно использовать развернутые объяснения с показом действий и последовательности их выполнения. При этом объяснения должны быть предельно четкими, ясными, конкретными. Они даются в темпе, доступном восприятию ребенка.

Давая указания, педагог побуждает детей следить за действиями, разъясняет содержание действий и последовательность их выполнения, знакомит с их словесным обозначением. Успех обучения во многом зависит от организации учебного процесса. Хотелось бы обратить внимание на ряд положений. Обучение должно осуществляться как в непосредсвенно-образовательной деятельности, так и в процессе самостоятельной деятельности детей.(25,с.48)

В НОД обязательно должна происходить смена деятельности: восприятие информации педагога, активная деятельность самих детей (работа с раздаточным материалом) и игровая деятельность (игра является обязательным компонентом занятия; все занятие строится в форме игры).

Специфика дошкольного образования состоит, прежде всего, том, что его содержание должно обеспечить формирование наиболее значимых психологических свойств и способностей ребенка, которые во многом определяют весь путь дальнейшего развития (А. В. Запорожец). Особенность обучения дошкольников - его организация в форме игры и связанных с ними продуктивных и художественных деятельностей. Образно-символический характер игры позволяет использовать ее в качестве средства развития воображения, наглядно-образного мышления, овладения знаковой функцией сознания и формирования предпосылок логического мышления. Эмоциональная насыщенность игровых действий и личностный смысл игрового взаимодействия способствуют развитию эмоционального отношения к миру, развитию самосознания и осознания себя как индивидуума, своего места среди других. Развитие умственных действий логического типа успешно происходит в процессе овладения детьми средствами выделения основных, существенных отношений, лежащих за непосредственными восприятиями, отражающими эти отношения в виде схем (Д.Б. Эльконин, П.Я. Гальперин, Л.Ф. Обухова и др.). (24, с.59)

Изучение психолого-педагогической литературы убеждают в необходимости дальнейшего исследования вопроса организации процесса обучения математике детей дошкольного возраста, разработки и внедрения инновационных технологий и активного использования разнообразных приемов активизации умственной активности детей: включение сюрпризных моментов и игровых упражнений; организация работы с дидактическим наглядным материалом; активное участие воспитателя в совместной деятельности с детьми; новизна умственной задачи и наглядного материала; выполнение нетрадиционных заданий, решение проблемных ситуаций.

1.2 Традиционные и нетрадиционные формы и методы обучения детей математике

Наглядные, словесные и практические методы и приемы обучения на занятиях по математике( в образовательной области "Познание") в старшем дошкольном возрасте в основном используются в комплексе. Дети способны понять познавательную задачу, поставленную педагогом, и действовать в соответствии с его указанием. Постановка задачи позволяет возбудить их познавательную активность. Создаются такие ситуации, когда имеющихся знаний оказывается недостаточно для того, чтобы найти ответ на поставленный вопрос; и возникает потребность узнать что-то новое, научиться новому: Например, педагог спрашивает: «Как узнать, на сколько длина стола больше его ширины?» Известный детям прием приложения применить нельзя. Педагог показывает им новый способ сравнения длин с помощью мерки. (5, с.187)

Побудительным мотивом к поиску являются предложения решить какую-либо игровую или практическую задачу (подобрать пару, изготовить прямоугольник, равный данному, выяснить, каких предметов больше, и др.). Организуя самостоятельную работу детей с раздаточным материалом, педагог также ставит перед ними задачи (проверить, научиться, узнать новое). (5, с.188)

Закрепление и уточнение знаний, способов действий в ряде случаев осуществляется предложением детям задач, в содержании которых отражаются близкие, понятные им ситуации. Так, они выясняют, какой длины шнурки у ботинок и полуботинок, подбирают ремешок к часам и пр. Заинтересованность детей в решении таких задач обеспечивает активную работу мысли, прочное усвоение знаний.(7, с.49)

Математические представление «равно», «не равно, «больше - меньше», «целое и часть» и др. формируются на основе сравнения. Дети старшего дошкольного возраста могут под руководством педагога последовательно рассматривать предметы, выделять и сопоставлять их однородные признаки. На основе сравнения они выявляют существенные отношения, например отношения равенства и неравенства, последовательности, целого и части и др., делают простейшие умозаключения. Развитию операций, умственной деятельности (анализ, синтез, сравнение, обобщение) в старшем возрасте уделяют большее внимание. Все эти операции дети выполняют с опорой на наглядность.

