Нетрадиционные формы контроля на уроках математики

Основные подходы к активизации познавательной деятельности учащихся на уроках математики. Формы познавательной деятельности. Характеристика нетрадиционных форм контроля на уроках математики. Методы стимулирования познавательной деятельности на уроке.

Рубрика Педагогика
Вид доклад
Язык русский
Дата добавления 27.10.2017
Размер файла 3,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №10»

Нетрадиционные формы контроля на уроках математики

(выступление на заседании МО предметников)

Подготовила выступление

учитель математики

Филистова Галина Ивановна

21.05 2016г.

с. Бурлацкое

Многие годы единственной формой итогового контроля знаний, умений и навыков оставалась контрольная работа, при этом личностный рост ребенка оставался вне поля зрения педагога. Сегодня совершенствование учебного процесса требует развития и внедрения новых нетрадиционных форм обучения. Изменение форм обучения влечет за собой изменение в системе контроля. Она становится более гибкой, позволяющей, с одной стороны, организовывать контроль знаний, умений и навыков, а с другой стороны - находить возможность развития интеллектуальных и творческих способностей учащегося.

Нетрадиционные формы тематического контроля, частично повторяют уже известное, но существенно отличаются учетом эмоционального состояния ученика, зачастую в игровой формой работы, более широкими возможностями развития памяти, внимания, мышления, воспитания каждой личности и коллектива в целом.

Одной из главных задач в своей педагогической деятельности считаю развитие интереса к предмету, личностно ориентированный подход в обучении, создание ситуации успеха для каждого ученика.

Контроль знаний на уроках математики

Усвоение курса математики в настоящее время требует уровневой дифференциации в обучении. В основе которой, во-первых, обязательное достижение всеми учащимися уровня обязательной подготовки, во-вторых, создание условий для усвоения материала на более высоких уровнях теми, кто проявляет интерес к математике и желание освоить больше.

Как осуществлять контроль знаний при этом?

Какие формы контроля знаний и умений наиболее приемлемы для уроков математики?

Индивидуальная форма контроля целесообразна в том случае, если требуется выяснить индивидуальные способности и возможности отдельных учащихся. Это смотр знаний, олимпиады и конкурс «Кенгуру», выполнение учащимися презентаций и рефератов. Смотр знаний хорошо провести в начале учебного года и в начале третьей четверти для выявления сильнейших и для составления заданий на повторение. Олимпиады, проводимые в конце первой, начале второй четверти, помогут определить кандидатов на городской этап. На индивидуальный опрос требуется много времени, поэтому нет возможности проводить его часто. Он целесообразен для учащихся пропустивших много занятий или показавших результат контрольной работы не соответствующий его текущим оценкам.

Групповую форму организации контроля применяют при повторении с целью обобщения и систематизации учебного материала при выделении приёмов и методов решения задач, при акцентировании внимания учащихся на наиболее рациональных способах выполнения заданий, на лучшем из вариантов доказательства теоремы и т.п. Показательна в этом случае устная контрольная работа по карточкам, она позволяет повторить довольно быстро какую-то небольшую тему и оценить её усвоение большим количеством учащихся или для получения обратной связи. Её можно проводить по окончании изучения определённой темы.

Математический диктант также можно использовать как для контроля пройденного материала, так и для актуализации прежних знаний. В этом случае хорошо включить один из вопросов по ещё не пройденному материалу. Обязательно поощрить того, кто даст на него правильный ответ.

Очень нравятся учащимся обобщающие уроки обучения, уроки-игры в командах и парах. Эта форма контроля относится к нетрадиционным формам. При этой форме контроля оценивается работа всей группы или команды в целом, и каждый участник получает оценку , заработанную всей командой. При таком подходе воспитывается ответственность за товарища, умение работать в группе над одной задачей, способность самостоятельно распределить нагрузку по силам среди участников группы, находчивость, смекалка, способность применить знания, полученные на уроках в нестандартной ситуации. Такие уроки контроля не стоит проводить часто, но два - три урока за четверть заметно активизируют познавательную деятельность учащихся.

Фронтальный контроль полезен для проверки правильности восприятия и понимания учебного материала, качества словесного, предметного графического оформления, степени закрепления в памяти. Для 5, 6 и 7-х классов можно рекомендовать работу с таблицами, геометрическими материалами, графические диктанты, работа с учебником (по плану, составление плана ответа, составление опорных конспектов, проверка внимания при чтении). Для старшекурсников подойдут тематические беседы и опросы. Фронтальный контроль в той или иной форме можно использовать на каждом уроке.

Текущий контроль важен в течение всего обучения, на каждом уроке, причём на каждом его этапе. Это самостоятельные работы, тесты, устные опросы; математическое лото, кроссворды и ребусы; задания «Найди ошибку», «Истинно - ложно» с использованием сигнальных карточек, система плюсов-минусов, проверка самоподготовки. Оценивание при текущем контроле оказывает огромное воспитательное воздействие. Объективная оценка может поддержать, подбодрить ученика, поспешно выставленная - задержать, затормозить. Так оценку правильнее ставить за работу в течение всего урока, а не за единичный ответ.

Тематический контроль в виде контрольных работ по вариантам, тестирования по индивидуальным тестам, зачёт по карточкам или билетам служит для выставления оценок за четверть, полугодие, учебный год. На зачётном уроке сочетаются индивидуальная и групповая формы работы. Основное преимущество бригадного способа зачёта - чёткая схема опроса: понятно кто и кого должен опрашивать. Кроме того, менее успевающие ученики имеют возможность прослушать отчёт бригадира и одной - двух пар. При этом ученики опрашивают даже строже, чем учитель.

Итоговый контроль носит специализированный характер. На алгебре он проводится в формате ГИА и ЕГЭ.

