Возможности дистанционного обучения в преподавании геометрии учащимся с особыми образовательными потребностями

Значение формирования у учащихся наглядно-образного и абстрактно-логического мышления для школьной геометрии. Этапы педагогического эксперимента по определению эффективности дистанционного курса. Использование бесплатно распространяемых программ.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 20.04.2018
Размер файла 773,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Возможности дистанционного обучения в преподавании геометрии учащимся с особыми образовательными потребностями

Быков А.А., Сенчилов В.В.

В статье описаны составляющие авторского дистанционного курса по геометрии для учащихся одиннадцатых классов с особыми образовательными потребностями. Представлены результаты педагогического эксперимента по его внедрению в ОГБОУ «Центр образования для детей с особыми образовательными потребностями г. Смоленска», демонстрирующие повышение эффективности преподавания школьного курса геометрии с опорой на разработанный курс. Изложены особенности разработки и применения заданий диалогового типа с использованием бесплатно распространяемых программ.

Ключевые слова: преподавание геометрии, дистанционное обучение, интерактивные технологии, обучение детей с ограниченными возможностями здоровья, развитие мышления.

The article describes the components of the author's e-learning course on geometry for eleventh-grade students with special educational needs, presents the results of a pedagogical experiment on its implementation. The specifics of the development and application of interactive tasks using free distribution programs are described. мышление школьная геометрия дистанционный

Keywords: teaching geometry, e-learning, interactive technologies, teaching children with disabilities, development of thinking.

В современной системе образования в последнее время широкое применение получило дистанционное обучение. Оно особенно важно для тех, кто в силу обстоятельств не может овладевать знаниями, используя классические традиционные формы и методы. Независимость от места и времени, возможность индивидуальных консультаций с преподавателем и максимального использования мультимедийных ресурсов - неоспоримые преимущества дистанционного образования. Однако его реализация требует разработки современных методических подходов, так как зачастую традиционные не дают желаемых результатов. Рассмотрим возможности применения дистанционного обучения в преподавании школьного курса геометрии.

К основным проблемам школьной геометрии, которая напрямую связана с формированием у учащихся наглядно-образного и абстрактно-логического мышления, помимо нехватки учебного времени можно отнести трудности у школьников при решении геометрических задач, так как они требуют в совокупности использования теоретических знаний, применения формул, доказательства утверждений, правильное построение чертежа. Дистанционное обучение обладает интерактивными и визуальными возможностями, обеспечивающими решение данных проблем. Использование дистанционного курса сокращает время на повторение материала за счет использования мультимедийных технологий, позволяет повысить наглядность и ускорить изучение теоретического материала на основе применения анимационных иллюстраций, обеспечивает формирование навыков самостоятельной работы на основе использования контролирующих тестов и проектных заданий.

Несмотря на преимущества дистанционного образования в преподавании школьной геометрии, существует ряд проблем. [1, С. 52] Во-первых, учащиеся обладают правом самостоятельно выбирать количество часов на изучение курса геометрии, во-вторых, уровень подготовки и уровень возможностей у разных обучающихся различный, в-третьих, необходимо обеспечить взаимодействие учителя и ученика, в-четвертых, обеспечить наглядность изучаемого материала. Только решение всех поставленных задач сделает уроки геометрии в дистанционном обучении продуктивными.

Решение первой и второй проблем обеспечивается разделением заданий на уровни сложности и учитель может выбрать необходимый ему материал в зависимости от выбранного объема обучения учащегося. Так, в начале каждой темы предлагается теоретический материал, представленный двумя уровнями сложности изучения. Первый уровень состоит из изложения основных понятий и теорем, а также разбора нескольких стандартных задач по данной теме. Второй предполагает изложение доказательства теорем и разбор задач не только стандартных, но и повышенного уровня сложности.

Проверка знаний учащихся также имеет многоуровневое построение. [2, C. 5] Так, тестов по проверке теоретического материала представлено два вида, первый проверяет только знание основных понятий и формул, а второй особенности усвоения доказательств основных теорем изучаемой темы. Тестирование по решению задач также разделено на два уровня. Каждая тема содержит домашнее задание и задачи из ЕГЭ по математике. [3] Такая концепция построения позволяет учителю обеспечить многоуровневое и всестороннее изучение курса геометрии, а также обеспечивает возможность освоения курса в зависимости от выбранного количества часов.

