Использование моделирования в математическом развитии детей дошкольного возраста

Использование замещения предметов на символы и знаки, объемных моделей, макетов, работы с планом и схемой в педагогической практике. Задачи использования метода моделирования. Виды моделей и возможности их использования в дошкольном образовании.

Рубрика Педагогика
Вид контрольная работа
Язык русский
Дата добавления 31.03.2015
Размер файла 51,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Одна из важных задач воспитания дошкольника - это развитие интеллекта, формирование мыслительных умений и способностей, которые легко позволяют осваивать новое. Дошкольный возраст является фундаментом знаний для успешного обучения детей в школе.

Именно до 7 лет человек проходит огромный путь развития. Очень важно на этом этапе сформировать у воспитанников базу знаний необходимую для дальнейшего обучения в школе. Большой интерес у детей старшего дошкольного возраста вызывают задачи на смекалку, головоломки, занимательные игры. В таких играх формируются важные качества личности ребенка самостоятельность, наблюдательность, находчивость, сообразительность вырабатывается усидчивость, развиваются конструктивные способности.

Одним из приоритетных методов развития математических способностей детей старшего дошкольного возраста является метод моделирования. Под математическим моделированием поднимется организация педагогом ориентированного процесса создания ребенком моделей посредством простейших плоскостных и пространственных математических абстракций.

Понятие и сущность метода моделирования

Моделирование -- это одно из средств познания действительности. Модель используется для изучения любых объектов, явлений, процессов, для решения различных задач и получения новой информации.

Моделирование - это замена оригинала моделью (мысленно или реально) наиболее удобна для работы и наиболее доступна.

С помощью модели можно дать представления об оригинале, с ее же помощью можно истолковать оригинал. Модель выполняет функции замещения, представления, интерпретации и исследования.

Известно, что ребенок дошкольного возраста отличается удивительной активностью в познании окружающего и интерес к математике у него проявляется довольно рано. Постепенно складываются представления о предметах, их назначении и свойствах, о величине и численности, форме и увеличить, разделить, пересчитать, измерить. Кругозор ребенка формируется сначала на основе того, что попалось на глаза, привлекло внимание, удалось увидеть у взрослых, а так же того, с чем удалось соприкоснуться самому, по - экспериментировать. Исходя из этого, одним из ведущих методов развития математических способностей является моделирование.

Работая с воспитанниками старшего дошкольного возраста на протяжении нескольких лет, отмечается, что при овладении необходимыми навыками и умениями воспитанники затрудняются в составлении плана, в моделировании простейших форм, схем, в конструировании новых моделей.

Для дальнейшей работы с воспитанниками нужно определить цель:

- сформировать навыки самостоятельного построения моделей, схем, планов.

Ожидаемый результат: ребенок самостоятельно действует при построении новых моделей, схем, планов, применяет технологию моделирования при решении интеллектуальных задач.

Чтобы овладеть навыками моделирования, необходимо чтобы дети принимали в изготовлении моделей непосредственное и активное участие.

В работе используем такие формы и методы:

- ситуации;

- экспериментирование;

- проектная деятельность;

- мастерская;

- минутки моделирования, в основу которых положен метод

моделирования.

Минутки моделирования -- это самостоятельное и совместное изготовление простых моделей игр, пособий для детей, а также плоскостных и объемных моделей.

Активно используем также замещение предметов на символы и знаки, объемные модели, макеты, работа с планом и схемой.

Использование метода моделирования помогает решать комплекс задач:

- развитие творческого воображения детей;

- развитие форм образного мышления;

- применение ранее полученных знаний в решении практических задач;

- закрепление математических знаний, полученных детьми ранее;

- создание условий для сотрудничества друг с другом;

- активизация математического словаря детей;

- развитие мелкой моторики руки;

- получение новых представлений и навыков в процессе работы;

- наиболее глубокое понимание детьми принципов работы и строения оригиналов с помощью моделей.