Рассматривание, анализ и сравнение объектов при решении задач одного типа производятся в определенной последовательности. Например, детей учат последовательному анализу и описанию узора, составленного из моделей геометрических фигур, и др. Постепенно они овладевают общим способом решения задач данной категории и сознательно им пользуются. (10, с.95)

Так как осознание содержания задачи и способов ее решения детьми этого возраста осуществляется в ходе практических действий, ошибки, допускаемые детьми, всегда исправляются через действия с дидактическим материалом.

В работе с детьми старшего дошкольного возраста повышается роль словесных приемов обучения. Указания и пояснения педагога направляют и планируют деятельность детей. Давая инструкцию, он учитывает, что дети знают и умеют делать, и показывает только новые приемы работы. Вопросы педагога в ходе объяснения стимулируют проявление детьми самостоятельности и сообразительности, побуждая их искать разные способы решения одной и той же задачи: "Как еще можно сделать? Проверить? Сказать?" (10, с.102)

Детей учат находить разные формулировки для характеристики одних и тех же математических связей и отношений. Существенное значение имеет отработка в речи новых способов действия. Поэтому в ходе работы с раздаточным материалом педагог спрашивает то одного, то другого ребенка, что, как и почему он делает. Один ребенок может выполнять в это время задание у доски и пояснять свои действия. Сопровождение действия речью позволяет детям его осмыслить. После выполнения любого задания следует опрос. Дети отчитываются, что и как они делали и что получилось в результате.(10, с.108)

По мере накопления умения выполнять те или иные действия ребенку можно предложить сначала высказать предположение, что и как надо сделать, (построить ряд предметов, сгруппировать их и пр.), а потом выполнить практическое действие. Так учат детей планировать способы и порядок выполнения задания. Усвоение правильных оборотов речи обеспечивается многократным их повторением в связи с выполнением разных вариантов заданий одного типа.

В старшей группе начинают использовать словесные игры и игровые упражнения, в основе которых лежат действия по представлению: "Скажи наоборот!", "Кто быстрее назовет?", "Что длиннее (короче)?" и др. Усложнение и вариантность приемов работы, смена пособий и ситуаций стимулируют проявление детьми самостоятельности, активизируют их мышление. Для поддержания интереса к занятиям математикой педагог постоянно вносит в них элементы игры (поиск, угадывание) и соревнования: "Кто быстрее найдет (принесет, назовет)?" и т. д.(12, с.110)

Игра начала успешно использоваться в обучении детей до школы с середины прошлого века. В исследованиях отечественных педагогов и психологов подчеркивалась многоплановая взаимосвязь и взаимовлияние игры и обучения. В играх актуализируется интеллектуальный опыт, конкретизируются представления о сенсорных эталонах, совершенствуются умственные действия, накапливаются положительные эмоции, которые повышают познавательные интересы дошкольников.(15, с.113)

В работе с детьми используются дидактические игры с народными игрушками - вкладышами (матрешки, кубы), пирамидами, в конструкции которых заложен принцип учета величины. На этот принцип обращается особое внимание детей: в большую матрешку можно поставить маленькую; в большой куб -- маленький; чтобы сделать пирамиду, надо вначале вставить большое кольцо, затем поменьше и самое маленькое. С помощью этих игр дети упражняются в нанизывании, вкладывании, собирании целого из частей; приобретали практический, чувственный опыт различения величины, цвета, формы предмета, учились обозначать эти качества словом. Дидактические игры используются как для закрепления, так и для сообщения новых знаний ("Одевание кукол", "Покажи, что больше, а что меньше", "Чудесный мешочек", "Три медведя", "Что изменилось?", "Палочки в ряд", "Наоборот", "Сломанная лестница", "Чего не стало?", "Узнай по описанию" и др.).(29, с.257)

