Методика применения электронного учебного пособия в изучении темы "Постоянный ток"

Обзор электронных учебных пособий: учебник. Лекция, видеоролик, документальные фильмы, интерактивные лабораторные работы, тесты. Группы цифровых образовательных ресурсов. Методика применения электронного учебного пособия в изучении различных тем.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 29.05.2015
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Костанайский социально-технический университет имени

академика З. Алдамжар

Дипломная работа

Методика применения электронного учебного пособия в изучении темы «Постоянный ток»

Ковальский Владимир Алексеевич

специальность 050110 - «Физика»

Костанай 2010

Содержание

  • Введение
  • 1. Обзор электронных учебных пособий
    • 1.1 Электронный учебник
    • 1.2 Электронная лекция (презентация)
    • 1.3 Обучающие видеоролики (анимация работы оборудования)
    • 1.4 Документальные фильмы
    • 1.5 Интерактивные лабораторные работы
    • 1.6 Виртуальные приборы для измерений физических величин
    • 1.7 Тесты
  • 2. Методики применения цифровых образовательных ресурсов в информационно - телекоммуникационном сопровождении системы образования
    • 2.1 Группы цифровых образовательных ресурсов
    • 2.2 Систематизация ЦОР
    • 2.3 Аппаратные средства мультимедиа системы
  • 3. Методика применения электронного учебного пособия в изучении темы
    • 3.1 Рекомендации по разработке предметного материала для электронного учебного пособия
    • 3.2 Лабораторные занятия по физике
    • 3.3 Краткая инструкция по работе с программой «Начала электроники»
    • 3.4 Авторские разработки
  • 4. Оценка результатов применения электронного учебного пособия
  • Заключение
  • Список использованной литературы

Введение

Быстрое развитие компьютерной техники и расширение её функциональных возможностей позволяет широко использовать компьютеры на всех этапах учебного процесса. Большие возможности содержатся в использовании компьютеров при обучении физики. Эффективность применения компьютеров в учебном процессе зависит от многих факторов, это и от "железа", и от качества используемых обучающих программ, и от методики обучения, применяемой учителем. Физика - наука экспериментальная, её всегда преподают, сопровождая демонстрационным экспериментом. Методика обучения физике всегда была сложнее методик преподавания других предметов. Использование компьютеров в обучении физики деформирует методику её преподавания как в сторону повышения эффективности обучения, так и в сторону облегчения работы учителя.

Для повышения наглядности обучения можно использовать компьютерную программу "Физика в картинках" НЦ "Физикон", компьютерную программу «Начала электроники» для проведения лабораторных работ.

Изложение нового материала, можно проводить с использованием одного компьютера, находящегося рядом с демонстрационным столом. Все физические эксперименты можно сопровождать использованием компьютерной программы " Физика в картинках ", в которой содержатся и проводятся демонстрации опытов с одновременно строящимися графиками, прилагаются пояснения происходящих процессов и явлений. Этот подход в компьютерной программе применяется ко всем основным темам школьного курса физики, что позволяет быстрее и качественнее объяснить учебный материал, повышает наглядность и доступность обучения, даёт возможность демонстрировать неоднократно явления и процессы как в дискретном, так и анимационном режимах. Просматривать изучаемые явления одновременно со строящимися графиками, менять в программе компьютера параметры факторов, создающих явления. Позволяет разносторонне демонстрировать ход опытов, а учащимся глубже осваивать учебный материал. Использование этой программы эффективно на этапах закрепления и повторения учебного материала как в индивидуальном, так и групповом обучении.

В плане закрепления изученного материала и при самостоятельной работе учащихся можно использовать программу "Уроки физики Кирилл и Мефодий" для 9 и 10 кл - электронные учебники от компании "Кирилл и Мефодий". Данная программа разбита на уроки в соответствии с основными темами курса физики. Имеет чёткое звуковое сопровождение. Хороший подбор контролирующих тестов. Заранее устанавливается нужная тема и после объяснения нового материала запускаются нужные озвученные пункты учебного материала. Это позволяет быстро и кратко ещё раз прокрутить изучаемую тему в сознании учащихся. Иногда для повторения применяют создание кроссвордов на пройденные темы по физике. Выполняют их в программе Microsoft Excel. Организационно проводят это в компьютерном кабинете, где учащиеся рассаживаются по 3-5 человек за компьютер. В группы учащиеся комплектуются самостоятельно. Процесс создания кроссвордов в группе учащихся проходит более интенсивно, более азартно и более интереснее, чем когда за компьютером сидит один учащийся. После создания кроссворда учащиеся обмениваются ими, предварительно записав их на дискеты, (желательно чтобы каждый учащийся наряду с тетрадью имел свою собственную дискету), а затем разгадывают кроссворды, при этом возникает в некотором роде соревновательный эффект: кто сложнее создаст кроссворд, а кто быстрее его разгадает.

Кроме того, можно использовать компьютеры для рисования общего вида графика какого- либо закона или явления с помощью приложения Paint, а более точное построение графиков проводят в программе Microsoft Excel, при этом графики получаются очень красивыми, что вызывает чувство удовлетворения работой. Построение графиков в программе Microsoft Excel позволяет пронаблюдать процесс изменения графика при изменении любых параметров протекающего процесса.

Контроль знаний, точнее, обратную связь устанавливают на основе самоконтроля и самооценки знаний учащихся: перед началом занятия получают информацию от каждого учащегося о степени выполнения им домашнего задания, в виде самооценки за каждую часть домашнего задания, а затем на занятии они подтверждают свои оценки, либо традиционным способом в кабинете физике, либо тестированием с использованием компьютеров, на основе собственных тестов, либо с помощью тестов программы "Уроки физики Кирилла и Мефодия". Также неплохо вписывается в структуру контроля знаний использование компьютерной программы "Репетитор по физике Кирилла и Мефодия". Во время тестирования учащиеся рассаживаются по одному человеку за компьютер. Остальные в это время заняты либо традиционным контролем, либо решением задач по данной теме.