Каким бы ни был контроль, он должен быть целенаправленным, объективным, всесторонним и регулярным.

Какие формы контроля знаний предпочитают сами учащиеся?

Ученикам из разных школ было предложено ответить на вопрос: «Если бы у вас была возможность выбирать, то вы предпочли форму контроля знаний:

1. Зачёт, экзамен по билетам

2. Тестирование по индивидуальным тестам

3. Тестирование по одному варианту

4. Контрольная работа по вариантам

5. Письменный опрос (диктант)

6. Зачёт-беседа по материалам курса

7. Устный опрос

8. Опрос с помощью ПК (тест с выбором ответа)

9. Реферат (исследовательская работа)

10. Творческое задание (изготовление пособий, карточек)

11. Смотр знаний, конкурс, игра, олимпиада, викторина

12. Свой вариант контроля

Учащиеся предпочитают тесты с выбором ответа, опрос с помощью ПК, игру, зачет по билетам.

Проверка и оценка знаний, умений и навыков учащихся по математике всегда имела и имеет место в практике работы школы. Она является для учителя средством установления того, как ученик усваивает программный материал, как продвигается в своем развитии по годам обучения. Одновременно проверка и оценка служат сигналом о трудностях в изучении материала, об эффективности применения учителем того или иного учебного пособия, методов и приемов обучения. Проверка знаний важна и для учащихся, так как служит им сигналом об уровне усвоения и обучает самоконтролю.

познавательный нетрадиционный математика

Вопросам проверки и оценки знаний учащихся посвящено много исследований в педагогике и психологии, а по результатам этих исследований изданы практические разработки самостоятельных и контрольных работ, различных тестов, олимпиадных заданий, математических диктантов и так далее.

Основной целью проверки и оценки качества знаний ученика учителем является определение качества усвоения учеником программного материала - уровня овладения знаниями, умениями, навыками, предусмотренными стандартом по математике.

Задачами учета и контроля знаний по математике можно считать следующие:

1. Определить меру ответственности каждого ученика за результаты учения.

2. Оценить уровень умений ученика добывать знания самостоятельно.

3. Учитель должен анализировать результаты контроля и делать вывод о необходимости совершенствовать преподавание, а ученик - о необходимости продвижения в своем умственном развитии.

Условно контроль знаний учащихся можно подразделить на следующие виды:

1. Текущий контроль.

2. Тематический контроль.

3. Периодический контроль.

Текущий контроль - это контроль за усвоением знаний, умений и навыков учащимися на каждом уроке, на отдельных этапах урока. Обучение математике, как известно, сопровождается записями в тетрадях, поэтому проверка тетрадей учащихся является необходимым элементом текущего контроля. Результаты проверки тетради ученика учитываются при оценке успеваемости. Необходимым элементом текущего контроля является проверка домашних заданий. На каждом уроке необходимо выяснять, что ребятам было непонятно при выполнении заданий дома и не оставлять их вопросы без ответов. Учитель всегда заранее продумывает, как и кого он будет спрашивать по домашнему заданию, предполагает, какие могут возникнуть вопросы. Также распространенной формой текущего контроля являются кратковременные контрольные работы, математические диктанты, тесты, контрольный устный счет, уплотненный фронтальный опрос и так далее. Все оценки за эти виды работ выставляются учителем в журнал.

Решая главную задачу обучения учащихся, учитель проводит работу по накопляемости оценок и , следовательно, объективно выставляет оценки за четверти, полугодия и год. Повторюсь еще раз: математика - письменный предмет и оценки за письменные работы играют ведущую роль в определении итоговой оценки. Остановлюсь подробнее на некоторых формах текущего контроля:

Математические диктанты - хорошо известная форма контроля знаний. Учитель сам или с помощью звукозаписи задает вопросы, а ученики записывают ответы на них. Однако, я употребляю их редко по следующим причинам:

· не по любой теме можно провести диктант,

· не все учащиеся способны хорошо воспринимать задания на слух ( ведь есть дети- визуалы и кинестетики, а не только аудиалы),

· с их помощью можно проверить, усвоили ли учащиеся обязательный минимум знаний, но нельзя организовать углубленную проверку.

Но наряду с недостатками можно отметить и достоинства:

· математические диктанты развивают умение воспринимать задания на слух, а это ведет к умению слушать лекцию и слушать вообще,

· это альтернатива устного счета, который охватывает не всех учеников,

· ответы на вопросы диктанта показывают, усвоено ли основное содержание ранее изложенного материала.

В последнее время широкое распространение получили тесты. Тест, как и любая другая проверяющая работа, должен отвечать своему месту в программе, быть своевременным, а также согласовываться с целями и задачами, которые ставит учитель в данном конкретном случае, то есть быть результативным. При проведении тестов учитель должен учитывать психологию ученика, когда ему нужно выбрать правильный ответ из нескольких предложенных. Грамотно рассуждая, ученик может выбрать достоверный ответ, не решая задачи. Но нельзя исключать и случай везения. Поэтому задания для теста необходимо выбирать с учетом следующих требований:

· их нужно решить за время, не превышающее рамки урока (40 минут),

· результат не должен сильно зависеть от везения, а каждый ученик, опираясь на свои знания, умения и навыки, может получить правильный ответ.

Все тесты можно подразделить на две группы:

1. Проверяющие логические способности учащихся.

2. Проверяющие основные знания и умения ученика.

Я чаще всего использую тесты второй группы, которые максимально приближены к обычной контрольной работе, и могут быть использованы как подготовительные перед контрольной работой, как тренировочные или же в качестве самоподготовки учащегося и самоконтроля. Однако, тесты имеют главное преимущество перед обычной контрольной работой - оперативность: его можно провести и проверить быстрее, а оценки можно объявить сразу по окончании. Разнообразие тестов, их большое количество позволяет учителю проводить их так часто, как ему это необходимо в зависимости от цели урока, наличия учебного времени, уровня подготовки учащихся.