Модель дает не просто возможность создать наглядный образ моделируемого объекта, она позволяет создать образ его наиболее существенных свойств, отраженных в модели. Все остальные несущественные свойства при разработке модели отбрасываются. Таким образом, у детей создается обобщенный наглядный образ моделируемого объекта.

Являясь общим приемом изучения действительности, моделирование позволяет эффективно формировать такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления. Непринужденно дети обретают такие качества как любознательность, активность, приобретают необходимые умения и навыки.

Таким образом, можно считать, что данный подход будет обеспечивать формирование и развитие математического мышления ребенка.

Моделирование - наглядно-практический метод обучения. Модель представляет собой обобщенный образ существенных свойств моделируемого объекта (план комнаты, географическая карта, глобус и т.д.)

Метод моделирования, разработанный Д.Б.Элькониным, Л.А.Венгером, Н.А.Ветлугиной, Н.Н.Подьяковым, заключается в том, что мышление ребенка развивают с помощью специальных схем, моделей, которые в наглядной и доступной для него форме воспроизводят скрытые свойства и связи того или иного объекта.

В основе метода моделирования лежит принцип замещения: реальный предмет ребенок замещает другим предметом, его изображением, каким-либо условным знаком.

Первоначально способность к замещению формируется у детей в игре (камешек становится конфеткой, песок - кашкой для куклы, а он сам - папой, шофером, космонавтом). Опыт замещения накапливается также при освоении речи, в изобразительной деятельности.

В дошкольной педагогике разработаны модели для обучения детей звуковому анализу слов (Л.Е.Журова), конструированию (Л.А.Парамонова), для формирования природоведческих знаний (Н.И.Ветрова, Е.Ф.Терентьева), представлений о труде взрослых (В.И.Логинова, Н.М.Крылова) и др.

При этом учитывается основное назначение моделей - облегчить ребенку познание, открыть доступ к скрытым, непосредственно не воспринимаемым свойствам, качествам вещей, их связям.

Эти скрытые свойства и связи весьма существенны для познаваемого объекта. В результате знания ребенка поднимаются на более высокий уровень обобщения, приближаются к понятиям.

Виды моделей, специфика и возможности их использования в дошкольном образовании

дошкольный образование модель педагогический

В дошкольных образовательных учреждениях используются следующие виды моделей:

Предметные модели, в которых воспроизводятся конструктивные особенности, пропорции, взаимосвязь частей каких-либо объектов: технические игрушки, в которых отражен принцип устройства механизма; модели построек, аквариум, глобус и др.

Они воспроизводят структуру и особенности, внешние и внутренние взаимосвязи реально существующих объектов и явлений, например заводная игрушечная рыбка, поможет сформировать у детей представление о внешнем виде и движении рыбы.

Предметно-схематические модели: модель величины (большой, маленький), модель численности групп (много, мало), модель формы.

Распространенными предметно-схематическими моделями являются чертежи, выкройки. Например, педагог предлагает сделать костюмы для кукол и в процессе работы формирует у детей представление о мерке, о моделировании одежды.

Графические модели: календарь наблюдений за ростом и развитием растений, календарь длительности светового дня, модель «Термометр».

«Необходимо учитывать, что использование моделей возможно при условии сформированности у дошкольников умений анализировать, сравнивать, обобщать, абстрагироваться от несущественных признаков при познании предмета. Освоение модели сопряжено с активными познавательными обследовательскими действиями, со способностью к замещению предметов посредством условных знаков, символов».
Моделирование - приблизительное воспроизведение каких либо объектов которые по своей сложности и величине не поддаются или плохо поддаются исследованию и изготовлению в натуре. Моделирование, проводимое в процессе обучения и воспитания детей, служит разви-тию их способностей, углублению знаний по основам наук и по технологии обработки материалов. Оно способствует связи теории с практикой, формированию практических навыков, является средством расширения политехнического кругозора ребят. Объекты, выбираемые для моделирования, должны отражать в своей тематике достижения науки и техники, иметь общественно полезную направленность, соответствовать возрастным особенностям, интересам и уровню подготовки детей. При анализе содержания литературного произведения целесообразно обратиться к предложенной О.М.Дьяченко методике обучения детей моделированию сказки. Содержание сказки делят на логически завершенные части, к каждой из которых на полоске бумаги дети схематично рисуют картинку (пиктограмма).