Игровые задачи решаются непосредственно - на основе усвоения математических знаний - и предлагаются детям в виде несложных игровых правил. На занятиях и в самостоятельной деятельности детей проводятся подвижные игры математического содержания («Медведь и пчелы", "Воробушки и автомобиль", "Ручейки", "Найди свой домик", "В лес за елочками" и др.).(29, с.216)

При отработке предметных действий с величинами (сравнение путем наложения и приложения, раскладывание по возрастающей и убывающей величине, измерение условной меркой и др.) широко используются разнообразные упражнения. На начальных этапах обучения чаще практикуются репродуктивные упражнения, благодаря которым дети действуют по образцу воспитателя, что предупреждает возможные ошибки. Например, угощая зайцев морковкой (сравнение двух групп предметов путем наложения), дети точно копируют действия воспитателя, который угощает кукол конфетами. Несколько позже применяются продуктивные упражнения, в которых дети сами находят способ действия для решения поставленной задачи, используя имеющиеся знания. Например, каждому ребенку дают елочку и предлагают найти на столе воспитателя елочку такой же высоты. Имея опыт сравнения величины предметов путем наложения и приложения, дети путем примеривания находят елочку такой же высоты, как у них.(29, с221)

Перспективным методом обучения дошкольников математике на современном этапе является моделирование: оно способствует усвоению специфических, предметных действий, лежащих в основе понятия числа. Дети использовали модели (заместители) при воспроизведении такого же количества предметов (покупали в магазине шапок столько, сколько кукол; при этом количество кукол фиксировали фишками, так как поставлено условие - кукол в магазин брать нельзя); воспроизводили такую же величину (строили дом такой же высоты, как образец; для этого брали палочку такой же величины, как высота дома-образца, и делали свою постройку такой же высоты, как величина палочки). При измерении величины условной меркой дети фиксировали отношение мерки ко всей величине либо предметными заместителями (предметы), либо словесными (словами-числительными). (с.29, с.227)

Одним из современных методов обучения математике являются элементарные опыты. Детям предлагается, например, перелить воду из бутылочек разной величины (высокая, узкая и низкая, широкая) в одинаковые сосуды, чтобы определить: объем воды одинаков; взвесить на весах два куска пластилина разной формы (длинная колбаска и шар), чтобы определить, что они одинаковые по массе; расставить стаканы и бутылочки один к одному (бутылочки стоят в ряд далеко друг от друга, а стаканы в кучке близко друг к другу), чтобы определить, что их количество (равное) не зависит от того, сколько места они занимают.

Для формирования полноценных математических представлений и для развития познавательного интереса у дошкольников очень важно наряду с другими методами использовать занимательные проблемные ситуации. Жанр сказки позволяет соединить в себе и собственно сказку, и проблемную ситуацию. Слушая интересные сказки и переживая с героями, дошкольник в то же время включается в решение целого ряда сложных математических задач, учится рассуждать, логически мыслить, аргументировать ход своих рассуждений.

Таким образом, для успешного овладения детьми старшего дошкольного возраста математическими знаниями необходимо использовать все многообразие методов и приемов обучения математике как традиционных так и инновационных. В главе 1 своей работы мы представляем комплекс традиционных методов и приемов (дидактические и логические игры, решение математических задач) в сочетании с инновационными (моделирование, математические сказки, эксперименты).

1.3 Педагогические условия развития познавательного интереса к математике детей старшего дошкольного возраста

Педагогические условия - это создание благоприятной морально-психологической атмосферы в отношениях между педагогом и ребенком, в коллективе детей, а так же педагогическая развивающая среда, окружающая ребенка в дошкольном учреждении.

Все современные программы и технологии дошкольного воспитания выдвигают в качестве основной задачу развивать личность ребенка, его умственные, духовные и физические способности. С нашей точки зрения, прогрессивное развитие ребенка может осуществляться в условиях свободного выбора, которые позволяют ему преобразовываться из объекта в субъект собственной деятельности. Отсюда вытекают задачи руководства процессом развития и образовательной работы с детьми.