Однако, система тестов не может полностью заменить традиционную форму контроля - самостоятельную работу. Самостоятельную деятельность ученика можно и нужно организовывать на различных уровнях: от воспроизведения действий по образцу и узнавания объектов путем их сравнения с известным образцом до составления модели и алгоритма действий в нестандартных ситуациях. Учитель должен учитывать, что при составлении заданий для самостоятельной работы степень сложности должна отвечать учебным возможностям детей. Очень важно, чтобы содержание самостоятельной работы, форма и время её выполнения отвечали основным целям обучения данной теме на данном этапе. Однако, каждый учитель должен знать, что злоупотребление самостоятельной работой в учебном процессе также вредно, как и её недооценка. Например, если учитель включил в урок самостоятельную работу без особой необходимости, не продумав её содержание и форму организации, то результат бывает плачевным: не хватило времени, или дети не справились с заданием по причине неподготовленности и т.д. А в результате - зря потраченное время урока. Но если учитель, составляя план урока, тщательно продумал место и время самостоятельной работы, определил её общее содержание, разбил задания по разным уровням сложности, то она сыграет положительную роль. В зависимости от целей, которые ставятся перед самостоятельной работой, самостоятельная работа может быть:

· обучающей. Смысл заключается в самостоятельном выполнении школьниками данных учителем заданий в ходе изучения нового материала. Цель таких работ - в развитии интереса к изучаемому материалу, привлечение внимания учеников к объяснению учителя. Такие работы проводятся на этапе подготовки к введению нового содержания, т.е. фазу после объяснения нового материала учителем, когда знания учеников ещё непрочны. Содержание таких работ составляется из заданий репродуктивного характера, работы проверяются немедленно и плохие оценки за них не выставляются в журнал. Применение таких работ даёт учителю четкую картину того, что происходит на уроке, как ученики понимают материал на самом раннем этапе его изучения. Цель обучающих самостоятельных работ - не контроль, а обучение, поэтому такие работы должны быть кратковременными. Самостоятельно давая ответы на вопросы, ученики осмысливают объяснение учителя, запоминают основные свойства, правила, учатся их применять, с интересом воспринимают изучаемый материал, так как сами участвуют в его объяснении. К обучающим самостоятельным работам относятся также самостоятельное составление детьми алгоритмов и решение задач по алгоритму.

· тренировочной. К тренировочным работам относятся задания на распознавание различных объектов и их свойств. В заданиях такого типа часто требуется воспроизвести или непосредственно применить теоремы, определения, свойства тех или иных математических объектов. Тренировочные самостоятельные работы состоят из однотипных заданий, содержащих существенные признаки и свойства данного определения, правила. Конечно, такая работа мало способствует умственному развитию учащихся, но она необходима, так как позволяет выработать основные умения и навыки и, тем самым, создать базу для дальнейшего изучения математики. При выполнении тренировочных самостоятельных работ учащимся необходима помощь учителя, поэтому можно разрешать пользоваться учебником и тетрадью, справочными таблицами и т.д. Всё это создает благоприятный климат для “слабых” учащихся. В таких условиях они легко включаются в работу и, как правило, успешно справляются с ней. К таким работам можно отнести выполнение заданий по разноуровневым карточкам, где вариант 1 рассчитан на слабо подготовленных учащихся. Главная задача учащихся, работающих по этому варианту, состоит в достижении обязательного уровня математической подготовки, определенного стандартом. Для многих заданий здесь даются указания, пошаговые инструкции, данные для самоконтроля. Вариант 2 несколько усложнен по сравнению с вариантом 1. Он ориентирован в основном на достижение учащимися обязательного уровня математической подготовки, но в тоже время создаёт для них условия для овладения знаниями и умениями на более высоком уровне. К некоторым заданиям даются указания и данные для самоконтроля, однако, методическая помощь представлена здесь в меньшем объеме. Вариант 3 рассчитан на учащихся с хорошей математической подготовкой. Он даёт им возможность достаточно интенсивно овладеть основными знаниями и умениями и научиться применять их в разнообразных усложнённых ситуациях. Удобно пользоваться комплектами карточек - заданий, размещённых по конвертам разных цветов или с разными условными знаками: “красные” - на “5”; “зелёные”- на “4”; “синие”- на “3”.Некоторые учащиеся, выполнив своё задание, хотят попробовать решить задания более высокого уровня. Учащиеся постепенно привыкают и уже не боятся трудностей.

· закрепляющей. К таким самостоятельным работам можно отнести те, которые способствуют развитию логического мышления и требуют комбинированного применения различных правил и теорем. Они показывают, насколько прочно, осмысленно усвоен учебный материал. По результатам проверки заданий данного вида учитель определяет, нужно ли ещё заниматься данной темой. Примерами таких работ служат дидактические материалы, встречающиеся в изобилии в методических отделах.

· повторительной. Очень важны такие работы, ведь перед изучением новой темы учитель должен знать, подготовлены ли школьники, есть ли у них необходимые знания, чтобы изучение нового прошло без затруднений. Например, в курсе алгебры 8 класса перед изучением темы “Сложение и вычитание дробей с разными знаменателями” целесообразно провести самостоятельную работу, позволяющую определить, как ученики помнят следующие вопросы: сложение и вычитание обыкновенных дробей, общий знаменатель, дополнительный множитель, подобные слагаемые, способы разложения многочлена на множители.

· развивающей. Самостоятельными работами развивающего характера могут быть домашние задания по составлению докладов на определенные темы, решение олимпиадных задач, сочинение математических игр, кроссвордов, ребусов, сказок и т.д.