Использование компьютера при решении физических задач.

Задачи решаются в компьютерном классе с помощью электронного задачника программы "Физика в картинках". НЦ " Физикон ".

Нужно сказать, что решение физических задач с помощью компьютера мало что даёт учебному процессу, так как в этом случае в основном используется компьютер как калькулятор и не более. Но, тем не менее, использование компьютера при решении физических задач может давать большой образовательный эффект при условии, если к седьмому классу учащиеся будут владеть программой Microsoft Excel, тогда на полную мощность можно использовать при решении задач функции, графики и мн. др. Кроме того, необходимо создать специальную подборку задач и методику их решения. электронный учебный интерактивный образовательный

Проблема: как должно осуществляться применение компьютерных программ на лабораторных работах по физике, чтобы его результатом было достижение учащимися высокого уровня усвоения знаний? В соответствии с указанной проблемой сформулирована тема исследования: «Методика применения электронного учебного пособия в изучении темы «Начала электроники»».

Объект исследования: процесс обучения физике.

Предмет исследования: содержание, методы, формы и средства проведения лабораторных занятий по предмету «Физика» в средней школе с использованием ресурсов и инструментов виртуальной образовательной среды.

Цель исследования: разработка методики использования компьютерных программ на лабораторных занятиях по предмету физике в средней общеобразовательной школе.

Гипотеза исследования: результативность учащихся физике (на примере электроники) применению средств ИКТ на лабораторных занятиях по предмету в средней общеобразовательной школе возрастет, если: при разработке лабораторных работ по физике применять компьютерные программы, позволяющие учащимся проявлять больше самостоятельности в работе с компонентами виртуальной среды (ресурсами, инструментами), используемыми на лабораторных занятиях.

В соответствии с целью и сформулированной гипотезой исследования были определены задачи исследования:

1. Выполнить анализ психолого-педагогической, методической и специальной литературы.

2. Разработать рекомендации по разработке предметного материала для электронного учебного пособия, как элемента методики применения компьютерных программ при проведении лабораторных занятий.

3. В опытно-экспериментальной работе проверить результативность предложенной методики обучения.

Методологическую основу исследования составили: основы системного подхода к анализу объекта исследования; концепции конструирования и проектирования педагогического процесса; основы методики и техники учебного физического эксперимента.

Методы исследования. Эмпирические: сбор научных фактов - анализ нормативных документов, изучение педагогического опыта учителей, анализ ИКТ-инфраструктуры учебной среды средней общеобразовательной школы, педагогические наблюдение и эксперимент в их различных формах; систематизация и обобщение педагогических фактов. Теоретические: анализ моделей обучения в психологии и дидактике, их прогностического и объясняющего потенциалов, противоречий в системе теоретического знания; выдвижение гипотез и теоретическое моделирование учебного процесса.

Научная новизна проведенного исследования состоит в следующем:

· разработаны рекомендации по разработке предметного материала для электронного учебного пособия, как элемента методики применения компьютерных программ при проведении лабораторных занятий.

Теоретическая значимость работы:

1. Выявлены направления и способы использования составляющих современной ИКТ-инфраструктуры предметной среды обучения на лабораторных занятиях по физике в средней школе.

2. Предложена обновленная модель построения лабораторных занятий по физике в средней школе, включающая:

* применение учащимися ресурсов и инструментов виртуальной среды при подготовке к лабораторному эксперименту;

* использование компьютерных технологий поддержки учебной деятельности при его выполнении.

Практическая значимость исследования:

Подготовлены дидактические и учебно-методические материалы для проведения лабораторных учебных занятий с использованием компьютерной программы «Начала электроники» по разделу «Электродинамика» (старшая школа).

1. Обзор электронных учебных пособий

Еще до появления новой информационной технологии эксперты, проведя множество экспериментов, выявили зависимость между методом усвоения материала и способностью восстановить полученные знания некоторое время спустя. Если материал был звуковым, то человек запоминал около 1\4 его объема. Если информация была представлена визуально - около 1\3. При комбинировании воздействия (зрительного и слухового) запоминание повышалось до половины, а если человек вовлекался в активные действия в процессе изучения, то усвояемость материала повышалось до 75%.

Итак, мультимедиа означает объединение нескольких способов подачи информации - текст, неподвижные изображения (рисунки и фотографии), движущиеся изображения (мультипликация и видео) и звук (цифровой и MIDI) - в интерактивный продукт.

Аудиоинформация включает в себя речь, музыку, звуковые эффекты. Наиболее важным вопросом при этом является информационный объем носителя. По сравнению с аудио видеоинформация представляется значительно большим количеством используемых элементов. Прежде всего, сюда входят элементы статического видеоряда, которые можно разделить на две группы: графика (рисованные изображения) и фото. К первой группе относятся различные рисунки, интерьеры, поверхности, символы в графическом режиме. Ко второй - фотографии и сканированные изображения.

Характерным отличием мультимедиа продуктов от других видов информационных ресурсов является заметно больший информационный объем, поэтому в настоящее время основным носителем этих продуктов является оптический диск CD-ROM стандартной емкостью 650 Мбайт. Для профессиональных применений существует ряд других устройств (CD-Worm, CD-Rewritaeble, DVD и др.), однако они имеют очень высокую стоимость.

