Этапы математизации социально-экономических ситуаций и проблем
Сущность математизации социально-экономических проблем, необходимых для создания и совершенствования методической системы математической подготовки будущего бакалавра экономики и менеджмента, повышения качества математической подготовки бакалавров ВУЗа.
Рубрика | Педагогика |
Вид | статья |
Язык | русский |
Дата добавления | 21.07.2018 |
Размер файла | 16,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Этапы математизации социально-экономических ситуаций и проблем
Синчуков Александр Валерьевич,
кандидат наук, доцент, доцент
Российский экономический университет им. Г.В.Плеханова
В рамках данной статьи будут рассмотрены сущность и этапы математизации социально-экономических проблем и ситуаций, необходимые для создания и совершенствования методической системы математической подготовки будущего бакалавра экономики и менеджмента, повышения качества прикладной математической подготовки бакалавров в ВУЗе.
Похожие материалы
* Проектирование учебной дисциплины «Высшая математика» для системы дистанционного обучения
* Обзор методических подходов к пониманию содержания образовательной области «Прикладная математика»
* Вопросы разработки системы математической подготовки бакалавра, обеспечивающей прикладную направленность обучения
* Вопросы практической реализации прикладной направленности обучения математике
* Ключевые тенденции в сфере математической подготовки бакалавра экономики и менеджмента
Описав структуру математизации на основе современных теоретических и методических исследований [4, 14], остановимся теперь на анализе уже существующих в литературе математических моделей различных социально-экономических проблем и ситуаций. Разнообразные примеры математизации, в которых показана сущность процесса математизации представлены в работах [11, 15].
Рассмотрим далее содержание основных этапов математизации.
Этап 1. Предварительное знакомство с рассматриваемой социально-экономической ситуацией. Исходной точкой здесь есть рассмотрение различных реальных социально-экономических проблем и ситуаций, явлений, которые нас заинтересовали, но которые недоступны для точного описания, потому что мы не в полной мере ясно их понимаем.
Этап 2. Открытие регулярности. Сопоставление опытов с различной степенью неопределенности выявляет общие черты и соотношения, позволяет определить переменные, которые могут быть существенными, установить предварительно их пределы, выделить свойства, которые возможно, могут послужить в качестве первой характеристики этих ситуаций. математизация бакалавр вуз экономика
Этап 3. Сравнение (сопоставление) различных ситуаций. Выделенные в начале свойства и соотношения позволяют предварительно классифицировать анализируемые и им подобные социально-экономические ситуации, а также предпринять попытку их описания на языке исследуемой социально-экономической ситуации. В отличие от второго этапа, где наблюдение может касаться избранной системы или объекта, на этом этапе рассуждения относятся к классу объектов (ситуаций).
Этап 4. Представление ситуации. Первая попытка отрыва от физической реальности появляется в моменте представления данной социально-экономической ситуации рисунком, схемой, абстрактным символом (системой символов) или вербальным описанием в категориях области, из которой взята ситуация, но уже идеализирующим ее и упрощающим, выделяющим интересующие нас свойства. Здесь вводятся основные понятия и связи, которые используются далее в описании.
Этап 5. Исследование представления. На основе предварительного описания, но уже на языке абстрактных понятий исследуются, все время с опорой на исходную ситуацию дальнейшие свойства определенных понятий, выделенных переменных, что ведет к их уточнению и более глубокому познанию социально-экономической ситуации. Тщательное исследование представления позволяет перейти к последующему этапу.
Этап 6. Формулировка математической схемы (аксиоматика социально-экономической ситуации). На этом этапе необходим выбор и описание возможных исходов, случаев, критериев.
Этап 7. Добавочные предпосылки в фазе построения модели социально-экономической проблемы и ситуации.
Следует отметить, что этап принятия предпосылок, как правило, является необходимой для проведения каких-либо рассуждений и без нее построение модели данного процесса (явления) в более или менее сложных случаях обычно невозможно. Единственным фундаментальным ограничением при выборе предпосылок является то, чтобы каждую причину можно было бы исследовать отдельно, а также чтобы законы, управляющие данным явлением (понятием) имели достаточно простую математическую структуру.
В контексте математизации исследуемой социально-экономической ситуации на этапе принятия предпосылок возникают следующие вопросы:
* отражается ли специфика реальных ситуаций в процессе математизации проблемы?»,
* каким образом отражается специфика реальных ситуаций в процессе математизации проблемы?» и др.