· творческой, которая вызывает у учащихся большой интерес. Они предполагают высокий уровень самостоятельности. Здесь ученики открывают для себя новые стороны уже имеющихся у них знаний, учатся применять эти знания в новых, неожиданных, ситуациях. Это задания на поиск второго, третьего и т.д. способов решения известной задачи.

· контрольной. Такие самостоятельные работы являются необходимым условием достижения планируемых результатов обучения. Они должны отвечать следующим требованиям:

1. Контрольные задания должны быть равноценными по содержанию и объему.

2. Они должны быть направлены на отработку основных навыков.

3. Они должны обеспечивать достоверную проверку уровня обучения.

4. Они должны стимулировать учащихся, позволять им демонстрировать прогресс в своей общей подготовке.

Пройдена некоторая тема или подтема учебной программы, у учителя возникает вопрос: а как она усвоена учащимися? Этой цели отвечает тематический контроль знаний. Материал темы (подтемы) необходимо, прежде всего, разделить на основной - имеющий значение для последующего обучения, и второстепенный (локальный). При решении этого вопроса исходят из объяснительной записки действующей программы. Одной из основных форм тематического контроля по математике являются письменные контрольные работы. Частота и содержание этих работ определяются программой и примерным тематическим планированием учебного материала в каждом классе, а также пособиями типа “дидактические материалы”, утвержденными МО РФ. Все контрольные работы предлагаются в двух - трех - четырёх-шести вариантах. Каждая включает в себя как задания, соответствующие обязательному уровню (они обычно отмечены знаком), так и задания более продвинутого уровня. Их выполнение рассчитано на один урок. Однако, следует иметь в виду, что предлагаемые работы достаточно насыщены по объему, поэтому учитель, оценивая возможности своих учеников, вправе уменьшить объем работы за счёт исключения какого-либо из последних заданий. Возможен и такой вариант, когда одно из заданий является резервным, и его невыполнение не влечет снижение оценки за контрольную работу.

Под периодическим контролем обычно понимается подведение итогов обучения за четверть, полугодие, год. Он слагается из системы тематического контроля и носит более обобщенный характер. Тексты данных работ могут быть присланы из управления образования, а могут быть составлены на заседаниях районных или внутришкольных методических объединений. Могут быть использованы и тексты, помещенные в “Дидактических материалах”. Такие работы, обычно рассчитаны на два урока, так как включают больший объём изученного материала.

В качестве других форм контроля знаний учащихся по математике можно использовать следующие:

1. Домашняя контрольная работа (ДКР). Обычно она даётся в начале изучения большой темы, а сдаётся - после окончания изучения. Задания включаются из раздела дополнительных заданий в учебнике по указанной теме. ДКР выполняется в специальных тетрадях (но можно использовать и обычные рабочие тетради, которых у учащихся две). Работы собираются у всех учеников одновременно в строго установленный день, что позволяет избегать списывания.

2. Зачёты. Они используются с целью повышения ответственности учащихся за результаты своего труда, для развития самостоятельности и уверенности в себе каждого. Зачёт проводится обычно после изучения какой-то важной темы. Удобнее на зачёт отводить два урока, так как необходимо проверить теоретические знания и практические умения и навыки учеников. На зачетном уроке могут сочетаться индивидуальные, групповые и коллективные формы работы. Основными компонентами зачетного урока являются:

уровневая дифференциация заданий, которая осуществляется составлением заданий, в которых учитывается уровень обязательной подготовки ученика и идёт постепенное возрастание требований, увеличение сложности предлагаемых заданий. Уровневая дифференциация представляет собой три уровня предполагаемых результатов: минимальный (решение задач образовательного стандарта), общий (решение задач, являющихся комбинациями подзадач минимального уровня, связанных явными ассоциативными связями), продвинутый (решение задач, являющихся комбинациями подзадач, связанных как явными, так и неявными ассоциативными связями).

· оценочная деятельность учителя,

· диагностика результата,

· коррекция ЗУН обучающихся по теме.

Подготовка и проведение зачётных уроков - дело сложное. В этой работе существенную помощь учителю могут оказать наиболее подготовленные ученика класса - ассистенты, которые хорошо усваивают математику. Перед участием в зачётах, ассистенты должны сдать экзамен по данной теме учителю (желательно во внеурочное время). Делать это необходимо, конечно, с согласия самого ученика. Подобная оценка знаний и умений учащихся позволяет оперативно провести общую диагностику усвоения темы, выявить пробелы. В конце зачётного урока учитель может подвести предварительные итоги с учётом выставленных баллов. Собрав контрольные таблицы, учитель делает подробный анализ результатов к следующему уроку и знакомит с ним ребят. На следующем уроке осуществляется разбор задач, которые вызвали затруднения. Однако, такая форма контроля имеет и свои недостатки:

· необходимо время для подготовки каждому ученику карточек-заданий, учитывающих уровень знаний конкретного ученика,

· необходимо время для подготовки и экзаменовки ассистентов,

· имеет место и необъективность ассистентов в оценке знаний одноклассников (как в сторону завышения, так и в сторону занижения оценок по личным симпатиям и антипатиям).

Поэтому педагогу необходимо быть предельно внимательным на зачётных уроках.

В качестве нестандартных форм контроля знаний обучающихся можно предложить следующие:

Математическая эстафета. Этот вид контроля обычно эффективен при проверке умений пользоваться формулами, решать несложные задачи. Эстафету можно проводить с помощью карточек или с помощью доски. Таблицы составляются совершенно одинаковой сложности для каждого ряда. По команде учителя ученик, сидящий за первой партой, начинает заполнение первой пустой клетки таблицы. Заполнив, он передаёт таблицу соседу и так далее. Последний ученик в ряду, выполнив задание, кладёт карточку на учительский стол. Учитель проверяет правильность заполнения таблицы. Эстафету можно проводить и с помощью доски. Тогда на доске изображаются три таблицы, равнозначные по содержанию. По команде учителя ученики подбегают к доске, заполняют первую пустую клетку таблицы, возвращаются на своё место, а к доске выбегают следующие члены ряда. Побеждает тот ряд, который быстро и правильно заполнит свою таблицу.