Средства мультимедиа можно подразделить на 2 группы:

1. Программные средства

2. Аппаратные средства

К программным средствам мультимедиа относятся прикладные программы, позволяющие обрабатывать и/ или создавать графические, звуковые, видео файлы, анимации, презентации и т.д.

К аппаратным средствам мультимедиа относятся устройства компьютерной и организационной техники, позволяющие производить обработку и/или демонстрацию результатов мультимедиа технологии.

Средства ИКТ в системе образования:

Аппаратные средства:

· Компьютер - универсальное устройство обработки информации

· Принтер - позволяет фиксировать на бумаге информацию найденную и созданную учащимися или учителем для учащихся. Для многих школьных применений необходим или желателен цветной принтер.

· Проектор - радикально повышает:

Уровень наглядности в работе учителя,

· Возможность учащимся представлять результаты своей работы всему классу.

· Телекоммуникационный блок (для сельских школ - прежде всего, спутниковая связь) - дает доступ к российским и мировым информационным ресурсам, позволяет вести дистантное обучение, вести переписку с другими школами.

· Устройства для ввода текстовой информации и манипулирования экранными объектами - клавиатура и мышь (и разнообразные устройства аналогичного назначения), а также устройства рукописного ввода. Особую роль соответствующие устройства играют для учащихся с проблемами двигательного характера, например, с ДЦП.

· Устройства для записи (ввода) визуальной и звуковой информации (сканер, фотоаппарат, видеокамера, аудио и видео магнитофон) - дают возможность непосредственно включать в учебный процесс информационные образы окружающего мира

· Устройства регистрации данных (датчики с интерфейсами) - существенно расширяют класс физических, химических, биологических, экологических процессов, включаемых в образование при сокращении учебного времени, затрачиваемого на рутинную обработку данных

· Управляемые компьютером устройства - дают возможность учащимся различных уровней способностей освоить принципы и технологии автоматического управления

· Внутриклассная и внутришкольная сети - позволяют более эффективно использовать имеющиеся информационные, технические и временные (человеческие) ресурсы, обеспечивают общий доступ к глобальной информационной сети

· Аудио-видео средства обеспечивают эффективную коммуникативную среду для воспитательной работы и массовых мероприятий.

Программные средства:

· Общего назначения и связанные с аппаратными (драйверы и т. П.) - дают возможность работы со всеми видами информации (см. Выше).

· Источники информации - организованные информационные массивы - энциклопедии на КД, информационные сайты и поисковые системы Интернета, в том числе - специализированные для образовательных применений.

· Виртуальные конструкторы - позволяют создавать наглядные и символические модели математической и физической реальности и проводить эксперименты с этими моделями.

· Тренажеры - позволяют отрабатывать автоматические навыки работы с информационными объектами - ввода текста, оперирования с графическими объектами на экране и пр., письменной и устной коммуникации в языковой среде.

· Тестовые среды - позволяют конструировать и применять автоматизированные испытания, в которых учащийся полностью или частично получает задание через компьютер и результат выполнения задания также полностью или частично оценивается компьютером.

· Комплексные обучающие пакеты (электронные учебники) - сочетания программных средств перечисленных выше видов - в наибольшей степени автоматизирующие учебный процесс в его традиционных формах, наиболее трудоемкие в создании (при достижении разумного качества и уровня полезности), наиболее ограничивающие самостоятельность учителя и учащегося.

· Информационные системы управления - обеспечивают прохождение информационных потоков между всеми участниками образовательного процесса - учащимися, учителями, администрацией, родителями, общественностью.

· Экспертные системы - программная система, использующая знания специалиста-эксперта для эффективного решения задач в какой-либо предметной области.

1.1 Электронный учебник

Электронный учебник должен максимально облегчить понимание и запоминание (причем активное, а не пассивное) наиболее существенных понятий, утверждений и примеров, вовлекая в процесс обучения иные, нежели обычный учебник, возможности человеческого мозга, в частности, слуховую и эмоциональную память, а также используя компьютерные объяснения. Текстовая составляющая должна быть ограничена.

Пример 1: электронные учебники в формате CHM (расширение файла в формате Compressed HTML Help).

Такие учебники снабжены удобной навигацией по страницам, индексом, полнотекстовым поиском и возможностью добавлять любимые страницы в избранное. На страницах учебника располагается текст, рисунки и видеоролики (рисунок 1).

Рисунок 1. Учебник по использованию системы Windows.

Пример 2: Электронный учебник по физике "Открытая физика 2.6" от компании Физикон.

Учебник содержит теоретический раздел, который насыщен рисунками и анимацией физических процессов, справочный раздел, в котором сведены все определения, константы, физические зависимости, размерности различных физических величин. В учебник интегрированы модели для проведения компьютерного эксперимента, при этом обучающийся имеет возможность изменять параметры модели (массу тел, скорость, коэффициент трения и пр.) и сразу оценивать результат компьютерного эксперимента.

Виртуальные лабораторные работы позволяют более подробно изучить физические процессы, провести численные эксперименты с различными параметрами модели, найти физические зависимости. В электронный учебник интегрированы тесты и задачи для контроля знаний обучающихся, а также приведены примеры решения задач (рисунок 2).

Рисунок 2.Теоретическая часть.

Рекомендации по созданию электронного учебника О.В. Зимина

Основные понятия. Многие понятия, связанные с электронным учебником, существенно изменялись в течение последних двадцати лет. Авторам данного документа неоднократно приходилось наблюдать, как в дискуссиях об ЭУ одни участники, исходя из устаревших представлений, выдвигали и отстаивали тезисы, давно ставшие очевидными для других. В практическом плане устаревшие концепции часто приводят к созданию электронных продуктов, выдаваемых за ЭУ, но на самом деле бесполезных ровно постольку, поскольку они ЭУ не являются. Поэтому представляется целесообразным начать изложение с уточнения основных понятий, относящихся к электронным учебником.

