Методика использования логических задач на уроках математики в начальной школе

Логико-психологические проблемы математики как учебного предмета. Психологические предпосылки использования логических задач на уроке математики. Интегрированное обучение и развитие мышления в дидактической игре. Формы работы с логическими задачами.

Рубрика Педагогика
Вид реферат
Язык русский
Дата добавления 02.06.2015
Размер файла 46,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

[Введите текст]

Содержание

Введение

Глава 1. Теоретическая часть

1.1 Теоретические аспекты использования логических задач на уроках математики в начальной школе

1.1.1 Логико-психологические проблемы начальной математики как учебного предмета

1.1.2 Психологические предпосылки использования нестандартных логических задач на уроке математики в начальной школе

1.2 Методика использования логических задач на уроках математики в начальной школе

1.2.1 Интегрированное обучение и развитие мышления в дидактической игре

1.2.2 Организация различных форм работы с логическими задачами

Заключение

Список использованных источников и литературы

Приложение

Введение

Данная работа посвящена теоретическим и практическим аспектам внедрения в начальный школьный курс математики логических задач. Актуальность данной темы определяется следующими обстоятельствами. Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.)

Роль математики в развитии логического мышления исключительно велика. Причина столь исключительной роли математики состоит в том, что это самая теоретическая наука из всех изучаемых в школе. В ней высокий уровень абстракции и в ней наиболее естественным способом изложения знаний является способ восхождения от абстрактного к конкретному. Как показывает опыт, в младшем школьном возрасте одним из эффективных способов развития мышления является решение школьника мине стандартных логических задач. Кроме того, решение нестандартных логических задач способно привить интерес ребенка к изучению «классической» математики.

Значительное место вопросу обучения младших школьников логическим задачам уделял в своих работах известнейший отечественный педагог В. Сухомлинский. Суть его размышлений сводится к изучению и анализу процесса решения детьми логических задач, при этом он опытным путем выявлял особенности мышления детей.

Исходя из вышеизложенного, можно сформулировать цель исследования: исследовать эффективность приемов решения логических задач в развитии мыслительной деятельности.

Объект исследования: процесс развития мыслительных операций у младших школьников. логический задача математика мышление

Предмет исследования: разнообразные приемы решения логических задач на уроках математики

Задачи исследования:

1) Проанализировать теоретические источники по изучаемой проблеме.

2) Раскрыть особенности мыслительных операций у младшего школьника.

3) Изучить и систематизировать методы и приемы работы при решении логических задач.

Глава 1. Теоретическая часть

1.1 Теоретические аспекты использования логических задач на уроках математики в начальной школе

1.1.1 Логико-психологические проблемы начальной математики как учебного предмета

В последнее время у нас и за рубежом часто обсуждается вопрос о недостатках традиционных программ преподавания математики в школе. Эти программы не содержат основных принципов и понятий современной математической науки, не обеспечивают должного развития математического мышления учащихся, не обладают преемственностью и цельностью по отношению к начальной, средней и высшей школе. Во многих странах и в международных организациях ведется работа по усовершенствованию учебных программ. Выдвигаются различные предложения о путях рационального изложения современных математических понятий в школьных курсах (в основном для средней школы). Построение математики как целостного учебного предмета - весьма сложная задача, требующая приложения совместных усилий педагогов и математиков, психологов и логиков. Важным моментом решения этой общей задачи является выделение понятий, которые должны вводиться в начальном курсе изучения математики в школе. Эти понятия составляют фундамент для построения всего учебного предмета. От исходных понятий, усвоенных детьми, во многом зависит общая ориентировка в математической действительности, что в свою очередь существенно влияет на последующее продвижение в этой области знания. Многие трудности усвоения математики в начальной и средней школе, представляется, проистекают, во-первых, из-за несоответствия знаний, усваиваемых учащимися, тем понятиям, которые действительно конституируют математические построения, во-вторых, из-за неверной последовательности введения общематематических понятий в школьные курсы.

В последнее время при модернизации программ особое значение придают подведению теоретико-множественного фундамента под школьный курс. Реализация этой тенденции в преподавании (особенно в начальных классах) неизбежно поставит ряд трудных вопросов перед детской и педагогической психологией и перед дидактикой, ибо сейчас почти нет исследований, раскрывающих особенности усвоения ребенком смысла понятия множества. В недрах самой математики сейчас существенно переоценивается понятие о ее предмете, об исходных и всеобщих его признаках. Это обстоятельство тесно связано с определением природы самой математической абстракции, способов ее выведения, т.е. с логической стороной проблемы, которую нельзя не учитывать при создании учебного предмета. С поступлением ребенка в школу в его жизни происходят существенные изменения, коренным образом меняется социальная ситуация развития, формируется учебная деятельность, которая является для него ведущей. На основе учебной деятельности развиваются основные психологические новообразования младшего школьного возраста. Обучение выдвигает мышление в центр сознания ребенка. Тем самым мышление становится доминирующей функцией.

