Обучение детей придумыванию задач-головоломок по преобразованию фигур

Психологические особенности восприятия формы предметов детьми дошкольного возраста. Методика ознакомления детей с формой, геометрическими фигурами и их преобразованием. Формирование здоровой, развитой личности ребенка. Предматематическая подготовка детей.

Рубрика Педагогика
Вид курсовая работа
Язык русский
Дата добавления 07.06.2015
Размер файла 373,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

Обучение детей придумыванию задач-головоломок по преобразованию фигур

Выполнила: Ильинская Екатерина

Ташкент 2015

Содержание

Введение

Глава I. Теоретические основы обучения детей придумыванию задач-головоломок по преобразованию фигур

1.1 Психологические особенности восприятия формы предметов детьми дошкольного возраста

1.2Особенности восприятия геометрических фигур детьми дошкольного возраста

Глава II. Методические основы обучения детей придумыванию задач-головоломок по преобразованию фигур

2.1 Методика ознакомления детей с формой, геометрическими фигурами и их преобразованием

2.2 Методические рекомендации по обучению детей решению и придумыванию задач-головоломок по преобразованию фигур

Заключение

Список литературы

Приложение

Введение

Актуальность исследования. Система образования и подготовки кадров, которая сложилась до провозглашения независимости в Узбекистане, абсолютно не отвечала сути демократических преобразований, которые начали осуществляться в республике. Коренные реформы были обусловлены также возникшим еще в 80-е годы прошлого столетия кризисом в мировой системе образования.

Демократическое и развивающее государство во главе с президентом отлично осознавало, что надежды на будущее связаны с молодым поколением, поэтому народу и обществу главой государства была предложена программа, кардинально реформирующая всю систему образования.

В полном соответствии с Национальной программой по подготовке кадров образование в стране реализуется в нескольких видах. Одно из них дошкольное образование. Дошкольное образование является начальным звеном системы непрерывного образования. Оно обеспечивает формирование здоровой, развитой личности ребенка, пробуждая тягу к учению, подготавливая к систематическому обучению.

Какие бы задачи мы сегодня ни ставили, какие бы проблемы нам ни приходилось решать, в конечном итоге все упирается в кадры и только в кадры. Без преувеличения можно сказать -- наше будущее, будущее нашей страны полностью зависит от того, кто придет нам на смену, какие кадры мы воспитаем. Мы еще и еще раз убеждаемся, какое огромное значение имеет реализация принятой на IX сессии Олий Мажлиса Национальной программы по подготовке кадров. Без ее решения практически нельзя видеть свою перспективу. Реализация Национальной программы, без преувеличения, должна стать основой для достижения нашей стратегической цели -- формирования процветающего, сильного демократического государства, гражданского общества.Каримов И.А. Узбекистан устремлённый в ХХI век. - Ташкент: Узбекистон, 1999. - С. 17.

В настоящее время происходит бурное развитие математической науки и проникновение ее в различные области знаний. Повышение уровня творческой активности, проблемы автоматизации производства, моделирования на электронно-вычислительных машинах и многое другое предполагает наличие у специалистов большинства современных профессий достаточно развитого умения четко и последовательно анализировать изучаемые процессы. Поэтому обучение в детском саду направлено, прежде всего, на воспитание у детей привычки полноценной логической аргументации окружающего. Опыт обучения свидетельствует о том, что развитию логического мышления дошкольников в наибольшей мере способствует изучение начальной математики. В этом возрасте мозг ребенка улавливает все до мелочей, и если порой малыш не все понимает, это не страшно, все равно какая-то часть учебного процесса залаживается у него в памяти, мозг начинает привыкать к новым данным.

Актуальность темы проявляется в том, что задачи на смекалку (головоломки) вызывают у дошкольников большой интерес. Дети могут, не отвлекаясь, подолгу упражняться в преобразовании фигур, перекладывая палочки или другие предметы по заданному образцу, по собственному замыслу. В таких занятиях формируются важные качества личности ребенка: самостоятельность, наблюдательность, находчивость, сообразительность, вырабатывается усидчивость, развиваются конструктивные умения.

В ходе решения и придумывания задач на смекалку, головоломок дети учатся планировать свои действия, обдумывать их, догадываться в поисках результата, проявляя при этом творчество. Эта работа активизирует не только мыслительную деятельность ребенка, но и развивает у него качества, - необходимые для профессионального мастерства, в какой бы сфере потом он ни трудился.

Цель работы: обосновать эффективность применения задач-головоломок по преобразованию фигур в обучении детей дошкольного возраста.

Объектом работы выступает система геометрических представлений в предматематической подготовке детей.

Предмет исследования - задачи головоломки геометрического содержания.

Исходя из объекта и предмета для достижения поставленной цели были определены следующие задачи:

Изучить психологические особенности восприятия формы предметов детьми дошкольного возраста.

Выявить особенности восприятия геометрических фигур детьми дошкольного возраста

Изучить методику развития представлений о форме предметов, геометрических фигурах у дошкольников.

Определить подходы к обучению детей решению и придумыванию задач-головоломок по преобразованию фигур.

Глава I. Теоретические основы обучения детей придумыванию задач-головоломок по преобразованию фигур

1.1 Психологические особенности восприятия формы предметов детьми дошкольного возраста

Одним из ведущих познавательных процессов детей дошкольного возраста является восприятие. Оно выполняет ряд функций: объединяет свойства предметов в целостный образ; объединяет все познавательные процессы в совместной согласованной работе по переработке и получению информации; объединяет весь полученный опыт от окружающего мира в форме представлений и образов предметов, и формирует целостную картину мира в соответствии с уровнем развития ребенка.2 Асмолов А.Г. Психология личности. - М.: Просвещение, 1990. - 241с.

Значительный вклад в понимание природы восприятия внесли психологи и педагоги - А.В. Запорожец, В.П. Зинченко, А.Н. Леонтьев, Л.А. Венгер, Л.С. Выготский, Б.Г. Ананьев и др.