Электронное издание (ЭИ) -- это совокупность графической, текстовой, цифровой, речевой, музыкальной, видео-, фото- и другой информации, а также печатной документации пользователя. Электронное издание может быть исполнено на любом электронном носителе -- магнитном (магнитная лента, магнитный диск и др.), оптическом (CD-ROM, DVD, CD-R, CD-I, CD+ и др.), а также опубликовано в электронной компьютерной сети [3, Приложение 2].

Учебное электронное издание (УЭИ) должно содержать систематизированный материал по соответствующей научно-практической области знаний, обеспечивать творческое и активное овладение учащемися и учащимися знаниями, умениями и навыками в этой области. УЭИ должно отличаться высоким уровнем исполнения и художественного оформления, полнотой информации, качеством методического инструментария, качеством технического исполнения, наглядностью, логичностью и последовательностью изложения [1].

Учебник (У)-- учебное издание, содержащее систематическое изложение учебной дисциплины или ее раздела, части, соответствующее государственному стандарту и учебной программе и официально утвержденное в качестве данного вида издания [2].

Электронный учебник (ЭУ) -- основное УЭИ, созданное на высоком научном и методическом уровне, полностью соответствующее федеральной составляющей дисциплины Государственного образовательного стандарта специальностей и направлений, определяемой дидактическими единицами стандарта и программой [2].

Учебное пособие (УП) -- это издание, частично или полностью заменяющее или дополняющее учебник и официально утвержденное в качестве данного вида издания [2].

Электронное учебное пособие (ЭУП) -- это электронное издание, частично или полностью заменяющее или дополняющее учебник и официально утвержденное в качестве данного вида издания [2].

Гипертекст -- это текст, представленный в электронной форме и снабженный разветвленной системой связей, позволяющей мгновенно переходить от одного его фрагмента к другому в соответствии с некоторой иерархией фрагментов .

Интеллектуальное ядро (ИЯ) -- специальный комплекс программ, реализующих математические операции в численной и символьной формах.

Компьютерное объяснение -- объяснение, использующее наглядность, индуктивные умозаключения и формирование понятий путем ответов на вопросы типа “да” и “нет”.

Компьютерное решение -- решение таким методом, который, являясь наиболее простым и естественным, требует столь громоздких вычислений и преобразований, что без компьютера не применяется.

Визуализация -- представление в наглядной форме с помощью рисунков, графиков и анимации.

Характеристика электронного учебника

Реформа современного образования может состояться лишь при условии создания таких компьютерных пакетов (электронных учебников, пособий, тренажеров, тестеров и проч.), наличие которых обеспечит одну и ту же компьютерную среду в специализированной аудитории на практических занятиях, в компьютерном классе учебного заведения или общежитии, оборудованном для самостоятельной работы учащихся, а также дома на персональном компьютере .

Основываясь на официальных определениях электронного издания (ЭИ), учебного электронного издания (УЭИ) и электронного учебника (ЭУ), необходимо расширить и конкретизировать понятие ЭУ.

Электронный учебник -- новый жанр учебной литературы

Электронный учебник (даже самый лучший) не может и не должен заменять книгу. Так же как экранизация литературного произведения принадлежит к иному жанру, так и электронный учебник принадлежит к совершенно новому жанру произведений учебного назначения. И так же как просмотр фильма не заменяет чтения книги, по которой он был поставлен, так и наличие электронного учебника не только не должно заменять чтения и изучения обычного учебника (во всех случаях мы подразумеваем лучшие образцы любого жанра), а напротив, побуждать учащегося взяться за книгу. Именно поэтому для создания электронного учебника недостаточно взять хороший учебник, снабдить его навигацией (создать гипертексты) и богатым иллюстративным материалом (включая мультимедийные средства) и воплотить на экране компьютера. Электронный учебник не должен превращаться ни в текст с картинками, ни в справочник, так как его функция принципиально иная. Текстовая составляющая должна быть ограничена -- ведь остаются обычный учебник, бумага и ручка для углубленного изучения уже освоенного на компьютере материала.

Некоторые принципы, которыми следует руководствоваться при создании электронного учебника.

Принцип квантования: разбиение материала на разделы, состоящие из модулей, минимальных по объему, но замкнутых по содержанию. Принцип полноты: каждый модуль должен иметь следующие компоненты теоретическое ядро, контрольные вопросы по теории, примеры, задачи и упражнения для самостоятельного решения, контрольные вопросы по всему модулю с ответами, контрольная работа, контекстная справка (Help), исторический комментарий. Принцип наглядности: каждый модуль должен состоять из коллекции кадров с минимумом текста и визуализацией, облегчающей понимание и запоминание новых понятий, утверждений и методов. Принцип ветвления: каждый модуль должен быть связан гипертекстными ссылками с другими модулями так, чтобы у пользователя был выбор перехода в любой другой модуль. Принцип ветвления не исключает, а даже предполагает наличие рекомендуемых переходов, реализующих последовательное изучение предмета. Принцип регулирования: учащийся самостоятельно управляет сменой кадров, имеет возможность вызвать на экран любое количество примеров (понятие ``пример" имеет широкий смысл: это и примеры, иллюстрирующие изучаемые понятия и утверждения, и примеры решения конкретных задач, а также контрпримеры), решить необходимое ему количество задач, задаваемого им самим или определяемого преподавателем уровня сложности, а также проверить себя, ответив на контрольные вопросы и выполнив контрольную работу, заданного уровня сложности. Принцип адаптивности: электронный учебник должен допускать адаптацию к нуждам конкретного пользователя в процессе учебы, позволять варьировать глубину и сложность изучаемого материала и его прикладную направленность в зависимости от будущей специальности учащегося, применительно к нуждам пользователя генерировать дополнительный иллюстративный материал, предоставлять графические и геометрические интерпретации изучаемых понятий и полученных учащимся решений задач. Принцип компьютерной поддержки: в любой момент работы учащийся может получить компьютерную поддержку, освобождающую его от рутинной работы и позволяющую сосредоточиться на сути изучаемого в данный момент материала, рассмотреть большее количество примеров и решить больше задач. Причем компьютер не только выполняет громоздкие преобразования, разнообразные вычисления и графические построения, но и совершает математические операции любого уровня сложности, если они уже изучены ранее, а также проверяет полученные результаты на любом этапе, а не только на уровне ответа. Принцип собираемости: электронный учебник (и другие учебные пакеты) должны быть выполнены в форматах, позволяющих компоновать их в единые электронные комплексы, расширять и дополнять их новыми разделами и темами, а также формировать электронные библиотеки по отдельным дисциплинам (например, для кафедральных компьютерных классов) или личные электронные библиотеки учащегося (в соответствии со специальностью и курсом, на котором он учится), преподавателя или исследователя.