Мыслительная деятельность людей совершается при помощи мыслительных операций: сравнения, анализа, синтеза, абстракции, обобщения и конкретизации. Сравнение - это сопоставление предметов и явлений с целью найти сходство и различие между ними. Анализ - это мысленное расчленение предмета или явления на образующие его части, выделение в нем отдельных частей, признаков и свойств. Синтез - это мысленное соединение отдельных элементов, частей и признаков в единое целое. Анализ и синтез неразрывно связаны, находятся в единстве друг с другом в процессе познания. Анализ и синтез - важнейшие мыслительные операции. Абстракция - это мысленное выделение существенных свойств и признаков предметов или явлений при одновременном отвлечении от несущественных. Абстракция лежит в основе обобщения. Обобщение - мысленное объединение предметов и явлений в группы по тем общим и существенным признакам, которые выделяются в процессе абстрагирования. Процессам абстрагирования и обобщения противоположен процесс конкретизации. Конкретизация - мыслительный переход от общего к единичному, которое соответствует этому общему. В учебной деятельности конкретизировать - значит привести пример.

Мышление ребенка дошкольного возраста наглядно-образное, предмет его мысли - предметы и явления, которые он воспринимает или представляет. Навыки анализа у него элементарны, в содержание обобщений и понятий входят лишь внешние и часто несущественные признаки. С началом обучения в школе у ребенка не только расширяется круг представлений и понятий, но и сами представления и понятия становятся более полными и точными. Форма обобщающей деятельности школьников на разной ступени обучения не остается постоянной. Вначале она строится обычно на внешней аналогии, затем основывается на классификации признаков, относящихся к внешним свойствам и качествам предметов, и, наконец, учащиеся переходят к систематизации существенных признаков. В процессе обучения в школе совершенствуется, и способность школьников формулировать суждения и производить умозаключения. Суждения школьников развиваются от простых форм к сложным постепенно, по мере овладения знаниями. Первоклассник в большинстве случаев судит о том или ином факте односторонне, опираясь на единичный внешний признак или свой ограниченный опыт. Его суждения, как правило, выражаются в категорической утвердительной форме. Высказывать предположения, выражать и, тем более, оценивать вероятность, возможность наличия того или иного признака, той или иной причины ребенок еще не может. Умение рассуждать, обосновывать и доказывать то или иное положение более или менее уверенно и правильно тоже приходит постепенно и в результате специальной организации учебной деятельности. Развитие мышления, совершенствование умственных операций, способности рассуждать прямым образом зависят от методов обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам - необходимое условие успешного усвоения учебного материала. Широкие возможности в этом плане дает решение логических задач.

1.1.2 Психологические предпосылки использования нестандартных логических задач на уроке математики в начальной школе

Логические и психологические исследования последних лет (в особенности работы Ж. Пиаже) вскрыли связь некоторых "механизмов" детского мышления с общематематическими и обще логическими понятиями. На первый взгляд понятия "отношение", "структура", "законы композиции" и др., имеющие сложные математические определения, не могут быть связаны сформированием математических представлений у маленьких детей. Конечно, весь подлинный и отвлеченный смысл этих понятий и их место в аксиоматическом построении математики как науки есть объект усвоения уже хорошо развитой и "на тренированной" в математике головы. Однако некоторые свойства вещей, фиксируемые этими понятиями, так или иначе, проступают для ребенка уже сравнительно рано: на это имеются конкретные психологические данные. Прежде всего, следует иметь в виду, что от момента рождения до 7 - 10 лет у ребенка возникают и формируются сложнейшие системы общих представлений об окружающем мире и закладывается фундамент содержательно-предметного мышления. Причем на сравнительно узком эмпирическом материале дети выделяют общие схемы ориентации в пространственно-временных и причинно-следственных зависимостях вещей. Эти схемы служат своеобразным каркасом той "системы координат", внутри которой ребенок начинает все глубже овладевать разными свойствами многообразного мира. Конечно, эти общие схемы мало осознаны и в малой степени могут быть выражены самим ребенком в форме отвлеченного суждения. Они, говоря образно, являются интуитивной формой организации поведения ребенка.

В последние десятилетия особенно интенсивно вопросы формирования интеллекта детей и возникновения у них общих представлений о действительности, времени и пространстве изучались известным швейцарским психологом Ж. Пиаже и его сотрудниками. Некоторые его работы имеют прямое отношение к проблемам развития математического мышления ребенка. В одной из своих последних книг, написанной совместно с Б. Инельдер ([10]), Ж. Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до12 - 14 лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения(например, А + А' = В) и операции, ей обратной (В - А' = А). Сериация - это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих). Анализируя, становление классификации, Ж. Пиаже и Б. Инельдер показывают, как от ее исходной формы, от создания "фигурной совокупности", основанной лишь на пространственной близости объектов. Дети переходят к классификации, основанной уже на отношении сходства ("нефигурные совокупности"), а затем к самой сложной форме - к включению классов, обусловленному связью между объемом и содержанием понятия. Авторы специально рассматривают вопрос о формировании классификации не только по одному, но и по двум-трем признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов. Аналогичные стадии авторы находят и в процессе становления серией. Эти исследования преследовали вполне определенную цель - выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способности ума двигаться в прямом и обратном направлении. Ж. Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребенка позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими. Так, алгебраическая структура ("группа") соответствует операторным механизмам ума, подчиняющимся одной из форм обратимости - инверсии (отрицанию). Группа имеет четыре элементарных свойства: произведение двух элементов группы также дает элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:

. координация двух систем действия составляет новую схему, присоединяемую к предыдущим;

· операция может развиваться в двух направлениях;

· при возвращении к исходной точке мы находим ее неизменной;

· к одной и той же точке можно прийти разными путями, причем сама точка остается неименной.