Опыт преподавания дисциплин прикладной математической подготовки, среди которых такие учебные дисциплины, как «Теория игр», «Теория риска», «Дифференциальные уравнения», «Эконометрика», «Методы принятия решений», «Методы оптимизации», «Вычислительная математика» позволяет выделить специальные области применения математики:
* явления (ситуации, проблемы) очень богатые, в которых многие процессы проникают друг в друга, некоторые факторы (переменные) зависят от других, некоторые же компоненты явления в общем являются хорошо известными, хотя их и трудно систематизировать;
* ситуации открытые, с известным общим ходом явления, но сами вызывающие их процессы - неизвестны.
В первом случае математизация прежде всего упрощает явление, позволяет выделить и упорядочить составные процессы, выделить существенные параметры, а также составить прогноз для дальнейшего хода явления (вывести дальнейшие последствия).
Во втором случае математизация объясняет поведение всей системы, часто для того, чтобы построить более совершенную модель. Поэтому в ситуациях первого типа (богатых контекстах) формулируемые предпосылки являются результатом упрощения процессов, идеализации их, экстраполяции, сознательного отбрасывания некоторых свойств и соотношений. Это главным образом, упрощающие предпосылки, допустимые, но вытекающие из данной ситуации. Во втором типе основные идеи построения модели связаны с постановкой гипотез о причинах и ходе процессов, которые могут объяснить поведение системы.
Модель позволяет не только прогнозировать ход явления, но также и понять данный процесс и механизмы, управляющие им. Такие гипотезы принято называть добавочными предпосылками. Их выбор обусловлен интуицией, теоретическими знаниями или сходством (аналогией) процесса по сравнению с другими явлениями (Hooke, 1969; Фомин, 1973; Swiесicki, 1979; Блехман, 1983).
Следует подчеркнуть, что «математический анализ выявляет следствия предпосылок, но не вносит ничего в сами предпосылки (Вoston, 1974, с.20), и о данной системе мы знаем столько, сколько содержится в предпосылках. Если эмпирическая проверка поведения системы не подтверждает гипотез, то мы можем сказать, что данный процесс не протекает таким образом, как мы предполагаем. Во многих ситуациях такой вывод уже сам по себе является большим успехом и позволяет организовать эксперименты или наблюдения, чтобы обнаружить другой ход процесса.
Пригодность математической модели в значительной мере зависит от проведенной надлежащим образом математизации (правильного анализа системы и параметров, которые ее характеризуют). Это же зависит, главным образом, от удачного анализа переменных, а также их иерархической расстановки. Этому факту способствует интеграция информационных и педагогических технологий в системе математической подготовки бакалавра экономики [6, 8, 9] позволяющая по-новому организовать учебно-познавательную деятельность студентов.
В книге «Механика и прикладная математика» (Блехман,1983) авторы, определяя иерархию переменных, описывающих реальные явления, утверждают, что в принципе они могут принадлежать к трем классам:
1. переменные, описывающие процессы, которые во времени и в пространстве подлежат незначительным колебаниям; затем при моделировании они замещаются приблизительными характеристиками;
2. переменные, описывающие процессы, протяженность которых настолько велика, что при описании явления эти переменные считаются постоянными;
3. переменные, влияние которых на характеристику системы является настолько незначительным, что при описании перестают о них заботиться.
Отметим, что переменные первого типа называют быстрыми, а второго типа - медленными по отношению к базисным переменным, принятым во внимание в приближенном описании процесса. При этом речь идет о методических особенностях обучения решению практико-ориентированных задач [3, 12] экономического, финансового и управленческого характера, а также задач с параметрами [10].
С точки зрения модернизации функционирующей методической системы обучения прикладной математике (моделированию, математическим моделям, математическим методам), важным представляется рассмотрение в учебном процессе следующих трех видов ситуаций.
Во-первых, ситуации хорошо охарактеризованные, с параметрами, которые при соответственном анализе явления могут быть легко выделены, измерены и оценены; существенные переменные можно выделить путем измерения или теоретического анализа.
Во-вторых, ситуации, в которых трудно наблюдать причины явлений, но видимы их последствия; существенные и несущественные переменные неизвестны или же трудны для характеризации.
Выбор и определение параметров процесса в процессе построения модели является весьма значимым с точки зрения обучения, один из путей выявления переменных указывает классификация ситуаций. Мы тогда в состоянии формулировать указание: выдели параметры, исследуй, какие из них являются измеримыми, учти их при описании и затем при необходимости исправь схему. Пи этом в контексте организации деятельности преподавателя особую значимость приобретают проблемы реализации прикладной направленности обучения математике с использованием информационных технологий [13].