Кому и зачем нужен электронный учебник?

Подводя итоги, мы теперь можем ответить на сакраментальные вопросы: кому и зачем нужен электронный учебник? Электронный учебник необходим для самостоятельной работы учащихся при очном и, особенно, дистанционном обучении потому, что он облегчает понимание изучаемого материала за счет иных, нежели в печатной учебной литературе, способов подачи материала: индуктивный подход, воздействие на слуховую и эмоциональную память и т.п.; допускает адаптацию в соответствии с потребностями учащегося, уровнем его подготовки, интеллектуальными возможностями и амбициями; освобождает от громоздких вычислений и преобразований, позволяя сосредоточиться на сути предмета, рассмотреть большее количество примеров и решить больше задач; предоставляет широчайшие возможности для самопроверки на всех этапах работы; дает возможность красиво и аккуратно оформить работу и сдать ее преподавателю в виде файла или распечатки; выполняет роль бесконечно терпеливого наставника, предоставляя практически неограниченное количество разъяснений, повторений, подсказок и проч. Электронный учебник полезен на практических занятиях в специализированных аудиториях потому, что он позволяет использовать компьютерную поддержку для решения большего количества задач, освобождает время для анализа полученных решений и их графической интерпретации; позволяет преподавателю проводить занятие в форме самостоятельной работы за компьютерами, оставляя за собой роль руководителя и консультанта; позволяет преподавателю с помощью компьютера быстро и эффективно контролировать знания учащихся, задавать содержание и уровень сложности контрольного мероприятия.

Электронный учебник удобен для преподавателя потому, что он позволяет выносить на лекции и практические занятия материл по собственному усмотрению, возможно, меньший по объему, но наиболее существенный по содержанию, оставляя для самостоятельной работы с ЭУ то, что оказалось вне рамок аудиторных занятий; освобождает от утомительной проверки домашних заданий, типовых расчетов и контрольных работ, передоверяя эту работу компьютеру; позволяет оптимизировать соотношение количества и содержания примеров и задач, рассматриваемых в аудитории и задаваемых на дом; позволяет индивидуализировать работу со учащемися, особенно в части, касающейся домашних заданий и контрольных мероприятий [4].

Основные этапы разработки электронного учебника

Выбор источников Заключение договоров с авторами о праве на переработку Разработка оглавления и перечня понятий (индекса) Переработка текстов в модули по разделам и создание Help Реализация гипертекста в электронной форме Разработка компьютерной поддержки Отбор материала для мультимедийного воплощения Разработка звукового сопровождения Реализация звукового сопровождения Подготовка материала для визуализации Визуализация материала [5,6].

Методические рекомендации по разработке электронного учебника.

На первом этапе разработки ЭУ целесообразно подобрать в качестве источников такие печатные и электронные издания, которые наиболее полно соответствуют стандартной программе, лаконичны и удобны для создания гипертекстов, содержат большое количество примеров и задач, имеются в удобных форматах (принцип собираемости)

На втором этапе заключения договоров из полученного набора источников отбираются те, которые имеют оптимальное соотношение цены и качества. На третьем этапе разрабатывается оглавление, т.е. производится разбиение материала на разделы, состоящие из модулей, минимальных по объему, но замкнутых по содержанию, а также составляется перечень понятий, которые необходимы и достаточны для овладения предметом (двух- или трехуровневый индекс).

На четвертом этапе перерабатываются тексты источников в соответствии с оглавлением, индексом и структурой модулей; исключаются тексты, не вошедшие в перечни, и пишутся те, которых нет в источниках; разрабатывается система контекстных справок (Help); определяются связи между модулями и другие гипертекстные связи. Таким образом, подготавливаются проект гипертекста для компьютерной реализации.

На пятом этапе гипертекст реализуется в электронной форме. В результате создается примитивное электронное издание, которое уже может быть использовано в учебных целях. Многие именно такое примитивное ЭИ и называют электронным учебником. Оно практически не имеет шансов на коммерческий успех, потому что учащиеся не будут его покупать.

На шестом этапе разрабатывается компьютерная поддержка: определяется, какие математические действия в каждом конкретном случае поручаются компьютеру и в какой форме должен быть представлен ответ компьютера; проектируется и реализуется ИЯ; разрабатываются инструкции для пользователей по применению интеллектуального ядра ЭУ для решения математических задач (правила набора математических выражений и взаимодействия с ИЯ). В результате создается работающий электронный учебник, который обладает свойствами, делающими его необходимым для учащихся, полезным для аудиторных занятий и удобным для преподавателей. Такой ЭУ может распространяться на коммерческой основе. Интеллектуальное ядро целесообразно сделать так, чтобы его можно было заменять на более мощный компьютерный пакет типа DERIVE, Reduce, MuPAD, Maple V и т.п. Теперь электронный учебник готов к дальнейшему совершенствованию (озвучиванию и визуализации) с помощью мультимедийных средств.