Структуре порядка соответствует такая форма обратимости, как взаимность (перестановка порядка). В период от 7 до 11 лет система отношений, основанная на принципе взаимности, приводит к образованию в сознании ребенка структуры порядка. Рассматриваются основные положения, сформулированные Ж. Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж. Пиаже показывают, что в период дошкольного и школьного детства у ребенка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их отношений. Причем уже на стадии конкретных операций (с 7 - 8 лет) интеллект ребенка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики. Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и емкого характера тех стадий умственного развития ребенка, которые связаны с периодом от 7 до 11 лет. Сам Ж. Пиаже эти операторные структуры прямо соотносит с основными математическими структурами. Он утверждает, что математическое мышление возможно лишь на основе уже сложившихся операторных структур. Это обстоятельство можно выразить и в такой форме: не "знакомство" с математическими объектами и усвоение способов действия с ними определяют формирование у ребенка операторных структур ума, а предварительное образование этих структур (как "координации действий") является началом математического мышления, "выделения" математических структур. Рассмотрение результатов, полученных Ж. Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего, фактические данные о формировании интеллекта ребенка с 7 до 11 лет говорят о том, что ему в это время не только не "чужды" свойства объектов, описываемые посредством математических понятий "отношение - структура" но последние сами органически входят в мышление ребенка. Традиционные задачи начальной школьной программы по математике не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, учащихся в процессе интеллектуального развития ребенка. В этой связи практика внедрения в начальный школьный курс математики логических задач должна стать нормальным явлением. Материалы, имеющиеся в современной детской психологии, позволяют положительно оценивать общую идею внедрения в учебные программы таких задач, в них лежали бы понятия об исходных математических структурах. Конечно, на этом пути возникают большие трудности, так как еще нет опыта построения такого учебного предмета. В частности, одна из них связана с определением возрастного "порога", с которого осуществимо обучение по новой программе. Если следовать логике Ж. Пиаже, то, видимо, по этим программам можно учить лишь тогда, когда у детей уже полностью сформировались операторные структуры (с 14 - 15 лет). Но если предположить, что реальное математическое мышление ребенка формируется как раз внутри того процесса, который обозначается Ж. Пиаже как процесс складывания операторных структур, то эти программы можно вводить гораздо раньше (например, с 7 - 8 лет), когда у детей начинают формироваться конкретные операции с высшим уровнем обратимости. В "естественных" условиях, при обучение по традиционным программам формальные операции, возможно, только и складываются к 13 - 15 годам. Но нельзя ли" ускорить" их формирование путем более раннего введения такого учебного материала, усвоение которого требует прямого анализа математических структур? Представляется, что такие возможности есть. К 7 - 8 годам у детей уже в достаточной мере развит план мыслительных действий, и путем обучения по соответствующей программе, в которой свойства математических структур даны" явно" и детям даются средства их анализа, можно быстрее подвести детей к уровню "формальных" операций, чем в те сроки, в которые это осуществляется при "самостоятельном" открытии этих свойств. При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж. Пиаже к 7 -11 годам, сами неразрывно связаны с формами организации, свойственными традиционной начальной школе. Это обучение ведется на основе предельно эмпирического содержания, зачастую вообще несвязанного с понятийным (теоретическим) отношением к объекту. Такое обучение поддерживает и закрепляет у детей мышление, опирающееся на внешние, прямым восприятием уловимые признаки вещей.

Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь операторных структур детского мышления и общематематических и обще-логических структур, хотя "механизм" этой связи далеко не ясен и почти не исследован. Наличие этой связи открывает принципиальные возможности для построения учебного предмета, развертывающегося по схеме "от простых структур к их сложным сочетаниям". И значительное место в таком построении должно принадлежать широкому применению в процессе обучения младших школьников нестандартных логических задач.

1.2 Методика использования логических задач на уроках математики в начальной школе

1.2.1 Интегрированное обучение и развитие мышления в дидактической игре

Решение логических задач помогает развивать у учащихся способность к рассуждению, к построению цепочек от общего к частному и наоборот. Задачи на логическое мышление, как правило, требуют не столько большого объема знаний, сколько умения эти знания применить.

Логические или нечисловые задачи составляют обширный класс нестандартных задач. Сюда относятся, прежде всего, текстовые задачи, в которых требуется распознать объекты или расположить их в определенном порядке по имеющимся свойствам. При этом часть утверждений условия задачи может выступать с различной истинностной оценкой (быть истинной или ложной). К классу логических задач относятся также задачи на переливания и взвешивания.