Восприятие помогает отличить один предмет от другого, выделить какие-то предметы или явления из других похожих на него. Таким образом, развитие восприятия создает предпосылки для возникновения всех других, более сложных познавательных процессов, в системе которых оно приобретает новые черты.

В психологии одним из свойств восприятия выделяют целостность: воспринимая предмет, мы осмысливаем его как единое целое, имеющее определенную структуру. Именно целостное восприятие обеспечивает накопление жизненного опыта, т.к. образы воспринимаемых предметов сохраняются в памяти и руководят дальнейшем восприятием окружающего мира. Образы предметов подготавливают руку, глаз и другие органы чувств воспринимать похожие предметы ускоренно, в соответствии с жизненными задачами. Дети не умеют управлять своим восприятием, не могут самостоятельно анализировать тот или иной предмет, не умеют разлагать целое на части и снова объединять части в целое. Им характерно смешивать части и целое. Восприятие вещей остается глобальным, без различения деталей. Дети воспринимают детали как самостоятельный объект, а не как части целого, и именно поэтому они оказываются чувствительны к ним3 Белошистая А.В. Формирование и развитие математических способностей дошкольников. - М.: ВЛАДОС, 2003. - с.. При восприятии предметов существенное значение играет то, какая часть рассматривается, какую роль она играет в целом предмете. Осмысленному восприятию ребенка учит взрослый на материале явлений природы, предметов обихода и искусства. Важно у детей развивать наблюдательность, умение смотреть и видеть, а это, как правило, происходит посредством игры. В играх для развития целостных представлений дошкольники выполняют различные действия с предметами: конструируют предмет и составные элементы; узнают предмет по нескольким элементам или его назначению и т.д. Основная цель таких игр - это научить ребенка узнавать предмет по его отдельным признакам или частям.

Споры о том, какой признак предмета является основным для его восприятия, продолжаются среди психологов и при обсуждении особенностей чувственного познания предметов детьми дошкольного возраста.

В противоположность заявлениям Г. Фолькельта и других ученых о том, что ребенок до 7 лет «удивительно слеп к форме», советские исследователи не только показали ведущую роль формы предмета даже в восприятии преддошкольника, но и вскрыли некоторые условия, которые позволяют понять сложность соотношения формы и цвета предмета. Так, при изучении восприятия детей-дошкольников удалось установить, что цвет предмета является для ребенка опознавательным признаком лишь тогда, когда другой, обычно более сильный признак (форма), почему-либо не получил сигнального значения (например, при составлении коврика из цветной мозаики). Мухина В.С. Шестилетний ребенок в школе. - М., 1988. с.112

Эти факты наиболее отчетливо выражены при восприятии ребенком незнакомых предметов. По мнению, психолога З.М. Богуславской огромную роль играет и задача, стоящая перед детьми. Если надо выложить из одноцветных фигур узор, дети ориентируются на форму; если надо «спрятать» цветную фигуру на аналогичном фоне, решающее значение приобретает цвет. Иногда дети ориентируются на оба признака одновременно.

Исключив «конфликтность» в предложенном детям-дошкольникам задании (или форма, или цвет), психолог С. Н. Шабалин показал, что уже дети младшего дошкольного возраста совершенно правильно ориентируются на форму предмета, данного в виде силуэта или даже контурно.

В предпочтении ребенком одного или другого признака предмета существенная роль принадлежит слову. Фиксируя предмет, слово выделяет в качестве его основного опознавательного признака форму. Однако у младших дошкольников форма слита с предметным содержанием, что подтверждается легким опредмечиванием любой новой, незнакомой ребенку формы. Так, трех-, четырехлетние дети в треугольнике видят крышу, в конусе, опрокинутом вершиной вниз,- воронку, в прямоугольнике - окно. Пяти-, шестилетние дети могут выделить уже именно форму по сходству ее с определенным предметом. Они говорят, что круг похож на колесо, кубик - как кусок мыла, а цилиндр - как будто стакан.

1.2 Особенности восприятия геометрических фигур детьми дошкольного возраста

Узнав названия геометрических фигур, дети свободно оперируют соответствующими формами, находя их в знакомых им вещах, т. е. отвлекают форму от предметного содержания. Они говорят, что дверь - это прямоугольник, колпак лампы - шар, а воронка - это конус и узкий высокий цилиндр на нем. Так форма становится «видимой»: она приобретает для ребенка сигнальное значение и обобщенно отражается им на основе ее абстрагирования и обозначения словом.

Спорным в детской психологии является и вопрос о том, на что опирается ребенок в своем восприятии предмета: на его целостное отражение или на узнавание отдельных частей. Исследования (Ф.С. Розенфельд, Л.А. Шварц, Н. Гроссман) показывают, что и здесь нет однозначного и единственно правильного ответа. С одной стороны, в восприятии целого незнакомого предмета ребенок, по утверждению Г. Фолькельта, передает лишь свое общее «впечатление от целого»: «нечто дырявое» (решетка) или «нечто колющее» (конус). Находясь «во власти целого» (Зейферт), дети якобы не умеют выделять составляющие его части. На эту же «власть целого» указывают и многие авторы, изучавшие детские рисунки. Они объясняют такие факты якобы неспособностью ребенка-дошкольника к познавательной аналитической деятельности из-за его слишком ярко выраженной эмоциональности.

Однако факты, полученные другими исследователями (В. Штерн, С.Н. Шабалин, О.И. Галкина, Ф.С. Розенфельд, Г.Л. Розенгарт-Пупко), убеждают в том, что даже дети преддошкольного возраста не только умеют вычленять какой-либо характерный признак, но и опираются на него при опознании целого предмета.

Экспериментальные данные Л.А. Венгера показали, что возможностью различать геометрические фигуры обладают дети 3-4 месяцев. Детям предъявлялись два объемных тела одинакового стального цвета и размера (призма и шар), одно из них подвешивалась над манежем, чтобы угасить ориентировочную реакцию; затем снова подвешивалась пара фигур. На одну из них (призма) реакция угашена, другая (шар) - новая. Малыши обращали взор на новую фигуру и фиксировали ее взглядом в течение более длительного времени, чем старую.