На седьмом этапе изменяются способы объяснения отдельных понятий и утверждений и отбираются тексты для замены мультимедийными материалами.

На восьмом этапе разрабатываются тексты звукового сопровождения отдельных модулей с целью разгрузки экрана от текстовой информации и использования слуховой памяти учащегося для облегчения понимания и запоминания изучаемого материала.

На девятом этапе разработанные тексты звукового сопровождения записываются на диктофон и реализуются на компьютере.

На десятом этапе разрабатываются сценарии визуализации модулей для достижения наибольшей наглядности, максимальной разгрузки экрана от текстовой информации и использования эмоциональной памяти учащегося для облегчения понимания и запоминания изучаемого материала.

На одиннадцатом этапе производится визуализация текстов, т.е. компьютерное воплощение разработанных сценариев с использованием рисунков, графиков и, возможно, анимации (нужно иметь в виду, что анимация стоит очень дорого). На этом заканчивается разработка ЭУ и начинается его подготовка к эксплуатации. Следует отметить, что подготовка к эксплуатации ЭУ может предполагать некоторые коррекции его содержательной и мультимедийной компонент.

Подготовка электронного учебника к эксплуатации

Содержанием этого этапа работы являются тестирование; написание инструкций по эксплуатации; разработка методического обеспечения; подготовка материалов для регистрации и получения грифа Минобразования. Вопросы защиты ЭУ от нелегального копирования требуют специального решения в каждом конкретном случае, в зависимости от условий финансирования его разработки и порядка распространения. Эти вопросы требуют специального изучения.

Методическое обеспечение электронного учебника

Если создание электронного учебника не будет сопровождаться разработкой надлежащих методических материалов, затраченные силы и средства пропадут даром, поскольку тогда электронный учебник не будет воспринят системой образования. Поэтому методическое обеспечение ЭИ имеет принципиальное значение для успеха проекта в целом. Исходя из этого, мы уделяем данному вопросу особое место. Реформа образования требует создания таких УЭИ, наличие которых обеспечит одну и ту же компьютерную среду для учащихся и преподавателей, в аудитории и дома. Здесь уместно провести параллель с реформой европейского образования, связанной с изобретением книгопечатания (Гутенберг, 1440г.) Средневековые школяры полностью зависели от своего наставника, ибо только он владел информацией. Изобретение Гутенбергом книгопечатания сделало источник информации (книгу) одинаково доступным для всех, что принципиально изменило систему образования. Книга, перо и бумага -- всем этим стал владеть и преподаватель, и учащийся, причем и в аудитории, и дома.

Аналогично, для успешной реформы современного образования необходимо сделать новые источники информации (в частности, УЭИ одинаково доступными для всех. Однако в данном случае именно преподаватели зачастую оказываются в худшем положении по сравнению со учащемися, так как они по ряду причин объективного и субъективного характера меньше привыкли к работе с компьютером и меньше готовы к восприятию новых технологий в образовании. Очевидно, что с появлением и совершенствованием различных УЭИ должны принципиально измениться учебные программы и планы лекций и практических занятий, а также роль преподавателя в учебном процессе.

Роль методического обеспечения

Важно понять, что если ЭУ и ЭУП будут разработаны в соответствии с принципами, изложенными выше, то можно будет считать компьютеризацию математического образования состоявшейся. По разным причинам, и не только материального характера, никогда не будет так, чтобы компьютеры были в каждом доме, в каждой аудитории и в каждой комнате общежития. Это не только невозможно, но и, как будет показано ниже, не нужно. Однако даже самые лучшие электронные средства обучения осядут мертвым грузом на компьютерах, если их использование не будет методически обеспечено, если не будет создано компьютерное учебно-информационное пространство, единое для преподавателей и учащихся. Успешная компьютеризация образования зависит не от количества компьютеров, а от качества средств обучения и методического обеспечения их использования (здесь уместно вспомнить термин "внедрение"). На наш взгляд, отсутствие полного комплекса методических материалов, а также удобных и эффективных форм повышения квалификации, оперативной и полной информации о появлении и содержании новых компьютерных учебных пакетов, вынуждают преподавателя не только не использовать в своей профессиональной деятельности достижений компьютеризации, но иногда даже запрещать учащегосям использовать компьютер при выполнении домашних заданий и типовых расчетов. Сейчас уже трудно убедить учащихся в том, что они не только должны овладеть техникой вычисления производных, интегралов и т.п., но и в дальнейшем, при изучении других разделов математики должны решать вручную от начала до конца любую задачу, не имея времени сосредоточиться на ее сути и не понимая, что же именно они изучают в данный момент. В то же время многие принципиальные вопросы остаются неисследованными из-за недостатка времени у преподавателя в аудитории и у учащихся дома. Например, при решении дифференциальных уравнений после вычислений (иногда довольно громоздких) всех интегралов учащийся совершенно не представляет, что ему делать с найденным решением (построить график, исследовать поведение при t ® Ґ, рассмотреть вопросы устойчивости, ...). Список таких примеров можно продолжить. Кроме того, многие важные разделы современной математики (качественная теория дифференциальных уравнений, элементы функционального анализа, случайные процессы, прикладная математическая статистика, теория принятия решений и т.д.) не изучаются вовсе или изучаются "галопом по Европам", часто только на лекциях без поддержки на практических занятиях и без домашних заданий, и следовательно, быстро стираются из памяти учащегося и не могут быть использованы при изучении других дисциплин, как естественно-научных и общетехнических, так и профилирующих, не говоря уже о профессиональной деятельности будущего выпускника (ср. с "выживаемостью" школьных знаний). В результате недостаточности и короткой "выживаемости" математических знаний программы специальных дисциплин пестрят доморощенными ``методами" решения стандартных математических задач. Все сказанное вовсе не означает, что преподавателей надо немедленно усадить за компьютеры, а занятия перенести в компьютерные классы. Это не только невозможно, но и вредно (хотя такие попытки систематически предпринимаются).