Наибольшие трудности с методической точки зрения представляют третья и четвертая проблемы. При дистанционном обучении нет возможности совместно с вызванным к доске учащимся производить по ходу решения задачи дополнительные построения, как это делается, например, в традиционном образовании. Существующие в сети Интернет дистанционные курсы по геометрии при решении задач содержат готовые чертежи и возможностью «дорисовать» не обладают. Поэтому, разрабатывая курс, на первом уровне необходимо обеспечить наглядность путем внедрения в учебный курс уже готовых тщательно продуманных геометрических чертежей. [4, C. 30] Второй уровень объяснения теоретического материала содержит стереометрические чертежи, при чем несколько. В начале представлен стандартный рисунок, на котором указаны первоначальные данные, потом по ходу доказательства теоремы представлены чертежи с нанесенными дополнительными построениями и в разных проекциях для лучшего представления и понимания проблемы. Такие заранее созданные рисунки позволяют экономить время на изучение материала, формируют пространственное воображение и оказывают серьезную помощь в работе учителя.

Задачи для самостоятельного решения на уроке также должны быть снабжены соответствующими чертежами, иллюстрирующими ход решения задачи. Разработанные геометрические иллюстрации позволят не только экономить время, но и оказывают помощь в решении задач, уменьшая количество ошибок, ликвидируя боязнь ошибиться, и обеспечивают помощь в развитии логического и пространственного мышления. Задачи для домашнего задания снабжать чертежами не надо, наоборот учащиеся самостоятельно должны сделать необходимые построения с помощью компьютерных программ или на обычном листе по их желанию, т.к. дистанционный курс обеспечивает возможность загрузки файлов с решением в систему для проверки их учителем.

При разработке готовых чертежей помощь могут оказать такие программы как наглядная математика, наглядная геометрия, сервисы Google Skitch, LearningApps и многие другие. [5] К тому же можно подобрать такие программные средства, которые позволяют делать трехмерные модели. Большинство приложений распространяются бесплатно, просты в управлении и не требуют от учителя дополнительных навыков работы и легко усваиваются при использовании.

Для решения проблемы организации взаимодействия учителя и ученика в каждом занятии курса представлены задания диалогового типа. [6, C. 69] Каждое такое задание представляет собой поэтапное решение задачи, причем лишь некоторые моменты решения уже указаны, а учащийся дописывает недостающие компоненты. Задания снабжены поэтапными чертежами, иллюстрирующими решение стереометрических задач. Сами чертежи можно выполнить с помощью любых графических программ, но после этого задача должна быть представлена на основе документа интерактивной доски. Интерактивная доска позволяет вносить записи в решение учащемуся и учителю одновременно, дорисовывать чертежи. [7, C. 111] Для решения стереометрических задач оптимальным является использование программ, позволяющих создавать трехмерные модели. Такую модель можно вращать, в результате это способствует формированию у учащегося пространственного воображения, а также позволяет лучше понять особенности задачи и тем самым быстрее подобрать необходимое решение. Кроме того, учитель обладает возможностью спрятать от ученика определенные компоненты решения, используя технологию слоев, которой обладают многие интерактивные доски, а потом сделать слой активным, чтобы учащийся проверил свое решение, сверив его с правильным. Диалоговые задания являются основой авторского дистанционного курса и позволили повысить его эффективность.

Эффективность разработанного дистанционного курса была проверена с помощью педагогического эксперимента. [8] В эксперименте были задействованы 36 учеников 11 класса дистанционного центра и 8 учителей математики. При проведении эксперимента учащиеся были поделены на две группы, одним курс геометрии одиннадцатого класса преподавался традиционными методами с использованием разработанных учителями презентаций и курсов, а обучение второй группы осуществлялось на основе описанного выше курса. В каждой группе были учащиеся, выбравшие разное количество часов в неделю и различный уровень подготовки, кроме того, все учителя в ходе эксперимента проводили занятия обычными методами и на основе разработанного курса, т.е. каждый учитель получил учеников из первой и второй группы. [9] Используемая система обеспечила чистоту эксперимента. Эксперимент осуществлялся в течение всего учебного года.

Для подтверждения эффективности разработанного курса знания учащихся проверялись контрольными, самостоятельными работами и срезами знаний, предложенными администрацией образовательного центра и департаментом образования области.

На основе результатов контрольных работ и срезов знаний были получены следующие данные, представленные в таблице 1.

Таблица 1 - Результаты формирующего этапа педагогического эксперимента по определению эффективности авторского дистанционного курса (%)

Низкий уровень

Средний уровень

Уровень выше среднего

Высокий уровень

Экспериментальная группа

Теоретические знания

0

2

9

7

Практические умения

0

3

9

6

Мотивационный компонент

0

1

7

10

Контрольная группа

Теоретические знания

5

8

4

1

Практические умения

6

9

3

0

Мотивационный компонент

5

6

5

2

Графически результаты эксперимента представлены на рисунках 1-3.

Рис. 1 - Сравнительный анализ уровня теоретических знаний в экспериментальной и контрольной группах

Рис. 2 - Сравнительный анализ уровня сформированности практических умений экспериментальной и контрольной групп

Рис. 3 - Сравнительный анализ уровня сформированности мотивационного компонента экспериментальной и контрольной групп

Представленные диаграммы показывают, что количественные показатели высокого и выше среднего уровней наличия знаний у учащихся контрольной группы ниже, чем в экспериментальной группе.