В других исследованиях выявлено, что, если предметы отличаются цветом, то ребёнок (3 года) выделяет их форму только в том случае, если предмет знаком ребёнку из практического опыта (опыт манипуляций, действий).

Это доказывает и тот факт, что ребенок одинаково узнает прямые и перевернутые изображения (может рассматривать и понимать знакомые картинки, держа книжку «вверх ногами»), предметы, окрашенные в несвойственные цвета (черное яблоко), но квадрат, повёрнутый на угол, т.е. в виде ромба, не узнает, так как исчезает непосредственное сходство формы предмета, которого нет в опыте. Л.Венгер заметил, что на геометрической фигуре с изменением пространственной ориентации возникает такое же зрительное сосредоточение, как и на новой геометрической фигуре.

Уже на втором году жизни дети свободно выбирают фигуру по образцу из таких пар: квадрат и полукруг, прямоугольник и треугольник. Но различать прямоугольник и квадрат, квадрат и треугольник дети могут лишь после 2,5 лет. Отбор же по образцу фигур более сложной формы доступен примерно на рубеже 4-5 лет, а воспроизведение сложной фигуры осуществляют отдельные дети пятого и шестого года жизни.

Вначале дети воспринимают неизвестные им геометрические фигуры как обычные предметы, называя их именами этих предметов:

-цилиндр - стаканом, столбиком,

-овал - яичком,

-треугольник - парусом или крышей,

-прямоугольник - окошечком и т.п.

Под обучающим воздействием взрослых восприятие геометрических фигур постепенно перестраивается. Дети уже не отождествляют их с предметами, а лишь сравнивают: цилиндр - как стакан, треугольник - как крыша и т.п. И, наконец, геометрические фигуры начинают восприниматься детьми как эталоны, с помощью которых познание структуры предмета, его формы и размера осуществляется не только в процессе восприятия той или иной формы зрением, но и путем активного осязания, ощупывания ее под контролем зрения и обозначения словом. Запорожец А.В., Венгер Л.А. Восприятие и действие. - М.: Просвещение, 1967. - с 125

Совместная работа всех анализаторов способствует более точному восприятию формы предметов. Чтобы лучше познать предмет, дети стремятся коснуться его рукой, взять в руки, повернуть; причем рассматривание и ощупывание различны в зависимости от формы и конструкции познаваемого объекта. Поэтому основную роль в восприятии предмета и определении его формы имеет обследование, осуществляемое одновременно зрительным и двигательно-осязательным анализаторами с последующим обозначением словом. Однако у дошкольников наблюдается весьма низкий уровень обследования формы предметов; чаще всего они ограничиваются беглым зрительным восприятием и поэтому не различают близкие по сходству фигуры (овал и круг, прямоугольник и квадрат, разные треугольники).

Сравнение фигуры с формой того или иного предмета помогает детям понять, что с геометрическими фигурами можно сравнивать разные предметы или их части.

Так, постепенно геометрическая фигура становится эталоном определения формы предметов.

Познание геометрических фигур, их свойств и отношений расширяет кругозор детей, позволяет им более точно и разносторонне воспринимать форму окружающих предметов, что положительно отражается на их продуктивной деятельности (например, рисовании, лепке). Кларина Л.М. Дети и знаки: буквы, цифры, геометрические формы. - М.: Новая школа, 1993. - с. 21

Большое значение в развитии геометрического мышления и пространственных представлений имеют действия по преобразованию фигур (из двух треугольников составить квадрат или из пяти палочек сложить два треугольника).

Все эти разновидности упражнений развивают пространственные представления и начатки геометрического мышления детей, формируют у них умения наблюдать, анализировать, обобщать, выделять главное, существенное и одновременно с этим воспитывают такие качества личности, как целенаправленность, настойчивость.

Глава II. Методические основы обучения детей придумыванию задач-головоломок по преобразованию фигур

2.1 Методика ознакомления детей с формой, геометрическими фигурами и их преобразованием

Для реализации программных задач в качестве дидактического материала для детей группы 3-4 летних детей используются модели простейших плоских геометрических фигур (круг, квадрат) разного цвета и размера.

Еще до проведения систематических занятий педагог организует игры детей со строительным материалом, наборами геометрических фигур, геометрической мозаикой. В этот период важно обогатить восприятие детей, накопить у них представления о разнообразных геометрических фигурах, дать их правильное название.

На занятиях детей учат различать и правильно называть геометрические фигуры круг и квадрат. Каждая фигура познается в сравнении с другой.

На первом занятии первостепенная роль отводится обучению детей приемам обследования фигур осязательно-двигательным путем под контролем зрения и усвоению их названий.

Воспитатель показывает фигуру, называет ее, просит детей взять в руки такую же. Затем педагог организует действия детей с данными фигурами: прокатить круг, поставить, положить квадрат, проверить, будет ли он катиться. Аналогичные действия дети выполняют с фигурами другого цвета и размера.

В заключение проводятся два-три упражнения на распознавание и обозначение словами фигур («Что я держу в правой руке, а что в левой?»; «Дай мишке круг, а петрушке квадрат»; «На верхнюю полоску положите один квадрат, а на нижнюю много кругов» и т.п.).

На последующих занятиях организуется система упражнений с целью закрепления у детей умений различать и правильно называть геометрические фигуры:

а) упражнения на выбор по образцу: «Дай (принеси, покажи, положи) такую же». Применение образца может быть вариативным: акцентируется только форма фигуры, не обращается внимание на ее цвет и размер; рассматриваются фигуры определенного цвета, определенного размера и фигура определенного цвета и размера;

б) упражнения на выбор по словам: «Дай (принеси, покажи, положи, собери) круги» и т.п.; в вариантах упражнений могут содержаться указания на выбор фигуры определенного цвета и размера;

в) упражнения в форме дидактических и подвижных игр: «Что это?», «Чудесный мешочек», «Чего не стало?», «Найди свой домик» и др.