В первом случае, не давая способов ориентировки в готовом виде, вызывать потребность в поиске и таким образом предоставлять возможность для саморазвития и самовоспитания. Во втором - создавать благоприятные условия для реализации своих возможностей посредством овладения в доступной форме систематизированным человеческим опытом (материальной и духовной культурой), который отражает существенные связи явлений действительности (Н. Н. Поддьяков). Наиболее общие формы существования мира - пространство и время.( 5, с. 12)

Чтобы развить у ребенка умственные способности логического типа, нужно научить его выделять основные существенные параметры объекта и его отношения. Следовательно, педагогу необходимо организовать деятельность, которая будет направлена на систематизацию объектов по их внешним свойствам, предусмотреть четкое восприятие самих объектов и нахождение в них сходства и различия. В связи с этим содержание обучения должно включать задачи на действия, объединяющие объекты в группы на основе как сходства, так и различия. Прямые отношения (сходство) необходимо изучать в связи с обратными (различия). Постоянство и изменение в их единстве открывают детям на уровне интуиции обратимость, что является основой логического мышления.

На уровне наглядно-образного и интуитивного мышления дошкольникам доступны самые общие формы существования мира; классы и отношения остаются одновременно и пространственными совокупностями, и пространственно-временными отношениями. Мы разделяем точку зрения, согласно которой логической может быть не только мысль дискурсивная, но и интуитивная, для которой время не необходимое условие.(11, с.43 )

Развитие интеллекта - это не просто накопление эмпирических ассоциаций, а процесс конструкции, осуществляемой субъектом. Это процесс непрерывного творчества. Счет и название цифр ребенок берет извне, а построение понятия числа является его творческим актом Предварительно ребенок должен открыть сохранение количества (Ж. Пиаже). Для этого преобразующие действия должны осознаваться им как нечто целое.(29, с.43)

Движущая сила психического развития - обучение (Л.С. Выготский), которое в широком его понимании рассматривается нами как процесс активного взаимодействия и общения ребенка с окружающим миром (людей, явлений, предметов). В узком понимании обучение представляет собой целостную форму педагогической деятельности, главная задача которой - прогрессивное развитие каждого ребенка. Для того чтобы главная задача обучения была действительно реализована, оно должно представлять собой целостную систему, состоящую из задач и адекватного им содержания (образование), соответствующих форм его организации (процесс обучения), результатов.( 29, с. 50)

В качестве одного из средств познания скрытых связей и отношений используется предметное моделирование, с помощью которого можно открыть детям количественные, пространственные и временные отношения. Моделирование как средство познания помогает открыть скрытые, непосредственно не воспринимаемые свойства вещей и их отношения. Однако для этого дети должны овладеть способами использования моделей, понять два связанных между собой отражения (план реальных объектов и план моделей), научиться различать "обозначаемое" от "обозначающего". Их дифференциация рождает мышление, опирающееся на одновременное изобретение символов и открытие знаков (Ж. Пиаже). Овладев способами использования моделей, дети смогут раскрыть область особых отношений - моделей и оригиналов. Формирование этих двух планов отражения имеет решающее значение для развития различных форм мышления. (Н. Н. Поддьяков).(29, с.52)

Итак, познание всеобщего - это процесс открытия каждым ребенком скрытых связей и отношений. Перед педагогом постоянно стоит задача преобразовать общую программу обучения в программу деятельности самого ребенка. Этот процесс проходит успешно, если используются игровые формы обучения, направленные на интеллектуальное развитие: игры-занятия и связанные с ними игры дидактические, подвижные, сюжетно-дидактические, игры с дидактическими материалами. Игра в широком ее понимании рассматривается как деятельность, мотив которой лежит в самом процессе действования (А. Н. Леонтьев).( 29, с.53)

Мотив участия детей в играх-занятиях - это интерес к деятельности, предлагаемой взрослым. Право выбора, добровольное участие предоставляется детям, но руководящая роль сохраняется за взрослым, педагогом: он определяет дидактические задачи игр, подбирает соответствующее им содержание деятельности и предусматривает ожидаемые результаты обучения. Взрослый выстраивает систему игр-занятий.