В результате получается апперцептивная схема - полное представление о содержании произведения. Опираясь на нее, дошкольники успешнее пересказывают сказку или рассказ, показывают ее на фланелеграфе и т.п.

Уроки моделирования

Начиная с выполнения заданий, требующих создания чертежа конструкции по замыслу, и до самого конца обучения на занятиях организовывалась совместно-распределенная деятельность детей. Один ребенок ("архитектор") выполнял чертеж по собственному замыслу, а другой по нему строил. При этом "архитектор" знал, что должен сделать его таким образом, чтобы другой ("строитель") мог в нем разобраться и правильно воспроизвести в материале. Третий ребенок ("контролер") проверял соответствие постройки чертежу и выявлял ошибки в чертеже или в процессе его реализации. Ошибки исправлялись совместно. Ролевые функции не закреплялись за каждым ребенком, а постоянно менялись.

Работа строится исходя из принципа дифференциации, взрослый работает с 2-3 детьми. Уроки моделирования заранее планируются и заносятся в перспективный план на каждого ребенка. Сначала с детьми проводится предварительная беседа, где должны решаться задачи мотивации и первичного ознакомления с предстоящей работой: оговаривается характер оригинала, модели, оборудование и материалы, название модели, задачи изготовления модели.

Деловое общение происходит как в процессе работы, так и при ее окончании -- в процессе заключительной беседы, где оговариваются результаты работы, практический выход (успех и неудачи в работе), интересно ли было работать, достигли ли успеха в создании модели. Далее с готовыми моделями можно простраивать систему занятий.

В результате такой работы появляются математические игры, пособия, модели, которые можно использовать в игротеках (как в ДОУ, так и дома - игротека для родителей), при создании коллекций в ДОУ, на математических и познавательных занятиях.

Планируется также и работа е родителями, которым даются задания по изготовлению несложных моделей (родители дома вместе с ребенком создают модель). Таким образом, осуществляется взаимосвязь трех сторон: педагог, родитель и ребенок.

1. При знакомстве с моделями необходимо указать, что это не просто схема или что-то еще, а приближенное описание оригиналов, как нечто такое, что специально создано для решения поставленной задачи и что может быть заменено наиболее точным, удобным описанием;

2. Объяснить детям, что некоторые явления или процессы (например, время), которые мы не видим и не можем потрогать руками, можно изучить только с помощью их моделей;

3. Модели можно строить по-разному. Можно построить модель в виде учебной карты, схемы, таблицы... Это будут плоскостные модели. Модели могут быть и объемными;

4. Актуально детьми будет осознаваться лишь то содержание воспринимаемого, которое будет выступать как предмет, на который были направлены действия детей;

5. При работе с моделью должно быть совпадение двух типов действий: действия, вызываемые наглядным пособием, и действия, которые ребенок должен осуществлять для решения поставленной задачи. Только при совпадении. Этих действий пособие будет обладать развивающим характером.

6. С помощью моделей мы решаем и такую задачу, как упорядочение имеющегося у детей опыта, но упорядочить можно лишь тот опыт, который есть у детей, поэтому моделирование выполняется на знакомом детям материале, с опорой на знания, полученные ими ранее. Нельзя использовать пособия лишь для того, чтобы насытить уроки наглядностью;

7. Перед работой с моделью можно провести предварительную, вводную, ознакомительную беседу, чтобы познакомить детей с оригиналом, постепенно подвести к работе с моделью;

8. Перед тем как проводить занятия с моделью, можно рекомендовать провести 1-2 занятия без моделей.