У детей пятого года жизни нужно, прежде всего, закрепить умение различать и правильно называть круг и квадрат, а затем и треугольник. С этой целью проводятся игровые упражнения, в которых дети группируют фигуры разного цвета и размера. Меняется цвет, размер, а признаки формы остаются неизменными. Это способствует формированию обобщенных знаний о фигурах.

Чтобы уточнить представления детей о том, что геометрические фигуры бывают разного размера, им показывают (на таблице, фланелеграфе или наборном полотне) известные геометрические фигуры. К каждой из них дети подбирают аналогичную фигуру, как большего, так и меньшего размера. Сравнив величину фигур (визуально или приемом наложения), дети устанавливают, что фигуры одинаковы по форме, но различны по размеру. В следующем упражнении дети раскладывают по три фигуры разного размера в возрастающем или убывающем порядке.

Затем можно предложить детям рассмотреть фигуры, лежащие в индивидуальных конвертах, разложить одинаковой формы рядами и предложить рассказать, у кого каких сколько.

На следующем занятии дети получают уже неодинаковые наборы фигур. Они, разбирая свои комплекты, сообщают, у кого какие фигуры и сколько их. При этом целесообразно упражнять детей и в сравнении количества фигур: «Каких фигур у тебя больше, а каких меньше? Поровну ли у вас квадратов и треугольников?» и т.п. В зависимости от того, как скомплектованы геометрические фигуры в индивидуальных конвертах, между их количеством может быть установлено равенство или неравенство.

Выполняя это задание, ребенок сравнивает количество фигур, устанавливая между ними взаимно однозначное соответствие. Приемы при этом могут быть разные: фигуры в каждой группе располагаются рядами, точно одна под другой, или располагаются парами, или накладываются друг на друга. Так или иначе, устанавливается соответствие между элементами фигур двух групп и на этой основе определяется их равенство или неравенство.

Подобным же образом организуются упражнения на группировку и сравнение фигур по цвету, а затем по цвету и размеру одновременно. Таким образом, постоянно меняя наглядный материал, получаем возможность упражнять детей в выделении существенных и несущественных для данного объекта признаков. Аналогичные занятия можно повторить по мере того, как дети будут узнавать новые фигуры.

С новыми геометрическими фигурами детей знакомят путем сравнения с уже известными:

-прямоугольник с квадратом,

-шар с кругом, а затем с кубом,

-куб с квадратом, а затем с шаром,

-цилиндр с прямоугольником и кругом, а затем с шаром и кубом.

Рассматривание и сравнение фигур проводят в определенной последовательности:

а) взаимное наложение или приложение фигур; этот прием позволяет четче воспринять особенности фигур, сходство и различие, выделить их элементы;

б) организация обследования фигур осязательно-двигательным путем и выделение некоторых элементов и признаков фигуры; эффект обследования фигуры в значительной мере зависит от того, направляет ли воспитатель своим словом наблюдения детей, указывает ли, на что следует смотреть, что узнать (направление линий, их связь, пропорции отдельных частей, наличие углов, вершин, их количество, цвет, размер фигуры одной и той же формы и др.); дети должны научиться словесно описывать ту или иную фигуру;

в) организация разнообразных действий с фигурами (катать, класть, ставить в разные положения); действуя с моделями, дети выявляют их устойчивость или неустойчивость, характерные свойства. Например, дети пробуют по-разному ставить шар и цилиндр и обнаруживают, что цилиндр может стоять, может лежать, может и катиться, а шар «всегда катится»;

г) организация упражнений по группировке фигур в порядке увеличения и уменьшения размера («Подбери по форме», «Подбери по цвету», «Разложи по порядку» и др.);

д) организация дидактических игр и игровых упражнений для закрепления умений детей различать и называть фигуры («Чего не стало?», «Что изменилось?», «Чудесный мешочек», «Домино форм», «Магазин», «Найди пару» и др.).

Таким образом, обнаруживают характерные свойства геометрических тел и фигур.

Как уже отмечалось, основной задачей обучения детей 5-6 лет является формирование системы знаний о геометрических фигурах. Первоначальным звеном этой системы являются представления о некоторых признаках геометрических фигур, умение обобщать их на основе общих признаков.

Детям даются известные им фигуры, и предлагают руками обследовать границы квадрата и круга, прямоугольника и овала и подумать, чем эти фигуры отличаются друг от друга и что в них одинаковое. Они устанавливают, что у квадрата и прямоугольника есть «уголки», а у круга и овала их нет. Воспитатель, обводя фигуру пальцем, объясняет и показывает на прямоугольнике и квадрате углы, вершины, стороны фигуры.

Вершина - это та точка, в которой соединяются стороны фигуры.

Стороны и вершины образуют границу фигуры, а граница вместе с ее внутренней областью - саму фигуру.

На разных фигурах дети показывают ее внутреннюю область и ее границу - стороны, вершины и углы как часть внутренней области фигуры.

Угол (плоский) - геометрическая фигура, образованная двумя лучами (сторонами), выходящими из одной точки (вершины).

Можно предложить детям заштриховать красным карандашом внутреннюю область фигуры, а синим карандашом обвести ее границу, стороны. Дети не только показывают отдельные элементы фигуры, но и считают вершины, стороны, углы у разных фигур. Сравнивая квадрат с кругом, они выясняют, что у круга нет вершин и углов, есть лишь граница круга - окружность.

В дальнейшем дети приучаются различать внутреннюю область любой фигуры и ее границу, считать число сторон, вершин, углов. Обследуя треугольник, они приходят к выводу, что у него три вершины, три угла и три стороны. Очень часто дети сами говорят, почему эта фигура в отличие от прямоугольника и квадрата называется треугольником.

Чтобы убедить детей, что выделенные ими признаки являются характерными свойствами проанализированных фигур, воспитатель предлагает те же фигуры, но больших размеров. Обследуя их, дети подсчитывают вершины, углы и стороны у квадратов, прямоугольников, трапеций, ромбов и приходят к общему выводу, что все эти фигуры независимо от размера имеют по четыре вершины, четыре угла и четыре стороны, а у всех треугольников ровно три вершины, три угла и три стороны.