В течение всех лет обучения в школе решается много разнообразных задач, в том числе и логических: задачи занимательного характера, головоломки, анаграммы, ребусы и т.п. Чтобы успешно решать задачи такого вида, надо уметь выделять их общие признаки, подмечать закономерности, выдвигать гипотезы, проверять их, строить цепочки рассуждений, делать выводы. Логические задачи от обычных отличаются тем, что не требуют вычислений, а решаются с помощью рассуждений. Можно сказать, что логическая задача - это особая информация, которую не только нужно обработать в соответствии с заданным условием, но и хочется это сделать. Логика помогает усваивать знания осознанно, с пониманием, т.е. не формально; создаёт возможность лучшего взаимопонимания.

- Решение логических задач методом рассуждений

Идея метода: последовательные рассуждения и выводы из утверждений, содержащихся в условии задачи. Этим способом обычно решают несложные логические задачи.

Задача№1 Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение. Имеется три утверждения. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе - ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей

Ответ: Сергей изучает китайский язык, Михаил - японский, Вадим - арабский.

Задача 2. В поездке пятеро друзей - Антон, Борис, Вадим, Дима и Гриша, знакомились с попутчицей. Они предложили ей отгадать их фамилии, причём каждый из них высказал одно истинное и одно ложное утверждение:

Дима сказал: "Моя фамилия - Мишин, а фамилия Бориса - Хохлов". Антон сказал: "Мишин - это моя фамилия, а фамилия Вадима - Белкин". Борис сказал: "Фамилия Вадима -- Тихонов, а моя фамилия -- Мишин". Вадим сказал: "Моя фамилия - Белкин, а фамилия Гриши - Чехов". Гриша сказал: "Да, моя фамилия Чехов, а фамилия Антона - Тихонов".

Какую фамилию носит каждый из друзей?

* Обозначим высказывательную форму "юноша по имени А носит фамилию Б" как АБ, где буквы А и Б соответствуют начальным буквам имени и фамилии.

* Зафиксируем высказывания каждого из друзей:

* ДМ и БХ;

* АМ и ВБ;

* ВТ и БМ;

* ВБ и ГЧ;

* ГЧ и АТ.

* Допустим сначала, что истинно ДМ. Но, если истинно ДМ, то у Антона и у Бориса должны быть другие фамилии, значит АМ и БМ ложно. Но если АМ и БМ ложны, то должны быть истинны ВБ и ВТ, но ВБ и ВТ одновременно истинными быть не могут.

* Значит, остается другой случай: истинно БХ. Этот случай приводит к цепочке умозаключений: БХ истинно БМ ложно ВТ истинно АТ ложно ГЧ истинно ВБ ложно АМ истинно.

* Ответ: Борис - Хохлов, Вадим - Тихонов, Гриша - Чехов, Антон - Мишин, Дима - Белкин

- Решение логических задач методом таблиц

При решении любой задачи могут быть выделены следующие этапы:

1. Анализ условия задачи ( выделение исходных данных ).

2. Поиск метода решения.

3. Символическая запись задачи.

4. Рассуждения и пояснения к решению.

5. Анализ полученных результатов и запись ответа.

При решении задач данного типа я научился представлять исходные данные и рассуждения в виде схем и таблиц, который облегчает процесс решения своей наглядностью.

Существует следующая последовательность решения задач с помощью схем:

1. Кратко записать условие, вопрос задачи. Элементы условия задачи отобразить при помощи символьных переменных.

2. Приступить к её решению.

- Если по условию между двумя элементами есть соответствие, то они соединяются сплошной линией.

- Если же между элементами соответствия нет, то они соединяются пунктирной линией.

Чтобы наглядно было видно, какие элементы рассуждений даны, а какие получены по доказательству, можно применять разные цветовые решения ( проводить линии, например, красным (дано) и зелёным (доказательство) карандашами ).

А с помощью таблиц решаются задачи с четырьмя, пятью и более парами элементов, когда использование схем неудобно и не наглядно из-за чрезмерной громоздкости.

Задача № 1. Подруги

Света и Наташа имеют фамилии Иванова и Петрова. Какую фамилию имеет каждая девочка, если Света и Иванова живут в соседних домах?

1. Так как Света не Иванова (по условию), значит,

Надо: Света - Петрова.

Кто какую фамилию имеет?

2. Так как Света - Петрова ( по доказательству ), значит, Наташа не Петрова.

3. Так как Наташа не Петрова ( по доказательству ), значит Наташа Иванова.

Ответ: Света имеет фамилию Петрова, а Наташа - Иванова.

Задача № 2. Друзья.

Серёжа и Костя имеют фамилии Белов и Чернов. Какую фамилию имеет каждый из ребят, если Серёжа на два года старше Белова?

Ответ: Серёжа имеет фамилию Чернов, а Костя Белов.

- Решение логических задач методом блок-схем

Как без математических наук проводит свои линии паук.