Постепенное уточнение схемы позволяет более подробно определить характер переменных, некоторые, быть может, исключить или ввести новые. Для обучения этот факт является необычайно важным. Предлагаемый вид учебно-познавательной деятельности (анализ переменных математической модели) способствует выработке и развитию особого вида интуиции - инновационного компонента профессиональной компетентности [5] будущего бакалавра. Отметим, что приведенные содержательные методические особенности полезны и для развития системы педагогического образования [1, 2], в частности - подготовке будущего учителя математики и будущего учителя информатики и математики.
Список литературы
1. Асланов Р. М. О., Синчуков А. В. Компетентностный подход в подготовке учителя математики // Ярославский педагогический вестник. - 2010. - Т. 2. - № 1. - С. 132-134.
2. Асланов Р. М. О., Синчуков А. В. Компетентностный подход в подготовке будущего учителя информатики и математики // Преподаватель XXI век. - 2008. - № 2. - С. 11-16.
3. Балабаева А. Н., Меньшикова Е. В., Чикунова О. И. Обучение учащихся решению практико-ориентированных задач // Успехи современного естествознания. - 2011. - № 8. - С. 154.
4. Власов Д. А. Интеграция информационных и педагогических технологий в системе математической подготовки бакалавра экономики // Современная математика и концепции инновационного математического образования. - 2016. - Т. 3. - № 1. - С. 208-212.
5. Власов Д. А. Компетентностный подход к проектированию педагогических объектов // Вестник Федерального государственного образовательного учреждения высшего профессионального образования Московский государственный агроинженерный университет им. В.П. Горячкина. - 2008. - № 6-2. - С. 124-127.
6. Власов Д. А. Методы обучения как компонент методической системы прикладной математической подготовки // Ярославский педагогический вестник. - 2009. - № 4. - С. 125-129.
7. Власов Д. А. Модульный подход к проектированию содержания учебной дисциплины «Теория риска» // Успехи современной науки и образования. - 2016. - Т. 1 - № 9. - С. 122-124.
8. Власов Д. А. Проблемы проектирования содержания прикладной математической подготовки будущего специалиста // Российский научный журнал. - 2009. - № 12. - С. 9-16.
9. Власов Д. А. Целеполагание в системе математической подготовки бакалавра // Социосфера. - 2014. - № 2. - С. 165-169.
10. Качалова Г. А., Власов Д. А. Проблемы подготовки будущего учителя математики к реализации содержательно-методической линии «Задачи с параметрами» // Российский научный журнал. - 2011. - № 21. - С. 86-91.
11. Качалова Г. А., Власов Д. А. Технологии WolframAlpha при изучении элементов прикладной математики студентами бакалавриата // Молодой ученый. - 2013. - № 6. - С. 683-691.
12. Меньшикова Е. В., Чикунова О. И. Обучение учащихся решению прикладных задач // Успехи современного естествознания. - 2012. - № 5. - С. 87.
13. Синчуков А. В. Проблемы реализации прикладной направленности обучения математике с использованием информационных технологий // Инновационная наука. - 2016. - № 10-1. - С. 116-118.
14. Синчуков А. В. Современная классификация математических моделей // Инновационная наука. - 2016. - № 3-1. - С. 214-215.
15. Синчуков А. В. Технологическое проектирование содержания математической подготовки бакалавра менеджмента // Молодой ученый. - 2016. - № 20 (124). - С. 730-732.
Размещено на Allbest.ru
...Подобные документы
Теоретические основы подготовки детей к обучению математике в школе. Вопросы подготовки детей к школе в психолого-педагогической и методической литературе. Понятие, сущность, значение математической готовности к обучению в школе. Программа исследования.
курсовая работа [1,7 M], добавлен 23.10.2008Учебный процесс и средства информационных и коммуникационных технологий. Тенденция функционирования и развития содержания методической системы обучения информатике в педвузах. Недостатки современной системы методической подготовки учителя информатики.
автореферат [104,5 K], добавлен 13.10.2008Компетентностный подход как стратегия развития современного профессионального образования. Пути совершенствования системы индивидуальной методической подготовки на примере деятельности преподавателя управленческо-экономических дисциплин в колледже.
дипломная работа [238,8 K], добавлен 12.12.2014Изучение проблем в преподавании школьного курса по экономике. Повышение квалификации учителей экономики в условиях подготовки к реализации ФГОС общего образования. Дополнительная профессиональная образовательная программа для повышения квалификации.