Исходя из данных принципов работы можно предложить ряд занятий, направленных на освоение моделирования в процессе изучения математике.

Тема: Использование наглядной плоскостной модели "От секунды до года"

Цель применения:

- дать детям представления о временных отношениях, их взаимосвязи (секунда, минута, час, сутки, неделя, месяц, год);

- закрепить представления детей об отношении целого и части, научить обозначать в пространстве отношения во времени; совершенствовать счет.

Структура модели: модель плоскостная представляет собой схему, где отображены связи между временными компонентами.

Описание работы с моделью: знакомить детей с моделью необходимо постепенно. Сначала работу нужно начинать с ознакомления с самими терминами (секунда, минута, час, сутки, неделя, месяц, год). Что по временным меркам больше, а что меньше, что во что входит.

Далее даются более четкие, узкие представления. Например, секунда - это почти самая маленькая временная единица, но если их 60, то они будут составлять большую временную единицу - минуту, и таким образом проводить работу до тех пор, пока дети не усвоят все термины, все взаимосвязи временных отношений, начиная от секунды и заканчивая годом.

Тема: Наглядная плоскостная модель "Домик, где знаки и числа живут"

Цель применения:

- закрепить умения детей составлять числа из двух меньших; складывать и вычитать числа;

- дать детям представления о неизменности числа, величины при условии различий в суммировании;

- учить или закреплять умение сравнивать числа (больше, меньше, равно).

Структура модели: модель представляет собой 4-этажный домик, на каждом этаже расположено разное количество окошек, где будут жить знаки и цифры, но так как домик волшебный, то поселяться в домик знаки и цифры могут только с помощью детей. Домик вырезается из плотного картона и художественно оформляется. С обратной стороны домика этажи закрываются специальными кармашками, таким образом, чтобы можно было с лицевой стороны вставлять карточки со знаками и цифрами.

Из плотной бумаги вырезаются карточки с цифрами и знаками.

Окна в домике располагаются следующим образом:

Описание работы с моделью: первый и второй этажи будут использоваться для решения задачи, которая состоит в том, чтобы дать детям представления о неизменности числа, величины при условии различий в суммировании. Например: 4 = 1 + 1 + 1 + 1; 4 = 2 + 2.

Третий этаж будет использоваться, чтобы научить детей (или закрепить умение) составлять числа из двух меньших, а также вычитать числа. Например, 3 + 5 = 8 или 7 - 4 = 3 и т. п.

Последний, четвертый, этаж будет использоваться, чтобы научить детей (или закрепить умение) сравнивать числа между собой, с помощью знаков "меньше", "больше" или "равно".

Модель можно использовать в любых видах деятельности: на занятиях, в свободной деятельности детей, при индивидуальной работе с детьми и т. д.

Тема: Применение наглядной плоскостной модели "Солнечная система"

Для детей старшей и подготовительной группы.

Цели применения:

- дать (или закрепить) представления детей о геометрических телах и фигурах (сравнивая круг, шар с другими геометрическими телами и фигурами);

- научить детей определять и отражать в речи основания группировки, классификации, связи и зависимости полученной группы (солнечная система);

- научить (или закрепить) умение детей определять последовательность ряда предметов по размеру;

- развивать понимание пространственных отношений, определять местонахождение одних объектов относительно других;

- совершенствовать порядковый и количественный счет;

- закрепить умение пользоваться условной меркой для измерения расстояний;

- закрепить умение решать арифметические задачи.

Структура модели: модель представляет собой наглядную плоскостную схему, на которой изображена солнечная система. В дополнение к схеме имеется специальная карточка, которая предназначается для взрослого, где запечатлена информация о солнечной системе (небольшой рассказ о солнечной системе, размеры планет). К модели прилагается комплекс смоделированных планет, их можно вырезать из картона и художественно оформить, при этом необходимо соблюдать пропорциональность их размеров друг к другу.