В подобных занятиях важно ставить самих детей в положение ищущих ответа, а не ограничиваться сообщением готовых знаний. Необходимо приучать ребят делать свои заключения, уточнять и обобщать их ответы.

Такая подача знаний ставит детей перед вопросами, на которые им, может быть, не всегда легко найти нужный ответ, но вопросы заставляют ребят думать и более внимательно слушать воспитателя. Итак, не следует спешить давать детям готовые приемы нахождения ответа.

Программой воспитания и обучения в детском саду предусматривается познакомить старших дошкольников с четырехугольниками. Для этого детям показывают множество фигур с четырьмя углами и предлагают самостоятельно придумать название данной группе.

Предложения детей «четырехсторонние», «четырехугольные» нужно одобрить и уточнить, что эти фигуры называются четырехугольниками. Такой путь знакомства детей с четырехугольником способствует формированию обобщения. Группировка фигур по признаку количества углов, вершин, сторон абстрагирует мысль детей от других, несущественных признаков. Дети подводятся к выводу, что одно понятие включается в другое, более общее. Такой путь усвоения наиболее целесообразен для умственного развития дошкольников.

В дальнейшем закрепление представлений детей о четырехугольниках может идти путем организации упражнений по классификации фигур разного размера и цвета, зарисовке четырехугольников разного вида на бумаге, разлинованной в клетку, и др.

Можно использовать следующие варианты упражнений на группировку четырехугольников:

- отобрать все красные четырехугольники, назвать фигуры данной группы;

-отобрать четырехугольники с равными сторонами, назвать их;

-отобрать все большие четырехугольники, назвать их форму, цвет;

-слева от карточки положить все четырехугольники, а справа не четырехугольники; назвать их форму, цвет, величину.

Полезно применять и такой прием: детям раздаются карточки с контурным изображением фигур разного размера и формулируется задание подобрать соответствующие фигуры по форме и размеру и наложить их на контурное изображение. Равными фигурами будут те, у которых все точки совпадут по контуру.

Важной задачей является обучение детей сравнению формы предметов с геометрическими фигурами как эталонами предметной формы. У ребенка необходимо развивать умение видеть, какой геометрической фигуры или какому их сочетанию соответствует форма того или иного предмета. Это способствует более полному, целенаправленному распознаванию предметов окружающего мира и воспроизведению их в рисунке, лепке, аппликации. Хорошо усвоив геометрические фигуры, ребенок всегда успешно справляется с обследованием предметов, выделяя в каждом из них общую, основную форму и форму деталей.

Работа по сопоставлению формы предметов с геометрическими эталонами проходит в два этапа.

На первом этапе нужно научить детей на основе непосредственного сопоставления предметов с геометрической фигурой давать словесное определение формы предметов.

Таким образом, удается отделить модели геометрических фигур от реальных предметов и придать им значение образцов. Для игр и упражнений подбираются предметы с четко выраженной основной формой без каких-либо деталей (блюдце, обруч, тарелка - круглые; платок, лист бумаги, коробка - квадратные и т.п.). На последующих занятиях могут быть использованы картинки, изображающие предметы определенной формы. Занятия следует проводить в форме дидактических игр или игровых упражнений: «Подбери по форме», «На что похоже?», «Найди предмет такой же формы», «Магазин» и т.п. Далее выбирают предметы указанной формы (из 4-5 штук), группируют их и обобщают по единому признаку формы (все круглые, все квадратные и т.д.). Постепенно детей учат более точному различению: круглые и шаровидные, похожие на квадрат и куб и т.п. Позднее им предлагают найти предметы указанной формы в групповой комнате. При этом дается лишь название формы предметов: «Посмотрите, есть ли на полке предметы, похожие на круг» и т.п. Хорошо провести игры «Путешествие по групповой комнате», «Найдите, что спрятано».

При сопоставлении предметов с геометрическими фигурами нужно использовать приемы осязательно-двигательного обследования предметов. Можно проверить знания детьми особенностей геометрических фигур, задать с этой целью такие вопросы: «Почему вы думаете, что тарелка круглая, а платок квадратный?», «Почему вы положили эти предметы на полку, где стоит цилиндр?» (игра «Магазин») и т.п. Дети описывают форму предметов, выделяя основные признаки геометрической фигуры. В этих упражнениях можно подвести детей к логической операции - классификации предметов.

На втором этапе детей учат определять не только основную форму предметов, но и форму деталей (домик, машина, снеговик, петрушка и т.д.). Игровые упражнения проводят с целью обучения детей зрительно расчленять предметы на части определенной формы и воссоздавать предмет из частей. Такие упражнения с разрезными картинками, кубиками, мозаикой лучше проводить вне занятия.

Упражнения на распознавание геометрических фигур, а также на определение формы разных предметов можно проводить вне занятий, как небольшими группами, так и индивидуально, используя игры «Домино», «Геометрическое лото» и др.

Следующая задача - научить детей составлять плоские геометрические фигуры путем преобразования разных фигур. Например, из двух треугольников сложить квадрат, а из других треугольников - прямоугольник. Затем из двух-трех квадратов, сгибая их разными способами, получать новые фигуры (треугольники, прямоугольники, маленькие квадраты).

Эти задания целесообразно связывать с упражнениями по делению фигур на части. Например, детям даются большие круг, квадрат, прямоугольник, которые делятся на две и четыре части. Все фигуры с одной стороны окрашены в одинаковый цвет, а с другой - каждая фигура имеет свой цвет. Такой набор дается каждому ребенку. Вначале дети смешивают части всех трех фигур, каждая из которых разделена пополам, сортируют их по цвету и в соответствии с образцом составляют целое. Далее вновь смешивают части и дополняют их элементами тех же фигур, разделенных на четыре части, снова сортируют и снова составляют целые фигуры. Затем все фигуры и их части поворачивают другой стороной, имеющей одинаковый цвет, и из смешанного множества разных частей выбирают те, что нужны для составления круга, квадрата, прямоугольника. Последняя задача является более сложной для детей, так как все части одноцветны и приходится делать выбор только по форме и размеру.