Требования к современному методическому обеспечению

Каждое занятие в соответствии со стандартными программами должно быть оснащено методической разработкой, не зависящей от того проходит ли занятие в компьютерном классе или в обычной аудитории (изменится лишь соотношение вопросов и задач, рассмотренных в аудитории, и заданных на дом). Это возможно, если учесть, что компьютерная среда в компьютерном классе и на домашнем компьютере одна и та же.. Преподаватель за компьютер не садится -- он ведет занятие, а компьютеры служат лишь подспорьем, позволяющем сэкономить время и сделать работу более эффективной: решить большее количество задач (и уменьшить домашнее задание), проанализировать результаты, воспользоваться графическими возможностями компьютера. При чтении лекций и проведении занятий в обычной аудитории преподаватель учитывает наличие у всех учащихся электронного учебника и других компьютерных пособий (на домашнем компьютере или в специальных аудиториях, оборудованных для самостоятельной работы учащихся) и, следовательно, имеет возможность ограничиться наиболее существенными вопросами, а остальное передать учащимся для самостоятельного изучения. В компьютерных классах очень удобно проводить контрольные работы. Учитывая экономию времени, которое учащиеся тратят на решение задач с помощью компьютера, можно контрольную работу провести за половину занятия, разделив группу пополам и проводя параллельно занятие (с одной частью группы) и контрольную работу (с другой частью), причем компьютер выдает результаты контрольной немедленно. Очень важно, что преподаватель сам вызывает нужную ему контрольную работу в необходимом количестве вариантов и выбирает уровень ее сложности (группу также можно разделить по уровню подготовки). Компьютерная поддержка позволяет индивидуализировать работу с учащимися особенно в части, касающейся домашних заданий и контрольных мероприятий, таким образом, чтобы каждый учащийся ощущал, что задания ему по силам и он продвигается от успеха к успеху. Это стимулирует интерес к предмету и делает учебу осмысленной и эффективной. Нравственное и воспитательное значение индивидуализации заданий трудно переоценить.

Содержание методического комплекса

Самые скромные требования к содержательной части методического обеспечения преподавания предполагают наличие основных элементов:

· Новые планы лекций и практических занятий, разработанные с учетом компьютерной поддержки.

· Методические пособия (печатные и электронные), содержащие подробные рекомендации по каждому занятию.

· Подробная информация о наличии, содержании и возможностях компьютерных пакетов учебного назначения вместе с методическими рекомендациями по их использованию в аудитории, при выдаче домашних заданий и проведении контрольных мероприятий.

Аппаратное и программное обеспечение разработки электронного учебника

При первых попытках разработать ЭУ использовалось так называемое прямое программирование на одном из языков типа FORTRAN, C и т.п. В роли программистов выступали учащиеся старших курсов. Они покидали кафедры вместе с исходными текстами программ. В результате эти программы нельзя было модернизировать, изменять и они быстро устаревали.

Позднее пришла пора так называемых оболочек, представлявших из себя универсальные среды для наполнения методическими материалами. Стоимость таких оболочек варьировалась от 500 до 5000 долларов. Хотя оболочки не требовали непосредственного программирования и, в принципе, каждый преподаватель мог подготовить ЭУ, ничего заслуживающего внимания создано не было по трем причинам. Во-первых, в то время концепции, относящиеся к ЭУ, находились в зачаточном состоянии. Во-вторых, не существовало так называемых систем символьной математики. В-третьих, персональные компьютеры еще не имели надлежащего распространения. В те годы энтузиасты создания ЭУ заложили основы современных представлений о том, каким должен быть ЭУ. В 90-е годы с развитием аппаратного и программного обеспечения компьютеров появились средства, действительно позволяющие создавать подлинные ЭУ. Мы имеем в виду операционные системы Windows и OS/2, в которых стало возможным программирование на высоком уровне, использующее DLL и OLE; мультимедийные средства; системы символьной математики. Наряду с этим, персональные компьютеры перестали быть роскошью и проникли в систему образования, хотя и без надлежащего программного обеспечения. Роль оболочек теперь может выполнить пакет Microsoft Office. Прямое программирование требуется для его связи с какой-нибудь имеющейся системой символьной математики, а также для разработки новой системы символьной математики. Для программирования необходим пакет Delphi. Все методическое содержание может быть подготовлено в печатном виде. Для быстрого представления печатных материалов в электронной форме необходим сканнер и пакет Fine Reader. Для ускорения работы очень полезен микрофон и пакет распознавания речи DragonDictate (в русской версии Комбат). Все программное обеспечение должно быть лицензионным.

Аппаратное и программное обеспечение эксплуатации электронного учебника

Достаточно прогрессивным форматом для создания электронных учебников, справочных систем и пр. является формат CHM (формат справочной системы, разработанный корпорацией Microsoft). Электронный учебник должен разрабатываться для его использования на компьютерах среднего класса. Требуется только, чтобы на компьютере был установлен MS Word и PowerPoint. Возможность воспроизведения звуковых файлов желательна. Нужно добиваться того, чтобы эти средства тоже были лицензионными, в первую очередь, в учебных заведениях [7,8].