В этом разделе рассматривается еще один тип логических задач. Это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.

Более систематический подход к решению задач "на переливание" заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов.

В зависимости от результатов этого осмотра мы переходим к выполнению следующей команды по одному из двух ключей - "да" или "нет". Такие команды в программировании принято называть командами "условного перехода" и изображать в блок-схемах в виде ромбика с двумя ключами-выходами.

Последовательность выполнения выделенных команд. После Б - >М будем выполнять ОМ всякий раз, как меньший сосуд оказывается наполненным, и НБ всякий раз, как больший сосуд будет опорожнен. Последовательность команд изобразим в виде блок-схемы. Начнем выполнение программы. Будем фиксировать, как меняется количество воды в сосудах, если действовать по приведенной схеме. Результаты оформим в виде таблицы.

Б 0522054411053300

М 0030223030113030

Дальше эта последовательность будет полностью повторяться. Из таблицы видим, что количество воды в обоих сосудах вместе образует следующую последовательность: 0, 5, 2, 7, 4, 1, 6, 3, 0 и т.д. Таким образом, действуя по - приведенной схеме, можно отмерить любое количество литров от 1 до 7. Чтобы отмерить еще и 8 литров, надо наполнить оба сосуда.

Идея метода: описать последовательность выполнения операций, определить порядок их выполнения и фиксировать состояния.

- Решение логических задач методом математического бильярда

Прежде чем решать задачу, подумай, что делать с ее решением!

Известная игра бильярд за прямоугольным столом с лузами. Появившись до нашей эры в Индии и Китае, бильярд через много веков перекочевал в европейские страны -упоминание о нем имеется в английских летописях VI века. В России бильярд стал известен и распространился при Петре I. Подобно тому, как азартная игра в кости вызвала к жизни "исчисление" вероятностей, игра в бильярд послужила предметом серьезных научных исследований по механике и математике. Представьте себе горизонтальный бильярдный стол произвольной формы, но без луз. По этому столу без трения движется точечный шар, абсолютно упруго отражаясь от бортов стола. Спрашивается, какой может быть траектория этого шарика? Поиски ответа на этот вопрос и послужили появлению теории математического бильярда или теории траекторий.

Задачи на переливание жидкостей можно очень легко решать, вычерчивая бильярдную траекторию шара, отражающегося от бортов стола, имеющего форму параллелограмма. Рассмотрим туже задачу, что и в предыдущем разделе (Метод блок-схем).

Задача№1. Имеются два сосуда - трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4,5,6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.

Решение: В рассматриваемой задаче стороны параллелограмма должны иметь длины 3 и 5 единиц. По горизонтали будем откладывать количество воды в литрах в 5-литровом сосуде, а по вертикали - в 3-литровом сосуде. На всем параллелограмме нанесена сетка из одинаковых равносторонних треугольников (см. рис.1).

Бильярдный шар может перемещаться только вдоль прямых, образующих сетку на параллелограмме. После удара о стороны параллелограмма шар отражается и продолжает движение вдоль выходящего из точки борта, где произошло соударение. При этом каждая точка параллелограмма, в которой происходит соударение, полностью характеризует, сколько воды находится в каждом из сосудов.

ОАВ Н

МО 30311030

Б 003350114

Прослеживая дальнейший путь шара, и записывая все этапы его движения в виде отдельной таблицы (табл.1), в конце концов, мы попадаем в точку Н, которая соответствует состоянию, когда малый сосуд пуст, а в большом сосуде 4 литра воды. Таким образом, получен ответ и указана последовательность переливаний, позволяющих отмерить 4 литра воды. Все 8 переливаний изображены схематически в таблице.

Является ли это решение самым коротким? Нет, существует второй путь, когда воду сначала наливают в пятилитровый сосуд. Если на диаграмме шар из точки О покатится вправо по нижней стороне параллелограмма и затем, отразившись от правой боковой стороны, в точку 2 на верхней стороне параллелограмма и т.д., то получим более короткое решение задачи. Можно показать, что полученное решение с 6 переливаниями уже является самым коротким.

Идея метода: нарисовать бильярдный стол и интерпретировать действия движениями бильярдного шара, фиксирование состояний в отдельной таблице.

Преимущества метода:

* Наглядность

* Привлекательность идеи бильярда

* Возможность обобщить метод на широкий класс задач.

Решение логических задач можно сравнить с решением научной проблемы. Вначале исследователь располагает многими данными, на первый взгляд никак не связанными между собою. В ходе анализа этих данных выдвигаются и сопоставляются с фактами новые и новые гипотезы. И вот, наконец, одна из гипотез совпадает с результатами экспериментов и наблюдений. Разрозненные данные сливаются в целостную картину. Становится ясно, что найденное объяснение фактов является единственно возможным. Задача решена. Похожим методом ищут ответы на логические задачи. Единого правила их решения нет.