Ознакомление с окружающим миром происходит не только в результате организованного обучения, но и в процессе повседневного взаимодействия и общения со взрослыми и окружающими детьми.

Работу, требующую произвольного внимания, педагог чередует с элементами игры. Количество однородных упражнений ограничивают до 3--4. Включаются задания, связанные с выполнением движений. Если такие задания отсутствуют, то на 12-14 мин проводится физкультурная минутка. Содержание ее по возможности связывают с работой на занятии. Приводя опрос, педагог старается вызвать как можно больше детей.(26, с.21)

Среди условий, необходимых для формирования познавательных процессов ребенка, для развития глубокого познавательного общения со взрослым и со сверстниками, и - что не менее важно - для формирования самостоятельной деятельности, создание предметно-развивающей среды, обязательное наличие в группе ДОУ уголка занимательной математики. Уголок занимательной математики представляет собой специально отведенное, тематически оснащенное играми, пособиями и материалами и определенным образом художественно оформленное место. Основные задачи, решаемые при создании уголка занимательной математики:

1. Предоставление возможности ребенку, исходя из своих потребностей и интересов «поиграть» в математическом уголке (как вид самостоятельной деятельности).

2. Предоставление возможности индивидуальной работы в конкретном, специально оборудованном, тематически оформленном месте.

3. Решение задач развития детей средствами разнообразного богатого комплекса дидактических материалов (по математике).

4. Закрепление полученных ранее математических знаний, умений и навыков через занятия в уголке занимательной математики.

Содержание уголка занимательной математики: математические логические, развивающие и интеллектуальные игры. Дидактические игры с наглядным материалом, знакомые детям по занятиям. Математические развлечения: загадки, задачи, шутки, ребусы, кроссворды, игры-головоломки.

Дидактические пособия (модели, схемы, графики, чертежи, карты, математические тетради, математический конструктор и другие пособия мате­матического содержания). Литература для детей математического содержания (математические сказки, словесные задания. Шашки, шахматы и другие настольные игры. Дополнительный рабочий материал (цветные карандаши, ручки, фломастеры, бумага и т. д.). Уголок должен постоянно пополняться новыми играми и пособиями.(14,с.46)

Отношение к уголку занимательной математики должно быть уважительным, как к специфической развивающей зоне (в первую очередь этого правила должны придерживаться взрослые, т.к. дети в дальнейшем переймут характер отношения, что непременно скажется на результативности работы). В уголке одновременно работать могут не более двух детей; это могут быть взрослый и ребенок. Желательно, чтобы уголок занимательной математики находился в зоне видимости воспитателя и дети, работая самостоятельно, могли обратиться за советом или помощью. Содержать уголок необходимо в чистоте и порядке, приучать детей самостоятельно убирать за собой (воспитание уважительного и бережного отношения к дидактическому материалу). Обеспечению принципа наглядности способствует дидактический материал. В работе с детьми младшего дошкольного возраста используется предметная и иллюстративная наглядность: знакомые игрушки и их изображения (елки разной высоты, кубики разной величины, матрешки разные по массе и др.). В средней и старшей группах наряду предметной и иллюстративной наглядностью используются геометрические фигуры, схемы, таблицы.(12, с.26)

Одним из необходимых условий, мы рассматриваем дифференцированное обучение как создание оптимальных условий для выявления способностей каждого ребенка. Такое обучение предполагает оказание своевременной помощи детям, испытывающим трудности при усвоении математического материала, и индивидуальный подход к детям с опережающим развитием. Такая работа требует специальной организации детей на занятиях. Чаще мы проводили занятия по подгруппам, чтобы проследить способ выполнения действия каждым ребенком. Не исключались традиционные коллективные занятия со всей группой.