Описание работы с моделью: с целью закрепления представлений детей о геометрических телах и фигурах необходимо взять круг или шар (любая из планет солнечной системы) и другие геометрические фигуры или тела с целью их сравнения. Можно отметить наличие (или отсутствие) углов, сторон и сделать соответствующие выводы.

Для решения задачи, связанной с научением детей определять и отражать в речи основания группировки, классификации, связи и зависимости группы (солнечная система), необходимо объяснить детям, что все планеты солнечной системы и само солнце, конечно, -- это одна целая группа. А группой, системой она называется потому, что есть у этих планет и звезды Солнце нечто общее, что их всех вместе связывает. Что именно, попробовать выявить вместе с детьми. Возможный вывод: "У нашей звезды Солнце есть своя семья. В нее входит 9 планет, которые вращаются вокруг Солнца, то есть все эти 10 космических тел объединены в одну группу потому, что они всегда вместе, это их и связывает".

Можно задать следующие вопросы (которые могут быть разнообразными, в зависимости от решаемых задач) и если дети затрудняются на них ответить, то попробовать найти правильный ответ всем вместе:

- как вы думаете, чем планеты отличаются от звезд? (звезды состоит из раскаленных газов, а планеты -- из твёрдых жидких частиц и газов).

- какие вы знаете планеты солнечной системы?

- что вы можете о них рассказать? и др.

Чтобы закрепить умение детей определять последовательность ряда предметов по размеру, необходимо воспользоваться вырезанными дополнительно планетами, которые в точности дублируют планеты солнечной системы, изображенные на плоскостной модели.

Пусть дети раскладывают их в ряд по мере увеличения размера планет или, наоборот, от самой большой планеты к самой маленькой.

Для развития пространственных отношений детей можно использовать следующие приемы: дать детям задание определить местонахождение одной планеты относительно другой, ориентируясь по схеме например, планета Земля находится левее планеты Юпитер и т. п.

Можно использовать условную мерку, например любую веревочку, линейку и т. д для измерения расстояний между планетами и звездой, между планетами и т. д.

Планеты можно пересчитывать как в прямом, так и в обратном порядке.

Используя схему и отдельно вырезанные планеты можно составлять разного вида задачи и решать их. Например, в солнечной системе крупных планет только 3, включая звезду, сколько тогда маленьких и т. п.

Тема: Использование наглядной плоскостной модели "Счетный торт"

Цель применения:

- учить детей решать арифметические задачи и развивать познавательные способности ребенка;

- учить выделять математические отношения между величинами, ориентироваться в них.

Структура модели, модель включает в себя:

1. Пять наборов "сладких счетных частей", каждый из которых разделен на части (как на равные, так и на разные части). Каждый счетный торт в виде круга, имеет свой цвет, он вырезается из цветного картона, части также разрезаются.

Счетные торты, поделенные на меньшее количество частей, можно использовать в начале работы е моделью или в работе со старшей группой, в подготовительной группе в процессе работы с моделью как усложнение задания нужно использовать счетные торты, разделенные на большее количество частей.

2. Овалы, вырезанные из белого картона, которые обозначают "целое" (2 штуки) и "часть". В игровой ситуации они будут называться тарелочками, куда дети будут раскладывать куски счетного

3. Стрелки, символизирующие "вычитаемое" (2 штуки), "слагаемое" (2 штуки), "разность" (1 штука), "сумму" (1 штука); вырезаются из плотного картона и в процессе составления арифметических задач подставляются к соответствующим символам.

4. Знаки -, +, =, которые вырезаются из плотного картона.

5. Три листа плотного белого картона, на каждом из которых обозначено время: "было", "есть", "будет",

Описание работы с моделью: в арифметической задаче математические отношения можно рассматривать как "целое" и "часть".