1.2.2 Организация различных форм работы с логическими задачами

Выше неоднократно утверждалось, что развитие у детей логического мышления - это одна из важных задач начального обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам - необходимое условие успешного усвоения учебного материала. Основная работа для развития логического мышления должна вестись с задачей. Ведь в любой задаче заложены большие возможности для развития логического мышления. Нестандартные логические задачи - отличный инструмент для такого развития. Существует значительное множество такого рода задач; особенно много подобной специализированной литературы было выпущено в последние годы. Конкретные примеры логических задач приведены в Приложениях 1 и 2.Однако что зачастую наблюдается на практике? Учащимся предлагается задача, они знакомятся с нею и вместе с учителем анализируют условие и решают ее. Но извлекается ли из такой работы максимум пользы? Нет. Если дать эту задачу через день-два, то часть учащихся может вновь испытывать затруднения при решении. Наибольший эффект при этом может быть достигнут в результате применения различных форм работы над задачей.

1. Работа над решенной задачей. Многие учащиеся только после повторного анализа осознают план решения задачи. Это путь к выработке твердых знаний по математике. Конечно, повторение анализа требует времени, но оно окупается.

2. Решение задач различными способами. Мало уделяется внимания решению задач разными способами в основном из-за нехватки времени. А ведь это умение свидетельствует о достаточно высоком математическом развитии. Кроме того, привычка нахождения другого способа решения сыграет большую роль в будущем. Считается, что это доступно не всем учащимся, а лишь тем, кто любит математику, имеет особые математические способности.

3. Правильно организованный способ анализа задачи - с вопроса или от данных к вопросу.

4. Представление ситуации, описанной в задаче (нарисовать "картинку").

Учитель обращает внимание детей на детали, которые нужно обязательно представить, а которые можно опустить. Мысленное участие в этой ситуации. Разбиение текста задачи на смысловые части. Моделирование ситуации с помощью чертежа, рисунка.

5. Самостоятельное составление задач учащимися.

Составить задачу: 1) используя слова: больше на, столько, сколько, меньше в, на столько больше, на столько меньше; 2) решаемую в 1, 2, 3 действия; 3) по данному ее плану решения, действиям и ответу; 4) по выражению и т.д.

6. Решение задач с недостающими или лишними данными.

7. Изменение вопроса задачи.

8. Составление различных выражений по данным задачам и объяснение, что обозначает то или иное выражение. Выбрать те выражения, которые являются ответом на вопрос задачи.

9. Объяснение готового решения задачи.

10. Использование приема сравнения задач и их решений.

11. Запись двух решений на доске - одного верного и другого неверного.

12. Изменение условия задачи так, чтобы задача решалась другим действием.

13. Закончить решение задачи.

14. Определение лишнего в решении задачи (или, наоборот, восстановление пропущенного вопроса и действия в задаче).

15. Составление аналогичной задачи с измененными данными.

16. Решение обратных задач.

Систематическое использование на уроках математики и внеурочных занятиях специальных задач и заданий, направленных на развитие логического мышления, организованных согласно приведенной выше схеме, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.

Заключение

Важнейшей задачей математического образования является вооружение учащихся общими приемами мышления, пространственного воображения, развитие способности понимать смысл поставленной задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления. Каждому важно научиться анализировать, отличать гипотезу от факта, отчетливо выражать свои мысли, а с другой стороны - развить воображение и интуицию (пространственное представление, способность предвидеть результат и предугадать путь решения). Именно математика предоставляет благоприятные возможности для воспитания воли, трудолюбия, настойчивости в преодолении трудностей, упорства в достижении целей.

Сегодня математика как живая наука с многосторонними связями, оказывающая существенное влияние на развитие других наук и практики, является базой научно-технического прогресса и важной компонентой развития личности. Одной из основных целей изучения математики является формирование и развитие мышления человека, прежде всего, абстрактного мышления, способности к абстрагированию и умения "работать" с абстрактными, "неосязаемыми" объектами. В процессе изучения математики в наиболее чистом виде может быть с формировано логическое (дедуктивное) мышление, алгоритмическое мышление, многие качества мышления - такие, как сила и гибкость, конструктивность и критичность и т.д. Поэтому в качестве одного из основополагающих принципов новой концепции в "математике для всех" на первый план выдвинута идея приоритета развивающей функции обучения математике. В соответствии с этим принципом центром методической системы обучения математике становится не изучение основ математической науки как таковой, а познание окружающего человека мира средствами математики и, как следствие, к динамичной адаптации человека к этому миру, к социализации личности.

Основной целью математического образования должно быть развитие умения математически, а значит, логически и осознанно исследовать явления реального мира. Реализации этой цели может и должно способствовать решение на уроках математики различного рода нестандартных логических задач. Поэтому использование учителем начальной школы этих задач на уроках математики является не только желательным, но даже необходимым элементом обучения математике.

Список использованных источников и литературы

1. Бабкина Н.В. Нетрадиционный курс "Развивающие игры с элементами логики" для первых классов начальной школы. // Психологическое обозрение.2002. № 2 (3), с. 47-52.

2. Зайцев Т.Г. Теоретические основы обучения решению задач в начальной школе. - М.: Педагогика, 2003.