Математическая викторина может быть использована на любом уроке математики для повторения материала. Она позволяет активизировать деятельность учащихся, прививать им интерес к предмету. Можно проводить викторину для групп учащихся (обычно, деление по рядам) или индивидуально для каждого ученика. Итоги этапов групповой викторины можно фиксировать на доске, а индивидуальной - путем дачи жетонов правильно ответившему ученику. Такие уроки предпочтительнее проводить в качестве заключительных уроков в четверти. В целях экономии времени на уроке, условия примеров и вопросы можно записать на доске или листе ватмана. Чтобы викторина служила главной задаче школы - обучению, учитель требует от ребят полных и обоснованных ответов.

Увеличение умственной нагрузки на уроках математики заставляет задуматься учителя над тем, как поддержать интерес к изучаемому предмету, их активность на протяжении всего урока. Немаловажная роль здесь отводится дидактическим играм - современному и признанному методу обучения и воспитания, обладающему образовательной, развивающей и воспитывающей функциями, которые действуют в единстве. Дидактическая игра - средство обучения и воспитания. Игру не нужно путать с забавой. Это вид творческой деятельности, который тесно связан с другими видами учебной работы. К дидактическим играм, используемым на уроках математики для контроля знаний, можно отнести следующие:

Кроссворд. При создании кроссворда необязательно добиваться симметрии в размещении клеток для вписывания слов. Важно использовать идею этой игры для включения учащихся в активную умственную деятельность. Фигуру кроссворда можно спроектировать на доску, можно оформить на отдельных листах для команды или отдельного ученика. Можно использовать кроссворды, составленные детьми, по различным темам в качестве творческих домашних работ или на конкурсах в ходе математических недель.

Математическое лото. Эта игра используется для закрепления изученной темы и повторения материала. Учитель готовит большие карты из расчёта 1-2 на парту и соответственное число маленьких карточек. Учитель читает пример ( или записывает его на доске), а ученики решают его устно или письменно. Тот , кто обнаружил на своей большой карте ответ и считает его правильным, забирает карточку у учителя и накрывает ею соответствующую клеточку. Выигрывает тот, кто раньше всех накрыл все клетки своих карт. Когда игра завершена, играющие переворачивают маленькие карточки и тогда, если все ответы верны, должна получиться определенная картинка.

Математические турниры. Закрепление материала или проверку навыков в решении примеров и задач по определённой теме можно провести в виде турнира. Математические турниры проводятся в конце урока, когда ученики немного устали. А во время игры учебная деятельность активизируется, появляется стремление узнать и победить. Очевидно, что если бы эти задания были предложены просто в виде самостоятельной работы в конце урока, то ученики вряд ли решили все предложенные примеры и внимательно выслушали бы решения ещё нескольких аналогичных. Учащимся, участвовавшим в решении примеров и задач у доски, выставляются оценки в журнал. При этом учитывается выполнение заданий всей командой. (класс делят на 2 команды, которые получают задания в виде 2-3 несложных задач или 5-6 примеров).За ответами команд следят все ученики, а арбитром выступает учитель. Количество заданий определяется целью турнира, наличием времени, сложностью темы, составом играющих.

Учебная деятельность учащихся включает в себя контрольно-оценочную, подразумевающую контроль учебной работы во всех видах и на всех этапах урока, оценку результатов работы учащихся, их учет и корректировку.

Основными целями контрольно-оценочной деятельности являются следующие:

1. Активизация учебно-познавательной деятельности каждого ребёнка.

2. Побуждение учащихся к взаимообучению

3. Побуждение учащихся к самостоятельной работе во внеурочное время.

4. Самооценка уровня усвоения материала.

Однако, учителю необходимо заботиться о накопляемости оценок, о необходимости оценивать знания, умения и навыки по математике отдельных учащихся, добиваться активного включения учащихся в учебно-познавательную деятельность. Считаю, что предложенные формы учета и контроля знаний учащихся помогают решать основные цели урока. Однако, творчеству учителей нет предела. Поэтому это далеко не все формы, активизирующие деятельность учащихся на уроке математики.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №10»

«Формы познавательной деятельности обучающихся и практическое их применение на второй ступени»

(выступление на педсовете)

Подготовила выступление

учитель математики

Филистова Галина Ивановна

06.11. 2015г.

с. Бурлацкое

Знание только тогда знание, когда оно приобретено

усилиями своей мысли, а не памятью.

Л.Н. Толстой

В настоящее время в России идет становление новой системы образования. Этот процесс сопровождается существенными изменениями в педагогической теории и практике учебно-воспитательного процесса. Традиционные способы передачи информации уступают место использованию информационно-коммуникативным технологиям. В этих условиях учителю необходимо ориентироваться в широком спектре инновационных технологий, идей, школ, направлений. Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем, как поддержать интерес к изучаемому материалу у учащихся, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приёмов, которые бы активизировали мысль школьников, стимулировали бы их к самостоятельному приобретению знаний. Возникновение интереса к математике у значительного числа учащихся зависит в большей степени от методики её преподавания, от того, насколько умело будет построена учебная работа. Необходимо позаботиться о том, чтобы на уроке включать каждого ученика в деятельность, обеспечивающую формирование и развитие познавательных потребностей - познавательные мотивы. Это особенно важно в подростковом возрасте, когда ещё формируются, а иногда и только определяются постоянные интересы и склонности к тому или иному предмету. Немаловажная роль отводится информационным и телекоммуникационным технологиям, так как они позволяют решить проблему перехода от традиционной формы обучения, направленной на усвоение учеником фиксированной суммы знаний, к новой, где основной упор сделан на освоение способов деятельности. В понятие же “новое качество” образования вкладывается, прежде всего, способность самостоятельно учиться и добывать знания, ведь перед школой встала непростая задача: подготовить новых граждан к жизни в новом информационном обществе, подготовить их к продуктивной деятельности в новых экономических условиях.