Можно и дальше усложнять задание. Разделив по-разному на две и четыре части квадрат и прямоугольник, например квадрат - на два прямоугольника и два треугольника или на четыре прямоугольника и четыре треугольника (по диагонали), а прямоугольник - на два прямоугольника и два треугольника или на четыре прямоугольника, а из них два маленьких прямоугольника - на четыре треугольника. Количество частей увеличивается, и это усложняет задание.

Очень важно упражнять детей в комбинировании геометрических фигур, в составлении разных композиций из одних и тех же фигур. Это приучает их всматриваться в форму различных частей любого предмета, читать технический рисунок при конструировании. Из геометрических фигур могут составляться изображения предметов.

Вариантами конструктивных заданий будет построение фигур из палочек и преобразование одной фигуры в другую путем удаления нескольких палочек:

-сложить два квадрата из семи палочек;

-сложить три треугольника из семи палочек;

-сложить прямоугольник из шести палочек;

-из пяти палочек сложить два разных треугольника;

-из девяти палочек составить четыре равных треугольника;

-из десяти палочек составить три равных квадрата;

-можно ли из одной палочки на столе построить треугольник?

-можно ли из двух палочек построить на столе квадрат?

Эти упражнения способствуют развитию сообразительности, памяти, мышления детей.

Знания о геометрических фигурах и форме предметов в подготовительной группе расширяются, углубляются и систематизируются.

Одна из задач подготовительной к школе группы - познакомить детей с многоугольником, его признаками: вершины, стороны, углы. Решение этой задачи позволит подвести детей к обобщению: все фигуры, имеющие по три и более угла, вершины, стороны, относятся к группе многоугольников.

Детям показывают модель круга и новую фигуру - пятиугольник. Предлагают сравнить их и выяснить, чем отличаются эти фигуры. Фигура справа отличается от круга тем, что имеет углы, много углов. Детям предлагается прокатить круг и попытаться прокатить многоугольник. Он не катится по столу. Этому мешают углы. Считают углы, стороны, вершины и устанавливают, почему эта фигура называется многоугольником. Затем демонстрируется плакат, на котором изображены различные многоугольники. У отдельных фигур определяются характерные для них признаки. У всех фигур много сторон, вершин, углов. Как можно назвать все эти фигуры, одним словом? И если дети не догадываются, воспитатель помогает им.

Для уточнения знаний о многоугольнике могут быть даны задания по зарисовке фигур на бумаге в клетку. Затем можно показать разные способы преобразования фигур: обрезать или отогнуть углы у квадрата и получится восьмиугольник. Накладывая два квадрата друг на друга, можно получить восьмиконечную звезду.

Упражнения детей с геометрическими фигурами, как и в предыдущей группе, состоят в опознавании их по цвету, размерам в - разном пространственном положении. Дети считают вершины, углы и стороны, упорядочивают фигуры по их размерам, группируют по форме, цвету и размеру. Они должны не только различать, но и изображать эти фигуры, зная их свойства и особенности. Например, воспитатель предлагает детям нарисовать на бумаге в клетку два квадрата: у одного квадрата длина сторон должна быть равна четырем клеткам, а у другого - на две клетки больше.

После зарисовки этих фигур детям предлагается разделить квадраты пополам, причем в одном квадрате соединить отрезком две противолежащие стороны, а в другом квадрате соединить две противолежащие вершины; рассказать, на сколько частей разделили квадрат и какие фигуры получились, назвать каждую из них. В таком задании одновременно сочетаются счет и измерение условными мерками (длиной стороны клеточки), воспроизводятся фигуры разных размеров на основе знания их свойств, опознаются и называются фигуры после деления квадрата на части (целое и части).

Согласно программе в подготовительной группе следует продолжать учить детей преобразованию фигур.

Эта работа способствует

-познанию фигур и их признаков

-развивает конструктивное и геометрическое мышление.

Приемы этой работы многообразны:

-одни из них направлены на знакомство с новыми фигурами при их делении на части,

-другие - на создание новых фигур при их объединении.

Детям предлагают сложить квадрат пополам двумя способами: совмещая противолежащие стороны или противолежащие углы - и сказать, какие фигуры получились после сгибаний (два прямоугольника или два треугольника).

Можно предложить узнать, какие получились фигуры, когда прямоугольник разделили на части, и сколько теперь всего фигур (один прямоугольник, а в нем три треугольника). Особый интерес для детей представляют занимательные упражнения на преобразование фигур.

Таким образом, для развития у ребенка представлений формы надо освоить ряд практических действий, которые помогают ему воспринимать форму независимо от положения фигуры в пространстве, от цвета и величины. Это такие практические действия, как: наложение фигур, прикладывание, переворачивание, сопоставление элементов фигур, обведение пальцем контура, ощупывание, рисование.

После освоения практических действий ребенок может узнать любую фигуру, выполняя эти же действия в уме. За весь дошкольный период ребенок осваивает шесть основных форм: треугольник, круг, овал, квадрат, прямоугольник и трапеция. Можно обследовать предмет более подробно, не только общую форму, но и ее отличительные детали (углы, длину сторон), наклон фигуры.

2.2 Методические рекомендации по обучению детей решению и придумыванию задач-головоломок по преобразованию фигур

Обучение решению и придумыванию задач-головоломок по преобразованию фигур начинается в старшем дошкольном возрасте, когда дети этого возраста с удовольствием отгадывают загадки, решают различные головоломки, любят игры на смекалку.