Целое - это то, что было сначала и из чего вычли какую-то часть, получив в результате тоже часть, а также то, что получается, когда складывают две части. Так, если к 5 кускам (частям) торта прибавить еще 2, то 5 и 2 - это части, а то, что получается в результате их сложения - это целое, а 1 (вычитаемое) и 2 (разность) - части.

Сначала необходимо дать детям представления о понятии "целое" и "часть".

Положите перед детьми на тарелочку обозначающую "целое", счетный торт (все его части), скажите, что торт целый мама испекла и что мы его кладем строго на тарелочку, которая обозначает "целое". Теперь мы разрежем торт на две части, каждую из них назовем "часть". Объясните, что теперь, когда целое (целый торт) разделили на части (на 2 кусочка) то целого теперь нет, a есть только 2 части. Которые не могут оставаться на чужой тарелочке и их необходимо переложить на свои места - тарелочки, обозначающие "часть". Одну часть на одну тарелку, другую часть на другую тарелку. Затем соедините 2 куска опять вместе и покажите, что опять получилось целое. Таким образом, мы продемонстрировали, что соединение частей дает целое, а вычитание части из целого дает часть.

Проделав описанные выше упражнения, можно переходить непосредственно к математическим задачам. Например, мама испекла на Катин день рождения целый торт. Когда пришли гости, Катя разрезала торт на 6 кусков. И разложила их каждому в тарелку. Задание: найти целое и части, используя модель. Задание посложнее: торт разрезан на 6 кусков - один кусок Катя положила в тарелку Даше, другой - Маше, и еще один - себе. Нам нужно узнать, сколько частей осталось. В задаче необходимо выделить условие и вопрос. Условие -- это "было 6 кусков, раздали 3" вопрос - "сколько осталось кусков торта?".

Теперь представим пример, наглядно, используя модель. Сначала торт был целый, кладем его на тарелочку, обозначающую "целое". Потом Катя разрезала торт и куски раздала по тарелочкам, на трех тарелках, обозначающих "часть", раскладываем куски; но оставшиеся кусочки теперь тоже являются частью, перекладываем их на такую же тарелку. Затем следует записать условие и решение задачи цифрами.

Аналогично проводить процедуру сложения чисел (частей, образуя целое).

Как усложнение в подготовительной группе можно познакомить детей с такими математически понятиями, как "вычитаемое" и "разность", "слагаемое" и "сумма"; примеры решаются так же, только теперь при решении подставляются стрелки, обозначающие необходимый символ.

Модель позволяет использовать специальные "поля времени", что помогает решить задачу научить детей ориентироваться во времени и во временной последовательности действий.

Работа проводится следующим образом. Задаются условия задачи и вопрос. Например, было 5 кусков торта, мама испекла еще 3, сколько всего кусков торта? На временное поле "было" кладем тарелку, обозначающую "целое", на которую кладем 5 кусков торта. Это то, что было. Но мама испекла к этим 5 кускам еще 3, значит, на временное поле "есть" кладем две тарелки, обозначающие "часть", на них 5 и 3 куска торта, к тарелкам подставляем стрелки, обозначающие соответствующие символы "слагаемое" и "слагаемое", и между ними знак "+". С детьми решается пример, находится ответ -- 8 кусков. На временное поле кладем тарелку, обозначающую "целое", на которую кладем 8 кусков и подставляем стрелку, обозначающую "сумму".

Аналогично можно решать любую задачу.

Тема: Создание наглядной объемной модели "песочные часы"

Цель применения: научить детей измерять время при помощи модели песочных часов; активно включаться в процесс экспериментирования.

Структура модели: модель объемная, трехмерная. Для создания модели требуются следующие материалы:

- пластиковые бутылки с узким горлышком (2 штуки);

- пластиковая прокладка, диаметр которой должен быть по диаметру горлышка бутылок (1 штука);

- клейкая лента;

- песок;

- клей.