Личность каждого человека наделена только ей присущим сочетанием черт и особенностей, образующих ее индивидуальность. Под влиянием возрастающих требований жизни увеличивается объем и усложняется содержание знаний подлежащих усвоению в школе. Но при традиционной системе обучения не каждый школьник способен освоить программу. По своим природным способностям, темпу работы и т.д. учащиеся сильно отличаются друг от друга. Нередко в одном классе можно наблюдать школьников как с очень высоким, так и с очень низким уровнем развития. Учитель обычно выбирает методы, формы обучения, ориентированные на среднего ученика. При этом слабым и сильным ученикам уделяется мало внимания. В этих условиях учащиеся с хорошими способностями работают без особого напряжения, а слабые испытывают возрастающие затруднения.

Как заинтересовать математикой? Дело непростое. Многое зависит от того, как поставить даже очевидный вопрос, и от того, как вовлечь всех учащихся в обсуждение сложившейся ситуации. Творческая активность учащихся, успех урока целиком зависит от методических приемов, которые выбирает учитель. Как сформировать интерес к предмету у ребенка? Через самостоятельность и активность, через поисковую деятельность на уроке и дома, создание проблемной ситуации, разнообразие методов обучения, через новизну материала, эмоциональную окраску урока. Сообщить готовое быстрее, чем открывать его вместе с учениками. Но от “прослушанного”, как известно, через две недели в памяти остается только 20%. Важно сделать учащихся участниками научного поиска: рассуждая вслух, высказывая предположения, обсуждая их, доказывая истину. Учащиеся включаются в деятельность, которая носит исследовательский характер. В реализации проблемного обучения существенную роль играет создание на уроке учебной проблемной ситуации. Это оправдывающий себя дидактический прием, с помощью которого учитель держит в постоянном напряжении одну из внутренних пружин процесса обучения - детскую любознательность. Выдающийся немецкий педагог А. Дистервег убеждал, что развитие и образование ни одному человеку не могут быть даны или сообщены. Этого можно достичь собственной деятельностью, собственными силами, собственным напряжением.

Рассмотрим пример. Начинаем изучать “Деление обыкновенных дробей” (6 класс). Как добиться, чтобы ученики получили возможность участвовать в выводе правила деления? Этой цели служит специальное домашнее задание. На уроке, предшествующем данной теме, предлагаю решить уравнение. . Конечно, чтобы получить ожидаемое, необходимо вести целенаправленную работу на предыдущих уроках. В результате вариантов решений несколько. Все рассматриваем, но внимание обращаем на следующий способ:

Вывод: Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратную делителю.

Каждый учитель знает индивидуальные особенности своих детей и может определить степень помощи ученикам в виде наводящих вопросов, в виде подборки устных упражнений и т.д. На этом же уроке создание проблемных ситуаций можно продолжить, предложив деление смешанных чисел, деление обыкновенной дроби на натуральное число.

С помощью наводящих вопросов я побуждала учащихся самих сформулировать определение пропорции, самих находить неизвестный член пропорции, используя основное свойство пропорции.

Одним из средств активизации познавательной деятельности школьников является широкое использование их жизненного опыта. Большую роль в усвоении материала играют при этом практические работы. Часто дети запоминают только то, над чем потрудились их руки, если ученик что-то рисовал, чертил, вырезал или закрашивал, то это что-то само по себе становится опорой для его памяти. Такой вид работы как обучающее практическое занятие является творческим для учащихся. Выполнение задания и обобщение результатов приводит их к новому математическому знанию. В этих условиях познавательная деятельность представляет собой самодвижение. В результате такой работы новые знания не поступают извне в виде информации, а являются внутренним продуктом практической деятельности самих учащихся.

Велика роль опорных схем или карточек-информаторов в активизации познавательной деятельности учащихся. Их лучше составлять вместе с учащимися на уроке в самом начале изучения темы, и можно пользоваться, пока тема не исчерпана. Помогают они и при повторении. Очень хорошо выполняется такая работа в группах. Каждая группа создает свою модель, фиксирует на листах, которые по окончании работы крепятся к доске. В ходе межгрупповой дискуссии выделяется лучшая модель или корректируются предложенные и создается новая. Опорные схемы, карточки-информаторы уменьшают нагрузку на память, помогают преодолеть страх перед необходимостью изложить материал самостоятельно.

Одной из основных задач преподавания курса математики в школе является формирование у учащихся сознательных и прочных вычислительных навыков. О наличии у учащихся вычислительной культуры можно судить по их умению производить устные и письменные вычисления, рационально организовывать ход вычислений, убеждать в правильности полученных результатов. Вычислительные навыки отличаются от умений тем, что выполняются почти бесконтрольно. Такая степень овладения умениями достигается в условиях их целенаправленного формирования. Поэтому большое внимание на уроках уделяю устному счету, различным приемам устной работы. Организация устных вычислений в методическом отношении представляет собой большую ценность. В ходе устного счета развивается память, быстрота реакции, воспитывается умение сосредоточиться, инициатива учащихся, потребность к самоконтролю, повышается культура вычислений. А использование методов анализа и синтеза способствует развитию логического мышления учащихся.

Интересной методической находкой является создание вычислительных лабиринтов. Дети должны начертить путь прохождения по лабиринту. При этом проход через ворота, в которых содержится пример, возможен, если в ответе данного примера получено некоторое данное число. Если задания лабиринта требуют большого времени, его можно давать в качестве домашнего задания. Если задания просты, я использую лабиринт на уроке. Учителю легко проверять такие карточки, детям интересно с ними работать.