В дошкольном возрасте используются самые простые головоломки. Одним из наиболее доступных видов задач на смекалку являются игры со счетными палочками. Их еще называют задачами на смекалку геометрического характера, т. к. в ходе решения идет создание различных форм и преобразование одних фигур в другие. Для организации работы с детьми необходимо иметь наборы обычных счетных палочек для составления из них наглядно представленных задач-головоломок. Кроме этого, потребуются таблицы с графически изображенными на них фигурами, которые подлежат преобразованию. На обратной стороне таблиц указывается, какое преобразование надо проделать и какая фигура должна получиться в результате. дошкольный геометрический головоломка

Задачи на смекалку различны по степени сложности, характеру преобразования (трансфигурации). Их нельзя решать каким-либо усвоенным ранее способом. В ходе таких игр дошкольники охотно преодолевают значительные трудности, могут отказаться от сиюминутных желаний, возникающих по ходу выполнения той или иной игровой задачи. Кроме гордости от сознания своей сообразительности, уверенности в своих возможностях, игры - головоломки со счетными палочками формируют такие качества, как усидчивость, упорство в достижении цели, находчивость, развивают конструктивные умения, умственную и творческую активность.

Для детей 5-7 лет задачи на смекалку можно объединить в 3 группы (по способу перестроения фигур, степени сложности).

1. Задачи на составление заданной фигуры из определенного количества палочек: составить 2 равных квадрата из 7 палочек, 2 равных треугольника из 5 палочек, как уже ранее было сказано.

2. Задачи на изменение фигур, для решения которых надо убрать указанное количество палочек.

3. Задачи на смекалку, решение которых состоит в перекладывании палочек с целью видоизменения, преобразования заданной фигуры.

В ходе обучения способам решения, задачи на смекалку даются в указанной последовательности, начиная с более простых, с тем, чтобы усвоенные детьми умения и навыки готовили ребят к более сложным действиям. Организуя эту работу, воспитатель ставит цель - учить детей приемам самостоятельного поиска решения задач, не предлагая никаких готовых приемов, способов, образцов решения.

К такому самостоятельному поиску решения самых простых задач первой группы дети подготовлены в результате повседневной работы. Для этого достаточно дополнительно поупражнять их в составлении геометрических фигур (квадратов, прямоугольников, треугольников) из счетных палочек.

Составление геометрических фигур

(подготовительные игровые упражнения для детей 5 лет)

Цель. Упражнять детей в составлении геометрических фигур на плоскости стола, анализе и обследовании их зрительно-осязательным способом.

Материал: счетные палочки длиной 5 см (15-20 штук на ребенка), 2 толстые нитки длиной 25-30 см.

Ход работы. Воспитатель предлагает детям назвать известные им геометрические фигуры. После перечисления сообщает цель: "Будем составлять фигуры на столе и рассказывать о них". Дает задания:

1. Составить квадрат и треугольник маленького размера.

Вопросы для анализа: "Сколько палочек потребовалось для составления квадрата? Треугольника? Почему? Покажите стороны, углы, вершины фигур".

2. Составить маленький и большой квадраты.

Вопросы для анализа: "Из скольких палочек составлена каждая сторона большого квадрата? Весь квадрат? Почему левая, правая, верхняя и нижняя стороны квадрата составлены из одного и того же количества палочек?"

Можно дать задание на составление большого и маленького треугольника. Анализ выполнения задания проводится аналогично.

3. Составить прямоугольник, верхняя и нижняя стороны которого будут равны 3 палочкам, а левая и правая -2.

После анализа детям предлагают составить любой четырехугольник и доказать правильность выполнения задания.

4. Составить из ниток последовательно фигуры: круг и овал, большие и маленькие квадраты, треугольники, прямоугольники и четырехугольники. Маленькие фигуры составляются из нитки, сложенной вдвое.

Анализ фигур проводится по схеме: "Сравните и скажите, чем отличаются, чем похожи фигуры. Докажите, что фигура составлена правильно".

Уточнение представлений детей о геометрических фигурах; их элементарных свойствах (количество углов и сторон), упражнение в составлении будут способствовать усвоению детьми способов решения головоломок первой группы. Их предлагают детям в определенной последовательности:

1. Составить 2 равных треугольника из 5 палочек.

2. Составить 2 равных квадрата из 7 палочек.

3. Составить 3 равных треугольника из 7 палочек.

4. Составить 4 равных треугольника из 9 палочек.

5. Составить 3 равных квадрата из 10 палочек.

6. Из 5 палочек составить квадрат и 2 равных треугольника.

7. Из 9 палочек составить квадрат и 4 треугольника.

8. Из 10 палочек составить 2 квадрата: большой и маленький (маленький квадрат составляется из 2 палочек внутри большого).

9. Из 9 палочек составить 5 треугольников (4 маленьких треугольника, полученных в результате пристроения, образуют 1 большой).

10. Из 9 палочек составить 2 квадрата и 4 равных треугольника (из 7 палочек составляют 2 квадрата и делят на треугольники 2 палочками).

Для того чтобы решить эти задачи, нужно владеть способом пристроения, присоединения одной фигуры к другой. Впервые получив такое задание, дети пытаются составить 2 отдельных треугольника, квадрата. После ряда безуспешных попыток догадываются о необходимости пристроения к одному треугольнику, квадрату другого, для чего достаточно 2, 3 палочек.

По мере накопления детьми опыта в решении подобных задач методом "проб и ошибок" количество неправильных проб, практических действий начинает сокращаться. Исходя из этого, воспитатель, сохраняя занимательность, игровой характер упражнений, направляет ребят на целенаправленные пробы, которым предшествует хотя бы элементарное обдумывание конкретного хода решения. В процессе поиска решения обращает внимание ребят на то, что, прежде чем составлять ответ, надо подумать, как это можно сделать. Достаточно провести 3-4 занятия, в процессе которых дети овладевают способами пристроения к одной фигуре другой так, чтобы одна или несколько сторон оказались общими. Примеры (для детей 5-6 лет)

Составление фигур из треугольников и квадратов

1. Пример

Цель. Учить детей составлять геометрические фигуры из определенного количества палочек, пользуясь приемом пристроения к одной фигуре, взятой за основу, другой.

Материал: У детей на столах счетные палочки, доска, мел на данном и следующем занятиях.