Организация взаимоотношений "педагог -- дети", "дети -- дети". В практике работы дошкольных учреждений имеется положительный опыт организации взаимоотношений "педагог -- дети" в процессе обучения. Педагог ставит перед детьми задачу, оказывает помощь при выполнении задания, контролирует работу и оценивает результаты ее выполнения. Практика показывает, что на занятиях не поощряется взаимодействие детей со сверстниками (часто такое общение расценивается как шалости). А ведь именно взаимодействие детей друг с другом способствует развитию познавательного интереса, преодолению страха перед неудачей, возникновению потребности обратиться за помощью, стремлению оказать помощь товарищу, осуществлению контроля за своими действиями и действиями других детей, появлению взаимопонимания, умения разрешать конфликты, а самое главное -- воспитанию чувства взаимоуважения и сопереживания. В работе мы использовали специальные приемы для организации взаимодействия детей в процессе обучения: работа небольшими группами объединенных по желанию детей; создание ситуаций, побуждающих детей оказывать помощь другу; коллективные просмотры работ, оценка своих работ и работ других детей; специальные задания, требующие коллективного выполнения.

В старшей группе расширяют виды наглядных пособий и несколько изменяют их характер. В качестве иллюстративного материала продолжают использовать игрушки, вещи. Но, теперь большое место занимает работа с картинками, цветными и силуэтными изображениями предметов, причем рисунки предметов могут быть схематичными.

С середины учебного года вводятся простейшие схемы, например "числовые фигуры", "числовая лесенка", "схема пути" (картинки, на которых в определенной последовательности размещены изображения предметов). Наглядной опорой начинают служить заместители реальных предметов. Отсутствующие в данный момент предметы педагог представляет моделями геометрических фигур. Например, дети угадывают, кого в трамвае было больше; мальчиков или девочек, если мальчики обозначены большими треугольниками, а девочки - маленькими. Опыт показывает, что дети легко при­нимают такую абстрактную наглядность. Наглядность активизирует детей и служит опорой произвольной памяти, поэтому в отдельных случаях модели­руются явления, не имеющие наглядной формы. Например, дни недели условно обозначают разноцветными фишками. Это помогает детям установить порядковые отношения между днями неделя и запомнить их последовательность. Одним из условий успешного овладения математическими навыками является обеспечение взаимодействия педагогов дошкольного учреждения и родителей. Семья в большей степени, чем другие социальные институты, способна внести неоценимый вклад в обогащение познавательной сферы ребенка.(29, с. 68)

В своей работе, описанной в главе 1 нами описаны условия созданные в МБДОУ "Василек" для успешного развития математических знаний у детей старшего дошкольного возраста, прежде всего это разнообразная совместная деятельность воспитателя и детей, направленная на решение логических и математических задач, а так же различные наглядные пособия, включенные в уголок занимательной математики (игры, пособия, модели и т.д.).

Выводы по I главе

Изучение психолого-педагогической литературы, практики работы дошкольных учреждений убеждают в необходимости дальнейшего исследования вопроса организации процесса обучения математике детей дошкольного возраста, разработки и внедрения инновационных технологий. Область математических представлений, которая складывается у детей до школы, становится фундаментом для дальнейшего математического образования и влияет на его успешность. Развитие познавательного интереса к математике формирует у старших дошкольников познавательные процессы в целом.

В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые. В формировании математического интереса ведущим принято считать практический метод, включающий в себя: игры, элементарные опыты, моделирование, решение проблемных ситуаций. Сущность данного метода заключается в организации практической деятельности детей, направленной на усвоение определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т.д.) на базе которых возникают математические представления.

Для успешного математического образования дошкольников необходимо создание определенных условий, благодаря которым облегчается процесс усвоения математических знаний. В череде необходимых условий на первом месте стоит создание предметно-развивающей среды, организация уголка занимательной математики в группах детского сада, в который включены проблемные математические задачи, задания по математическому моделированию, описание экспериментов и т.д. Исходя из опыта работы в дошкольном учреждении нами выяснено, что ведущим условием развития познавательного интереса к математике в старшем дошкольном возрасте является целостная система, состоящая из задач и адекватного образовательного содержания, соответствующих возрасту детей и их интеллектуальным способностям.

Глава II. Проект работы по математическому развитию детей старшего дошкольного возраста

2.1 Изучение опыта работы воспитателей МБДОУ по математическому развитию детей старшего дошкольного возраста

Ребенок старшего дошкольного возраста отличается активностью в познании окружающего, проявляет интерес к математике. У него начинают складываться представления о свойствах предметов: величине, форме, цвете, составе, количестве; о действиях, которые можно производить с ними, - уменьшить, увеличить, разделить, пересчитать, измерить.