Сложность состоит в составлении лабиринтов, т.к. необходимо сначала сочинить задание, а затем оформить.

Недавно появившаяся в России система централизованного тестирования и итоговая аттестация в форме ЕГЭ активно внедряет в образование современные технологии оценки учебных достижений, с одной стороны, и определяет необходимость более четкого и конкретного определения минимума содержания образовательного стандарта по разделам, курсам, предметам, с целью упорядочивания нагрузки ученика, с другой стороны.

Целесообразно шире использовать тестирование по разделам, отдельным темам, отрабатывая технологию проведения. Метод тестирования позволяет объективно определить результаты обучения, выявить проблемы и недостатки обучения как целого класса, так и каждого ученика в отдельности. Тестирование позволяет:

учитывать индивидуальные особенности учащихся;

проверять качество усвоения материала;

разнообразить процесс обучения;

сэкономить время на опрос;

использовать тесты для компьютеризации обучения.

Одной из существенных составных частей математической подготовки учащихся является участие в разных олимпиадах ( олимпиада/ “ Интеллект”, “ Авангард”,»Кенгуру»). Во время олимпиад показывали хорошие результаты не только традиционно сильные ученики, но также и ребята, имеющие не слишком хорошую успеваемость.

Получая из сети Интернет учебно-значимую информацию, учащиеся приобретают навыки:

целенаправленно находить информацию в Интернет и систематизировать ее по заданным признакам;

видеть информацию в целом, а не фрагментарно, выделять главное в информационном сообщении, устанавливать ассоциативные и целесообразные связи между информационными сообщениями;

четко формулировать то, что узнали из мультимедийного информационного источника, визуальную информацию переводить в вербальную знаковую систему, и наоборот;

отличать корректную аргументацию от некорректной, находить ошибки в получаемой информации и вносить предложения по их исправлению, принимать личностную позицию по отношению к скрытому смыслу;

использовать формируемые в школе знания при восприятии и критическом осмыслении информации, интерпретировать информацию, понимать ее суть, адресную направленность, цель информирования;

воспринимать альтернативные точки зрения и высказывать обоснованные аргументы “за” и “против” каждой из них.

При проведении психологической экспертизы эффективности деятельности педагога изучалось мнение детей. В ходе тестирования учащихся обращалось внимание на способность учителя создать на уроке атмосферу эмоционального комфорта, а также умение развить и поддержать интерес детей к изучению своего предмета. Удовлетворенность преподаванием предмета составила 1,9 балла (максимальная - 2), домашнюю работу по предмету с интересом выполняют 63% учащихся, любимым предметом математику называют 71% учащихся. Урок математики, как самый интересный урок, называют 50% учеников. Включение в ход урока информационно-компьютерных технологий делает процесс обучения математике интересным и занимательным, создаёт у детей бодрое, рабочее настроение, облегчает преодоление трудностей в усвоении учебного материала.

Высокая познавательная активность возможна только на интересном для ученика уроке, когда ему интересен предмет изучения. И наоборот, “воспитать у детей глубокий интерес к знаниям и потребность в самообразовании - это означает пробудить познавательную активность и самостоятельность мысли, укрепить веру в свои силы”.

Любой педагог, пробуждая интерес к своему предмету, не просто осуществляет передачу опыта, но и укрепляет веру в свои силы у каждого ребенка независимо от его способностей. Следует развивать творческие возможности у слабых учеников, не давать остановиться в своем развитии более способным детям, учить всех воспитывать у себя силу воли, твердый характер и целеустремленность при решении сложных заданий. Все это и есть воспитание творческой личности в самом широком и глубоком понимании этого слова. Но для создания глубокого интереса учащихся к предмету, для развития их познавательной активности необходим поиск дополнительных средств, стимулирующих развитие общей активности, самостоятельности, личной инициативы и творчества учащихся разного возраста.

И учебник и урок должны быть увлекательными. Интерес школьников к учению надо рассматривать как один из самых мощных факторов обучения. Математику надо рассматривать не как систему истин, которые надо заучивать, а как систему рассуждений, требующую творческого мышления. Умение заинтересовать математикой - дело непростое. Многое зависит от того, как поставить даже очевидный вопрос, и от того, как вовлечь всех учащихся в обсуждение сложившейся ситуации. Творческая активность учащихся, успех урока целиком зависит от методических приемов, которые выбирает учитель.

Обучение математике в школе вполне можно и нужно строить так, чтобы оно представлялось для учащегося серией маленьких открытий, по ступенькам которых ум ученика может подняться к высшим обобщениям.

Основными подходами к активизации познавательной деятельности я считаю следующие:

1. Для появления интереса к предмету необходимо понимание нужности, важности, целесообразности изучения данного предмета в целом и отдельных его разделов.

2. Чем больше новый материал связан с усвоенными ранее знаниями, тем он интереснее для учащихся.

3. Ни слишком лёгкий, ни слишком трудный материал не вызывает интереса. Обучение должно быть трудным, но посильным.

4. Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать.

5. Яркость, эмоциональность учебного материала, взволнованность самого учителя с огромной силой воздействуют на школьника, на его отношение к предмету.

6. Познавательный интерес - это один из важнейших для нас мотивов учения школьников. Его действие очень сильно.

В своей работе по активизации познавательной деятельности я использую следующие технологии:

- оргмомент (математическая зарядка), помогает быстро настроить детей на работу, сосредоточить их внимание.

- игровые технологии - это одна из форм активного обучения. Игра, создает дух соревнования, дух творчества помогает на уроке вызвать интерес, желание работать.

- карточка-консультант, помогает учащимся освоить ранее непонятный материал и воспринять новые темы.