3. Зак А.З. 600 игровых задач для развития логического мышления детей. Ярославль: "Академия развития", 2006.

4. Зак А.З. Развитие умственных способностей младших школьников. М.: Просвещение, Владос,2008.

5. Липина И. Развитие логического мышления на уроках математики Начальная школа. - 2002. - № 8. С. 37-39.

6. Лихтарников Л.М. Занимательные логические задачи. Для учащихся начальной школы. - СПб: "Лань", "Мик", 2010.

7.Мельченко И.В. Примерные задания для детей, мотивированных к интеллектуальной деятельности, в возрасте от 6 до 10 лет

8.Моро М.И., Пышкало А.И. Методика обучения математике в 1-3 кл. - М.: Просвещение, 2011.

9.Муранов А.А., Муранова Н.Ф. Игры с кругами - Минск, 2002.

10.Пиаже Ж. Избранные психологические труды. - СП - б: Изд-во «Питер», 2003.

11.Сухомлинский В.А. Избранные педагогические сочинения. Т. 3. М.: Педагогика,2009.

12. Сухин И.Г. 800 новых логических и математических головоломок. - СПб: Альфа, 2011.

13. Формирование учебной деятельности школьников. / Под. Ред. Давыдова В.В.,Ломпшера Й., Марковой А.К. М.: Просвещение, 2001

14. Сухомлинский В.А. Избранные педагогические сочинения. Т. 3. М.: Педагогика,2009.

15. Моро М.И., Пышкало А.И. Методика обучения математике в 1-3 кл.

Приложение 1

Избранные страницы из книги И.Г. Сухина «800» новых логических и математических головоломок".

Сюжетные задачи

1. Гном Путалка идёт к клетке с тигром. Каждый раз, когда он делает два шага вперёд, тигр рычит, и гном отступает на шаг назад. За какое время он дойдёт до клетки, если до неё 5 шагов, а 1 шаг Путалка делает за 1 секунду?

2. Гном Забывалка учился писать цифры заострённой палочкой на песке. Только он успел нарисовать 5 цифр: 12345 как увидел большую собаку, испугался и убежал. Вскоре в это место пришёл другой гном Путалка. Он тоже взял палочку и начертил 12345 = 60 Вставь между цифрами плюсы таким образом, что получившийся пример был решён правильно.

3. Какую отметку впервые в жизни получил по математике Фома, если известно, что она является числом не простым, а составным?

4. Сколько лет сиднем просидел на печи Илья Муромец? Известно, что если бы он просидел ещё 2 раза по столько, то его возраст составил бы наибольшее двузначное число.

5. Барон Мюнхгаузен пересчитал число волшебных волос в бороде старика Хоттабыча. Оно оказалось равным сумме наименьшего трёхзначного числа и наибольшего двузначного. Что это за число?

6. Раздели самое маленькое четырёхзначное число на наименьшее простое, и узнаешь, сколько лет не умывалась и не чистила зубы злая волшебница Гингемаиз повести-сказки А. Волкова "Волшебник Изумрудного города".

Зачеркивание, превращение, отгадывание

1. Угадай число от 1 до 28, если в его написание не входят цифры 1, 5 и 7;кроме того, оно нечётное и не делится на 3.

2. Отгадай число от 1 до 58, если в его написание не входят цифры 1, 2 и 3;кроме того, оно нечётное и не делится на 3, 5 и 7.

3. Преврати в числе 123 одну цифру в пятёрку так, чтобы получившееся число делилось на 9. Каково оно?

4. Вычти из произвольного двузначного числа сумму его цифр. Всегда ли разность разделится на 3? А на 9?

Математические фокусы

1. Напиши такое трёхзначное число, чтобы первая цифра была, по крайней мере, на 2 больше, чем третья. Например: 311. Запиши его цифрами в обратном порядке: 113. Из первого вычти второе: получится 198. Это число снова напиши наоборот: 891. И два последние числа сложи 891 + 198 = 1089

Удивительное дело: какие бы числа мы ни брали, в ответе всегда будет 1089!Теперь предложи провести все эти действия с числами кому-то из друзей. Представляешь, как он удивится, когда ты, не спрашивая у него, сколько получилось в результате (как это бывает в других математических фокусах), сам назовёшь ответ! Для эффекта можешь сообщить его не сразу, а через несколько секунд, как бы что-то подсчитывая в уме. Почему так происходит?

2. Попроси товарища задумать какое-нибудь двузначное число, вычесть из него сумму его цифр, зачеркнуть в полученном результате одну цифру и сообщить, какое число осталось. После этого ты тотчас скажешь, какая цифра зачёркнута! Для этого ты всего-навсего из 9 вычтешь оставшееся однозначное число.

Пример: 97 - 16 = 81, 8 зачёркивается и друг говорит, что осталось

1. Ты выполняешь в уме вычитание и получаешь в результате зачёркнутую цифру:

9 - 1 = 8.

Почему так происходит?

Приложение 2

Примерные задания для детей, мотивированных к интеллектуальной деятельности, в возрасте от 6 до 10 лет.