1.2 Электронная лекция (презентация)

Электронная лекция - совокупность компьютерных технологий, одновременно использующих несколько информационных сред: графику, текст, видео, фотографию, анимацию, звуковые эффекты, звуковое сопровождение. Технологию мультимедиа составляют специальные аппаратные и программные средства.

Для создания мультимедийной лекции можно использовать программу PowerPoint корпорации Microsoft , для демонстрации - ноутбук (персональный компьютер) и проектор. Достоинство подобной лекции - максимальное насыщение графической информацией (схемами, поясняющими рисунками, фотографиями, видеороликами и пр.).

Пример: электронная лекция по диагностике оборудования в программе PowerPoint предсавлена на рисунке 3.

Рисунок 3. Электронная лекция по диагностике оборудования в программе PowerPoint.

В учебные заведения Казахстана внедряют все больше и больше новых инновационных технологий. Одним из таких новшеств является интерактивная доска. Это визуальный ресурс, который помогает излагать новый материал очень живо и увлекательно. Она позволяет представить информацию, используя различные мультимедийные ресурсы, с помощью которых преподаватели и учащиеся могут комментировать материал и изучать его максимально подробно.

Многие основные методические инновации связаны сегодня с применением интерактивных средств обучения. Одна из основных целей обучения с использованием интерактивного оборудования, состоит в создании комфортных условий, при которых учащийся чувствует свою успешность, свою интеллектуальную состоятельность, что делает продуктивным сам процесс обучения.

Обучение организовывается таким образом, что практически все учащиеся оказываются вовлеченными в процесс познания, они имеют возможность понимать и рефлектировать по поводу того, что они знают и думают. Совместная деятельность учащихся в процессе познания, освоения учебного материала означает, что каждый вносит свой особый индивидуальный вклад, идет обмен знаниями, идеями, способами деятельности. Причем, происходит это в атмосфере доброжелательности и взаимной поддержки, что позволяет не только получать новые знания, но и развивает саму познавательную деятельность, переводит ее на более высокие формы кооперации и сотрудничества.

Исключается доминирование как одного выступающего, так и одного мнения над другим. Учащиеся учатся критически мыслить, решать сложные проблемы на основе анализа обстоятельств и соответствующей информации, взвешивать альтернативные мнения, принимать продуманные решения, участвовать в дискуссиях, общаться с другими людьми. Для этого на уроках организуются индивидуальная, парная и групповая работа, применяются исследовательские проекты, ролевые игры, идет работа с документами и различными источниками информации, используются творческие работы.

Учащийся получает возможность полностью управлять любой компьютерной демонстрацией - выводить на экран доски картинки, карты, схемы, создавать и перемещать объекты, запускать видео и интерактивные анимации, выделять важные моменты цветными пометками, работать с любыми компьютерными программами. И все это прямо с доски, не теряя визуального контакта с группой, и не привязываясь к компьютеру. Благодаря наглядности и интерактивности, учащиеся вовлекаются в активную работу. Обостряется восприятие, повышается концентрация внимания, улучшается понимание и запоминание материала.

Всю проведенную в ходе урока работу, со всеми сделанными на доске записями и пометками, можно сохранить в компьютере для последующего просмотра и анализа, в том числе и в виде видеозаписи. Существенно повышается уровень компьютерной компетенции учащихся.

Учащимся просто нравится работать с интерактивной доской, учиться становится интересно и увлекательно.

Яркая картинка на экране - всего лишь способ подачи материала. Это одностороннее движение. Самое же важное - это живое взаимодействие преподавателя и учащегося, постоянный обмен информацией между ними.

Лучшее, что существует из технических средств обучения для взаимодействия учащегося с преподавателем - это интерактивные доски. В них объединяются проекционные технологии, поэтому такая доска не просто отображает то, что происходит на компьютере, а позволяет управлять процессом презентации, вносить поправки и коррективы, делать цветом пометки и комментарии, сохранять материалы урока для дальнейшего использования и редактирования. К компьютеру, и, как следствие, к интерактивной доске могут быть подключены: web - камера, цифровой фотоаппарат, видеокамера и практически любое другое периферийное устройство. Со всеми отображёнными материалами можно продуктивно работать прямо во время урока [9].

Работая с интерактивной доской, и преподаватель, и учащийся всегда находятся в центре внимания, обращены к аудитории лицом и поддерживают постоянный контакт, с группой.

Уже имеющийся опыт показал, что работа с интерактивными досками улучшает восприятие материала. Учащиеся считают, что работать с интерактивной доской гораздо интереснее, чем с обычной доской или печатным раздаточным материалом. Они признают, что интерактивный подход помогает принимать активное участие в уроке.

К преимуществам использования интерактивных досок можно также отнести то, что необходимые материалы могут располагаться внутри одного файла, и связываться гиперссылками. Воспроизведение аудио и видео материалов можно контролировать с помощью доски, проигрывая небольшие отрывки, если в этом есть необходимость. Замечания и добавления к файлу можно сохранять и использовать на следующих уроках или для повторения на том же уроке.

Использование на уроке интерактивной доски позволяет производить быструю смену дидактического материала, активизировать процесс обучения.

Интерактивная доска решает и проблему проверки знаний учащихся. С её помощью можно проводить как индивидуальный, так и групповой опрос, при этом экономится значительное время, которого часто не хватает. Контроль знаний проводится эффективно, оперативно, и увлекательно, что бывает достаточно редко. Если возникает необходимость, то проводится работа над ошибками, причем все участвующие в опросе могут их увидеть непосредственно на доске.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.