- взаимообучение и взаимоконтроль (уроки общения), каждый ученик изучает новый материал с соседом по парте. Ученики читают учебник (тему), сами отвечают на вопросы, решают задачи, примеры, проверяя друг друга

- проблемное обучение, деятельность, которая носит исследовательский характер.

- разнообразные приемы устной работы (устный счет).

- использование различных форм ИКТ.

Большое значение имеет начало урока. Как быстро настроить детей на работу, но сделать это без понуканий и строгости? Я часто провожу оргмомент в виде математической зарядки. Готовлю несколько карточек с простейшими примерами. Примеры даю с ответами. На одних ответы верные, на других - нет. Каждое упражнение зарядки состоит из двух движений. Я поочередно показываю классу карточки, а ученики в ответ делают определенное движение. Например, если ответ верный - руки вверх, неверный - руки вперед. Сначала дети не могут собраться, не попадают в ритм. Но постепенно сосредотачиваются, а темп зарядки убыстряется.

Игра - разновидность общественной практики. В ней моделируется жизненные ситуации, закрепляются свойства, качества, умения, необходимые личности для выполнения социальных, профессиональных и творческих функций

В процессе игры у детей вырабатывается привычка сосредоточиться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Увлёкшись, дети не замечают, что учатся, познают, работают самостоятельно, пополняют запас представлений. Даже самые пассивные из детей включаются в игру с огромным желанием, прилагают все усилия, чтобы не подвести товарищей по игре. Во время игры дети, как правило, очень внимательны, сосредоточены и дисциплинированы.

Игровые моменты на уроке делают процесс обучения интересным и занимательным, создают у детей доброе, рабочее настроение. Примеры могут быть оформлены в виде индивидуального лото («Действия с натуральными числами», «Действия с десятичными дробями», «Признаки равенства треугольников» и другие). Всевозможные формы кодированных ответов, ребусов привлекают внимание ребят. Для упражнения в вычислениях можно предложить ребятам поиграть в такие игры как, «Собери цветы», «Собери грибы», «Поймай рыбку» и т. д. на обратной стороне цветов, грибов, рыбок написаны примеры, которые им предстоит решить (такие игры я провожу не только на этапе устного счета, но и на уроках закрепления материала). Для устного счета я также использую такие игры : «Лесенка», «Молчанка», «Удивительная цепочка» (решение уравнений: в каждое уравнение, начиная со второго, вставляется корень предыдущего уравнения).

Тема «Действия с обыкновенными дробями». Игра «Солнышко», «Цветок».

Тема «Решение квадратных уравнений»: «Лесенка» или «Пирамида»

Тема «Десятичные дроби».

Интересны для учащихся устные коллективные разминки, занимающие не более 5

минут, развивающие быстроту реакции, внимательность, умение четко и конкретно мыслить. В такие разминки следует включать вопросы, требующие однозначного, быстрого хорового ответа и направленные на актуализацию опорных знаний, и на проверку домашнего задания, и на отработку каких либо математических понятий и определений.

Например (6 класс):

1. Число не являющееся ни положительным, ни отрицательным.

2. Самое маленькое целое положительное число.

3. Самое большое целое отрицательное число.

4. Дробь, равная 50%.

5. Числа, имеющие не более двух делителей.

6. Одна сотая часть числа.

7. Назовите дробь 3/4 в процентах.

8. Наименьшее положительное двузначное число.

9. Число, не являющееся делителем ни одного из чисел.

10. Треть от трети.

11. Половина четверти.

12. Сумма противоположных чисел.

13. Набольшее отрицательное двузначное число….

Неоценима на уроках математики роль физминуток, которые можно проводить не только для двигательной активности учащихся, но и для отработки математических правил в игровой форме.

Например:

У меня набор карточек с правильными и неправильными дробями. Если показываю правильную дробь - руки вверх, неправильную - руки в стороны.

У меня набор карточек с примерами на сложение чисел с разными знаками. Если сумма отрицательна - присели, положительна - встали.

На доске записаны примеры, а я говорю ответ, если ответ верный - учащиеся хлопают в ладоши, а неправильный - топают ногами.

ситуациях, пополняют запас представлений, понятий, развивают фантазию. Даже самые пассивные из детей включаются в игру с огромным желанием. Во время игры дети, как правило, очень внимательны, сосредоточены.

Включение игры в учебный процесс повышает интерес к предмету, т.к. в процессе игры мышление протекает более активно под воздействием положительных эмоций, соревнования, желания выиграть. Игра - метод обучения, и с её помощью должны решаться образовательные, развивающие и воспитательные задачи.

В процессе проведения игры я стараюсь реализовать следующие цели:

1 .Образовательная - закрепление и обобщение полученных знаний, включение элементов занимательности интереса в урочную и неурочную работу для более успешного усвоения материала, получения новых знаний в процессе игры;

2. Развивающая - умение сопоставить и сравнить факты, делать самостоятельные выводы; развивать творческую самостоятельность учащихся, творческое мышление, умение работать с различными источниками информации.

3. Воспитательная - формирование интереса к предмету; воспитание чувства коллективизма, ответственности за результаты своей работы и учёбы.

В своей работе я использую следующие виды игр:

настольные;

игры-состязания;

интеллектуальные.

Чаще всего в форме игры я провожу повторительно-обобщающие уроки: это соревнования, игра-путешествие; игровые моменты стараюсь включить в каждый урок, особенно в 5-6 классах. Кроме активизации работы учащихся, соревнования несут и воспитательную нагрузку: ребята сопереживают успехам товарищей. Нестандартный урок - переход в иное психологическое состояние, это другой стиль общения, положительные эмоции, это возможность каждому проявить себя в новом качестве, это возможность каждому развить свои творческие способности. Дети, как правило, бывают поставлены в ситуацию успеха, что способствует пробуждению их активности в работе на уроке.

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.