1. Сидели на скамеечке 4 девушки: Ольга, Наталья, Людмила и Оксана. Оксана сидела рядом с Ольгой, А Наталья была в синем платье. Людмила была в зеленом. Оксана была не последней. Красное платье Ольги хорошо сочеталось с синим платьем одной из подруг. Платья у девушек были красного, желтого, синего и зеленого цветов. Нарисуйте, в каком порядке сидели девушки, и какого цвета у них были платья. Если можно, дайте несколько вариантов правильных ответов.

2. На столе лежало 5 синих и 7 красных карандашей. Девочка взяла 6карандашей. Взяла ли она хоть 1 красный карандаш? Докажите (Нарисуйте и объясните).

3. Посмотрите на схему:

Догадайтесь, каких животных мы можем поместить в заштрихованную область нашей схемы. Докажите. Перечислите животных и напишите объяснение.

4. Есть 5 квадратов, выложенных с помощью спичек. Переложите три спички так, чтобы получилось три прямоугольника, и не осталось лишних спичек.

5. У Кати был день рожденья. Вечером должны были прийти гости. Катя с мамой испекли торт и решили заранее порезать его на части, чтобы всем хватило по кусочку, включая Катю и маму. Мама разрезала торт пополам. Катя каждую половину разрезала еще раз пополам. Дальше резать было сложно - торт сыпался, крошился, и она отдала нож маме. Мама каждый кусочек торта разрезала еще на 3одинаковые части. Сколько гостей должно было прийти к Кате? Объясните.

6. Найди закономерность в расстановке чисел в квадрате (6 х 6) и заполни пустые клетки.

1713 16 19

22 28 31 34 40 43 49

55 67 70 Ответ: число + 3 = следующее число

147101316 192225283134 37 40 43 464952 555861646770

Приложения 3

Логические задачи

Задача №1.

Нюша, Бараш, Копатыч и Лосяш играли с мячами синим, зелёным, жёлтым и красным. Каким из мячей играл каждый из них, если мяч Бараша не синий, у Нюши не синий и не красный, а у Копатыча желтый мяч?

Задача №2.

Копатыч пригласил друзей на день рождения к 18-00. Бараш очень спешил. В 17-30 он уже прошел половину пути. Если он будет идти с такой же скоростью, то придет на 10 минут раньше. Сколько времени тратит Бараш на дорогу к другу?

Задача №3.

Маша, Катя и Лена отправились в лес за грибами. Маша нашла 10 грибов, Катя столько сколько Маша и половину от Лениных. А Лена столько, сколько Маша и Катя вместе. Сколько всего грибов собрали девочки?

Задача №4.

Если Витя купит 3 пачки чипсов, то у него останется 4 рубля. А если бы он захотел купить 5 пачек, ему бы не хватило 20 рублей. Сколько денег у Вити?

Задача №5.

Валя любит молочные ириски и не любит шоколадные. В вазе 7 молочных и 4 шоколадных ириски. Сколько нужно достать конфет не глядя, чтобы среди них точно попала хоть одна молочная?

Задача №6.

Сидя на уроке Дима мечтал: Если бы к моим деньгам добавить ещё половину да ещё 20 рублей, мне бы хватило денег на комиксы. Сколько денег у Димы, если комиксы стоят 110 рублей?

Задача №7.

Саша, Степа и Коля играли в мяч. Один из мальчиков попал в окно и разбил стекло. Саша сказал: «Окно разбил не я». Коля сказал: «Окно разбил Степа». Спустя некоторое время выяснилось, что один из мальчиков говорит правду, а другой врет. Кто разбил окно?

Задача №8.

На зачете Витя, Дима и Коля, верно, решили разное количество задач. Витя и Дима вместе решили 6 задач. Коля и Витя - 4задачи. Кто из них получит лучшую отметку, а кому не повезло на этот раз?

Задача №9.

За 7 наклеек и две тетради Лена заплатила 120рублей. 5 наклеек стоят столько же, сколько половина всей покупки. Сколько стоит одна наклейка и одна тетрадь?

Задача №10.

Фрекен Бок испекла 30 плюшек. Малыш съел несколько штук, Карлсон на 17штук больше. Домомучительнице досталось всего три плюшки. Кто сколько плюшек съел?

Задача №11.

Дядя Федор, Шарик, кот Матроскин и Печкин решили пойти зимой на охоту. Там они потревожили медведя и убегали из леса, обгоняя друг друга. Шарик бежал быстрее Матроскина, но медленнее Печкина, Матроскин прибежал домой позже, чем Дядя Федор, который бежал медленнее Шарика. У кого больше всех шансов попасть в лапы к медведю- шатуну?

Задача №12.

Три реки Дон, Северский Донец и Сал протекают в городах Семикаракорск, Ростов, Каменск. Северский Донец протекает не в Семикаракорске, а Дон не в Каменске и не в Семикаракорске. Река Ростова имеет длину не 798 км. Та река, которая течет в Каменске длиной 1053км. Определите местонахождение и длину каждой реки.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.