В экспериментальной группе по сравнению с контрольной на 33,2% больше количество обучающихся с высоким уровнем теоретической подготовленности, на 33,6% больше учеников с высоким уровнем практической подготовленности. Общий уровень мотивационного компонента также оказался выше в экспериментальной группе, чем в контрольной.

Для оценки достоверности результата эксперимента воспользуемся двусторонним критерием (хи-квадрат). [10, С. 122]

Обозначим Р1i вероятность достижения учащимися экспериментальной группы уровня сформированности знаний i, Р2i - вероятность достижения учащимися контрольной группы уровня i сформированности знаний.

Сформулируем нулевую гипотезу Н0: Р1i = Р2i, i = {1,2,3,4}. Нулевая гипотеза будет звучать так: в экспериментальных и контрольных группах учащиеся добились одинаковых результатов формирования знаний и умений. Альтернативная гипотеза Н1: Р1i ? Р2i - эксперимент дает положительный результат.

Рассчитаем наблюдаемое по формуле:

Число категорий мы берем равное 4, потому что у нас есть четыре уровня формирования знаний. Z1i - количество учащихся экспериментальной группы, достигших уровня i, Z2i - количество учащихся контрольной группы, достигших уровня i; n1 и n2 - количество элементов выборки экспериментальной и контрольной групп.

Число степеней свободы m = с - 1, с - число категорий (с = 4), а критическая область определяется неравенством , б в нашем случае 0,05. Наблюдаемое значение больше критического значения , взятого из таблицы распределения, в результате гипотеза Н0 отвергается с вероятностью ошибки 0,05.

Таким образом, мы получили достаточно оснований утверждать, что разработанный нами дистанционный курс положительно влияет на уровень знаний и умений учащихся.

Список литературы / References

1. Ильина,Т.А. Структурно-системный подход к организации обучения / Т. А. Ильина. - М.: Знание, 1971. - Вып. 1. - 72 с.

2. Козлов, С.В. Использование возможностей интеллектуальных информационных систем при организации дистанционного обучения / С. В.Козлов // NovaInfo.Ru - 2017. - Т. 2. - № 63. - С. 1-6.

3. Сенчилов, В.В. Проблема организации совместной работы при дистанционном обучении математике детей с ограниченными возможностями здоровья / В.В. Сенчилов, А.А. Быков, О.М.Киселева, Н.М. Тимофеева // Постулат. - - № 9 (23). - С. 11. - URL: http://e-postulat.ru/index.php/Postulat/article/view/805/830 (дата обращения 15.11.2017).

4. Сенчилов, В.В. Программное обеспечение дистанционного обучения математике детей с ограниченными возможностями здоровья / В.В.Сенчилов, А.А. Быков, Н.М. Тимофеева, О.М. Киселева // Научное обозрение: гуманитарные исследования. - 2017. - № 7. - С. 29-34.

5. Киселева, М.П. Принципы интеграции информационных технологий в образовательный процесс / М.П. Киселева // Постулат. - 2017. - № 8 (22). - С. 6. - URL: http://e-postulat.ru/index.php/Postulat/article/view/777/800 (дата обращения 15.11.2017).

6. Козлов, С.В. О подготовке школьников к участию в олимпиадах по информатике / С.В. Козлов // Психология, социология и педагогика. - 2015. - №1 (40). - С. 68-74.

7. Сенчилов, В.В. Возможности программного обеспечения при дистанционном обучении математике детей с особыми образовательными потребностями / В.В. Сенчилов, А.А. Быков, О.М. Киселева, Н.М. Тимофеева // Евразийское научное объединение. - 2017. - Т. 2. - № 8 (30). - С. 111-112.

8. Сенчилов, В.В. Модель подготовленности педагогов к преподаванию математики на основе дистанционного образования для детей с ограниченными возможностями здоровья / В.В. Сенчилов, А.А. Быков, О.М.Киселева, Н.М. Тимофеева // Постулат. - 2017. - №7. - С. 2. - URL: http://e-postulat.ru/index.php/Postulat/article/view/743/766 (дата обращения 15.11.2017).

9. Сенчилов, В.В. Подходы к проектированию дистанционных курсов по обучению математике детей с ограниченными возможностями здоровья / В.В. Сенчилов, Н.М. Тимофеева, О.М. Киселева, А.А. Быков // Мир науки. - 2017. - Т. 5. -№ 4. - С. 7. - URL: https://mir-nauki.com/PDF/07PDMNpdf (дата обращения 15.11.2017).

10. Алимухамбетова Г.Е. Теория педагогического процесса как основа формирования готовности школьников к познавательной деятельности / Г.Е. Алимухамбетова. - Алматы, 1994. - 134 с.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.