Накопленный чувственный и интеллектуальный опыт ребенка может быть объемным, но неупорядоченным, неорганизованным. Направить его в нужное русло, сформировать частные и обобщенные способы познания и необходимо в процессе обучения и познавательного общения. Все это служит фундаментом дальнейшего математического образования детей.

В нашей работе нашла отражение идея Л. С. Выготского о том, что только то обучение является хорошим, которое "забегает" вперед развития ребенка. Руководствуясь идеей развивающего обучения, мы стремились ориентироваться не на достигнутый детьми уровень развития, а чуть забегать вперед, чтобы дети могли приложить некоторые усилия для овладения математическим материалом.(18, с.46)

Воспитателями МБДОУ была разработана рабочая программа "Путешествие в мир математики" по формированию у дошкольников элементарных математических представлений на основе основной Программы дошкольного образования Н.Е. Веракса "От рождения до школы" и дополнительных Программ Л.Г. Петерсона "Ступеньки", Е.В. Гертнера "Гимнастика ума".

Центральное место в обучении детей, развития у них познавательного интереса к математике, занимает содержание, направленное на формирование понятия "число". Это одно из основных понятий, с которого начинается познание ребенком математики. Материал, включенный в содержание и направленный на развитие у детей понятия числа, включает три этапа.

1-й этап - дочисловая деятельность (3-4,5 года). На данном этапе работы решаются следующие задачи: выделять величину предмета и определять ее словом (длинный - короткий, большой - маленький, тяжелый - легкий и т. д.); сравнивать величину, пользуясь приемами наложения и приложения, и результаты сравнения определять словами (выше - ниже, больше - меньше, равные по количеству и т. д); раскладывать (сериировать) предметы по возрастающей и убывающей величине; группировать (классифицировать) предметы по величине.

2-й этап - введение ребенка в мир числа на основе выполнения действий с величинами (4,5-5,5 лет). На данном этапе дети учатся сравнивать величину предметов с помощью "мерки", равной одному из сравниваемых предметов; уравнивать величину предметов, пользуясь условной меркой, определяя результат измерения в предметной форме (мерка уложилась по длине ленты столько раз, сколько у нас кругов), а затем в словесной форме с помощью слов-числительных ("Мерка уложилась пять раз"); понимать количественное и порядковое значение числа; понимать независимость величины (непрерывной и дискретной) от других признаков: цвета, пространственного расположения и др.; измерять объем жидких и сыпучих тел, массу (вес) предметов; понимать принцип сохранения величины (протяженности, количества, объема, массы); раскладывать и группировать предметы по величине.

3-й этап -- совершенствование понятия о числе (5,5-6,5 лет). Данный этап работы включает решение следующих задач: научить понимать отношение между числами (5 меньше 6 на 1; 8 больше 7 на 1); производить счет по разным основаниям (например, дана полоска, разделенная на восемь квадратов; если производить счет по одному квадрату, получится число 8, а если по два, получится число 4); понимать функциональную зависимость между величиной, меркой и числом (при измерении одной и той же величины разными мерками получаются разные числа, и наоборот); освоить принцип сохранения величины (количество, протяженность, объем и др.).

В дальнейшем старшие дошкольники (6,5-7 лет) осваивают выполнение арифметических действий (сложение и вычитание) с числами. Лучшим спосо­бом осознанного их усвоения является решение арифметических задач, а затем и решение примеров.(18, с.47)

Программа включает разделы "Геометрические фигуры", "Пространственные отношения" с учетом современных исследований (Н. Г. Белоус, Л. А. Венгер, В. Г. Житомирский, Т. В. Лаврентьева, 3. А. Михайлова, Р. Л. Непомнящая, Л. Н. Шеврин и др.). Такое содержание, на наш взгляд, создает целостную систему математического обучения дошкольников, на основе которой будет осуществляться подготовка к усвоению школьной математики.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.