Ход работы. 1. Воспитатель предлагает детям отсчитать по 5 палочек, проверить и положить их перед собой. Затем говорит: "Скажите, сколько потребуется палочек, чтобы составить треугольник, каждая сторона которого будет равна одной палочке. Сколько потребуется палочек для составления двух таких треугольников? У вас только 5 палочек, но из них надо составить тоже 2 равных треугольника. Подумайте, как это можно сделать, и составляйте".

После того как большинство детей выполнят задание, воспитатель просит их рассказать, как надо составить 2 равных треугольника из 5 палочек. Обращает внимание ребят на то, что выполнять задание можно по-разному. Способы выполнения надо зарисовать. При объяснении пользоваться выражением "пристроил к одному треугольнику другой снизу" (слева и т.д.), а в объяснении решения задачи пользоваться также выражением "пристроил к одному треугольнику другой, используя лишь 2 палочки".

2. Составить 2 равных квадрата из 7 палочек (воспитатель предварительно уточняет, какую геометрическую фигуру можно составить из 4 палочек). Дает задание: отсчитать 7 палочек и подумать, как из них составить на столе 2 равных квадрата.

После выполнения задания рассматривают разные способы пристроения к одному квадрату другого, воспитатель зарисовывает их на доске.

Вопросы для анализа: "Как составил 2 равных квадрата из 7 палочек? Что сделал сначала, что потом? Из скольких палочек составил 1 квадрат? Из скольких палочек пристроил к нему второй квадрат? Сколько потребовалось палочек для составления 2 равных квадратов?"

2. Пример

Цель. Составлять фигуры путем пристроения. Видеть и показывать при этом новую, полученную в результате составления фигуру; пользоваться выражением: "пристроил к одной фигуре другую", обдумывать практические действия.

Ход работы. Воспитатель предлагает детям вспомнить, какие фигуры они составляли, пользуясь приемом пристроения. Сообщает, чем они сегодня будут заниматься - учиться составлять новые, более сложные фигуры. Дает задания:

1. Отсчитать 7 палочек и подумать, как можно из них составить 3 равных треугольника.

После выполнения задания воспитатель предлагает всем детям составить 3 треугольника в ряд так, чтобы получилась новая фигура - четырехугольник (см. приложение 1). Этот вариант решения дети зарисовывают мелом на доске. Воспитатель просит показать 3 отдельных треугольника, четырехугольник и треугольник (2 фигуры), четырехугольник.

2. Из 9 палочек составить 4 равных треугольника. Подумать, как это можно сделать, рассказать, затем выполнять задание.

После этого воспитатель предлагает детям нарисовать мелом на доске составленные фигуры и рассказать о последовательности выполнения задания.

Вопросы для анализа: "Как составил 4 равных треугольника из 9 палочек? Какой из треугольников составил первым? Какие фигуры получились в результате и сколько?"

Воспитатель, уточняя ответы детей, говорит: "Начинать составлять фигуру можно с любого треугольника, а потом к нему пристраивать другие справа или слева, сверху или снизу".

3. Пример

Цель. Упражнять детей в самостоятельных поисках путей составления фигур на основе предварительного обдумывания хода решения.

Ход работы. Воспитатель задает детям вопросы: "Из скольких палочек можно составить квадрат, каждая из сторон которого равна одной палочке? 2 квадрата? (из 8 и 7). Как будете составлять 2 квадрата из 7 палочек?"

1. Отсчитать 10 палочек и составить из них 3 равных квадрата. Подумать, как надо составлять, и рассказать.

По мере выполнения воспитатель вызывает нескольких детей зарисовать составленные ими фигуры на доске и рассказать последовательность составления. Предлагает всем детям составить фигуру из 3 равных квадратов, расположенных в ряд, по горизонтали. На доске рисует такую же и говорит: "Посмотрите на доску. Здесь нарисовано, как можно по-разному решать эту задачу. Можно пристраивать к одному квадрату другой, а затем и третий. (Показывает.) А можно составить прямоугольник из 8 палочек, затем разделить его на 3 равных квадрата 2 палочками". (Показывает.) Затем задает вопросы: "Какие фигуры получились и сколько? Сколько прямоугольников получилось? Найдите и покажите их".

2. Из 5 палочек составить квадрат и 2 равных треугольника. Сначала рассказать, а затем составлять.

При выполнении этого задания дети, как правило, допускают ошибку: составляют 2 треугольника усвоенным способом - пристроением, в результате чего получается четырехугольник. Поэтому воспитатель обращает внимание ребят на условие задачи, необходимость составления квадрата, предлагает наводящие вопросы: "Сколько палочек нужно для составления квадрата? Поскольку у вас палочек? Можно ли составить, пристраивая 1 треугольник к другому? Как составить? С какой фигуры надо начинать составлять?" После выполнения задания дети объясняют, как они делали: надо составить квадрат и разделить его 1 палочкой на 2 равных треугольника.

4. Пример

Цель. Упражнять детей в умении высказывать предположительное решение, догадываться.

Ход работы. 1. Из 9 палочек составить квадрат и 4 треугольника. Подумать и сказать, как надо составлять. (Несколько детей высказывают предположения.)

Если дети затрудняются, воспитатель советует: "Вспомните, как составляли из 5 палочек квадрат и 2 треугольника. Подумайте и догадайтесь, как можно выполнить задание. Тот, кто первым решит задачу, зарисует полученную фигуру на доске".

После выполнения и зарисовки ответа воспитатель предлагает всем детям составить у себя одинаковые фигуры (см. приложение 2).

Вопросы для анализа: "Какие геометрические фигуры получились? Сколько треугольников, квадратов, четырехугольников? Как составляли? Как удобнее, быстрее составлять?"

2. Из 10 палочек составить 2 квадрата - маленький и большой.

3. Из 9 палочек составить 5 треугольников.

При необходимости в ходе выполнения второго и третьего заданий воспитатель дает наводящие вопросы, советы: "Сначала подумайте, затем составьте. Не повторяйте ошибок, ищите новый ход решения. Говорится ли в задаче о размере треугольников? Это задачи на смекалку, надо сообразить, догадаться, как решить задачу".

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.