курсовая работа [49,0 K], добавлен 16.09.2017Анализ социально-экономических и педагогических предпосылок создания многоуровневой системы образования. Экспериментальная разработка организационно-педагогических условий эффективной многоуровневой подготовки специалистов торгово-экономического профиля.
диссертация [395,8 K], добавлен 27.04.2011Международное исследование образовательных достижений учащихся как измеритель качества математической подготовки школьников. Компетентностный подход как средство повышения качества грамотности. Компетентностно-ориентированные математические задачи.
дипломная работа [1,5 M], добавлен 24.06.2009Место образовательных услуг в решении социально-экономических проблем общества. Организационно-правовые основы их регулирования. Анализ состояния и тенденция развития сферы образовательных услуг. Основные направления совершенствования их управления.
курсовая работа [1,4 M], добавлен 06.04.2015Характеристика сущности, методов и форм методической работы. Инновационные аспекты в методической работе. Опыт преподавателя экономических дисциплин в применении инноваций в учебно-воспитательном процессе. Пути совершенствования методической работы.
дипломная работа [1,4 M], добавлен 10.09.2010Особенности проектирования будущего системы повышения квалификации педагогических кадров в Республике Казахстан. Влияние изменений в системе непрерывного образования. Цели воспитания и обучения, профессиональной подготовки и повышения квалификации.
статья [20,8 K], добавлен 10.12.2010Профессиональная подготовка будущего учителя физической культуры в вузе. Профессиональная подготовка в условиях учебнопрактической деятельности. Средства профессиональной подготовки будущего учителя физкультуры.
курсовая работа [28,6 K], добавлен 29.10.2002Развитие кафедры "Управление качеством и сертификация". Непрерывная система подготовки специалистов. Международные и общероссийские конференции. Инновационные проекты. Реализация принципов Cals-технологий в СМК. Схема системы управления предприятием.
презентация [9,1 M], добавлен 30.10.2013Переход высших учебных заведений на международную систему бакалавриата и магистратуры - вхождение системы образования России в Болонский процесс. Критика Болонского процесса. Протест против коммерциализации образования. Преимущества Болонского процесса.
реферат [46,1 K], добавлен 19.10.2014Особенности предметной области информатики. Структура Единого Государственного Экзамена (ЕГЭ) по информатике. Анализ учебно-методических комплексов по подготовке к экзамену. Разработка методической системы уроков подготовки к ЕГЭ по информатике.
курсовая работа [362,6 K], добавлен 06.04.2014Современное состояние системы подготовки научных кадров в аспирантурах Западной Европы, США и Китая. Анализ структуры подготовки специалистов высшей научной квалификации в ходе реализации Болонского процесса. Повышения эффективности аспирантуры Беларуси.
реферат [21,4 K], добавлен 08.11.2015Принципы профессионального обучения и особенности их реализации при подготовке бакалавров во Франции. Содержание профессионального обучения. Организационная структура учебного заведения. Наиболее интересные формы и методы организации учебного процесса.
курсовая работа [59,6 K], добавлен 08.01.2008Теоретические концепции социально-педагогического менеджмента. Особенности организации работы социально-педагогической работы в школе и система деятельности социального педагога. Содержание технологии менеджмента социально-педагогической деятельности.
дипломная работа [212,9 K], добавлен 07.10.2012Появление и развитие методов активного социально-психологического обучения. Общая характеристика методов обучения и их сравнительный анализ. Эффективность методов активного социально-психологического обучения в условия ВУЗа. Анализ конкретных ситуаций.
курсовая работа [181,6 K], добавлен 10.01.2011Актуализация духовно-нравственного воспитания в российском обществе. Духовно-нравственное воспитание школьников. Вхождение России в контекст современной мировой культуры. Принципы подготовки будущего учителя. Педагогическая направленность личности.
автореферат [87,9 K], добавлен 15.10.2008Жизненный путь И.Г. Песталоцци. Сущность, содержание и особенности подготовки воспитателей детских учреждений в социально–педагогическом наследии И.Г. Песталоцци и возможности использования опыта швейцарского педагога в современных российских условиях.
контрольная работа [34,1 K], добавлен 03.06.2012Компоненты системы методической работы в образовательном учреждении. Организация учебно-воспитательного процесса в автотранспортном колледже в условиях модернизации образования. Роль инноваций в методической работе преподавателя экономических дисциплин.
дипломная работа [109,0 K], добавлен 22.09.2014