Действия по изготовлению модели:

1. Вырезать из пластиковой бутылки донышко и горлышко, которые будут необходимы при изготовлении модели"

2. Соединить донышко и часть бутылки, где расположено горло; закрепить их. Должен получиться "стаканчик".

3. Затем стаканчики соединяются в области горлышек, между которыми закрепляется пластиковая прокладка с просверленным посередине небольшим отверстием. Чтобы закрепить горлышки между собой, необходимо воспользоваться клейкой лентой.

В итоге должна получиться модель песочных часов.

Чтобы можно было измерять время, необходимо открыть крышечку донца одной из бутылок и насыпать туда песка ровно столько, сколько его необходимо, чтобы за 1 минуту песок из одного отсека часов перешел в другой. Сделать это нужно путем экспериментирования.

Описание работы с моделью: с помощью модели песочных часов можно сначала провести познавательное ознакомительное занятие. Показать детям картинки с изображением разных песочных часов, потом продемонстрировать модель, рассказать о происхождения песочных часов, зачем они нужны, как ими пользоваться, как они работают. Затем вместе с детьми можно проводить эксперименты: например, эксперимент, доказывающий точность часов. После с детьми можно использовать модель при измерении времени.

Таким образом, моделирование является важным учебным средством и действием, с помощью которого можно осуществлять различные учебные и развивающие цели и задачи, где требуется материализация абстрактных понятий, рефлексия собственных учебных действий, выделение существенного и обобщение изучаемого материала, формирование представления о структуре, взаимосвязях и отношениях сложных явлений или процессов.

Заключение

Таким образом, исходя из всего выше написанного можно сделать следующие выводы: использование моделирования в развитии математических представлений дошкольников дает ощутимые положительные результаты, а именно:

- позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка;

- улучшает понимание ребенком структуры и взаимосвязи составных частей объекта или явления;

- повышает наблюдательность ребенка, дает ему возможность заметить особенности окружающего мира;

Все вышеперечисленное становится возможным прежде всего потому, что метод моделирования как нельзя лучше соответствует особенностям умственного развития дошкольника, и прежде всего наглядно-образному характеру его мышления.

Все формы использования моделирования, а именно: предметное моделирование, предметно-схематическое моделирование, новый, перспективный метод моделирования дают положительные результаты в практическом применении, активизируя познавательную деятельность детей.

Моделирование является одним из наиболее перспективных методов реализации умственного воспитания, поскольку мышление дошкольника отличается предметной образностью и наглядной конкретностью.

Метод моделирования открывает перед педагогом ряд дополнительных возможностей в умственном воспитании, в том числе и в развитии математических представлений дошкольников.

Предлагается использовать метод моделирования шире в практике дошкольного воспитания, активно применяя эту методику во всех направлениях дошкольного воспитания, поскольку данный метод дает наиболее ощутимые результаты.

Литература

1. Белкин А.С. Основы возрастной педагогики: Учебное пособие для студентов высш. пед. учебных заведений. -.: Изд. центр «Академия», 2005.

2. Козлова С.А., Куликова Т.А. Дошкольная педагогика. М.: НОРМА, 2000.

3. Игры и упражнения по развитию умственных способностей у детей дошкольного возраста /Л.А. Венгер, О.М.Дьяченко, Р.И. Говорова, Л.И. Цеханская; Сост. Л.А. Венгер, О.М. Дьяченко. М., 1989.

4. Фрейлах Н.И. Методика математического развития. М.: ИД «Форум»: ИНФРА-М, 2014.

5. Метлина Л.С. Математика в детском саду: Пособие. М.: Просвещение, 1994.

6. Белошистая А.В. Формирование и развитие математических способностей дошкольников. М.: 2003.

7. Михайлова З.А. Игровые занимательные задачи дошкольников. М., 2010.

8. Репина Г.А. Технологии математического моделирования с дошкольниками. /Современные направления/ Смоленск. 2004.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.