Особенности реализации профессионально-прикладной направленности обучения стохастике в условиях профилизации общеобразовательной школы

Анализ профессионально-прикладной направленности обучения стохастике, состоящей во включении в курс математических классов профессионально-прикладных стохастических задач. Обучение использованию метода математического моделирования при их решении.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 10.11.2018
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности реализации профессионально-прикладной направленности обучения стохастике в условиях профилизации общеобразовательной школы

Стохастика (комбинаторика, теория вероятностей, математическая статистика и теория случайных процессов) в последнее время превратилась в одну из самых быстро развивающихся математических наук. Новые теоретические результаты открывают новые возможности для естественно-научного и практического использования методов стохастики. Более тонкое, более детальное изучение явлений природы, а также производственных, технических, экономических и иных процессов толкает в то же время науку о случайном на изыскание новых методов, новых закономерностей, которые порождаются случаем.

Так, ещё в начале XX в. математик и педагог П.А. Некрасов считал, что наука о случайном оказывает благотворное влияние на развитие мыслительных способностей и логических умений учащихся. «Это развивающее значение кроется в том обстоятельстве, что теория вероятностей как интуитивная функция сознания, называемая здравым смыслом, неразрывно связана своими сомнениями и воззрениями с самим субъектом… Математическая теория вероятностей перебрасывает среди всех сомнений надлежащий мост от объекта через частный и общечеловеческий опыт к внешней реальности. При этом теория вероятностей интенсивно упражняет учеников в индуктивной логике, параллельной априори обдуманному опыту…» [3, с. 132-133]. Недаром в настоящее время заговорили о включении данного раздела в школьный курс математики.

Как известно, одним из приоритетных направлений деятельности общеобразовательной школы является подготовка обучающихся к осознанному выбору профессионального и жизненного пути. Условием достижения этой задачи является последовательная индивидуализация обучения, профильная подготовка на завершающем этапе обучения в школе.

В настоящий момент практика обучения на старшей ступени школы элементам стохастики носит накопительный характер, вопрос создания конкретной теории и методики преподавания новой содержательной линии в классах различных профилей пока остаётся открытым.

В тематическом планировании стохастического материала на старшей ступени общеобразовательной школы закладывается идея обучения по принципу «винтовой лестницы» (обучение по «спирали») [2], расширяющейся кверху, в которой над каждой «точкой» изучаемого содержательного пространства учащиеся проходят многократно, поскольку часть стохастических понятий и методов не могут быть восприняты ими сразу (например, с понятием случайной величины учащиеся знакомятся в основной школе, но систематически изучают его лишь на старшей ступени общеобразовательной школы). Школьники каждый раз смотрят на них с другой высоты и под иным углом зрения, что позволяет лучше осмыслить пройденное. Обучение, построенное на этом принципе - это постоянное повторение на новом уровне знаний. Систематическое возвращение к фундаментальным стохастическим понятиям позволяет школьникам постепенно переходить от наблюдений и экспериментов к точным формулировкам и доказательствам. Всё время идёт работа с фундаментальными понятиями, основными методами решений, доказательств и сравнений, что само по себе приводит к хорошему результату, который за счёт методики преподавания может быть лишь только улучшен.

Несмотря на явные достижения, полученные отечественной методической мыслью, надо признать наличие ряда проблем в современном преподавании стохастики в школе. Одной из таких проблем является слабое отражение её профессионально-прикладного потенциала. Это влечёт упущение возможности формирования практических умений учащихся, связанных с решением познавательных задач, раскрывающих связь с жизнью, с другими школьными предметами естественно-научного и гуманитарного циклов, с будущей профессиональной деятельностью старшеклассников [7].

Под профессионально-прикладной направленностью обучения стохастике будем понимать целенаправленный отбор и рациональное использование в процессе обучения содержания материала, ориентированного на показ применимости науки о случайном к описанию процессов реальной действительности, в дальнейшей профессиональной деятельности старшеклассников, а также выбор адекватных методов, форм и средств обучения для передачи и усвоения учащимися отобранной системы знаний.

Стоит отметить, что большая часть стохастики является абстрактной, поэтому её изучение в школе не должно строиться только в виде логических правил, а должно показывать методы познания в качестве приёма решения задач практики. Первые занятия требуют практических примеров, привлечения конкретных фактов из естественно-научных и гуманитарных дисциплин. На уроках математики нужно показывать учащимся, что стохастика, отражая формы и отношения материального мира, является наукой о математических моделях реальной действительности. Понятия вероятности, совместности, независимости, случайности, случайной величины отражают многообразие процессов реальной действительности. Таким образом, знакомство учащихся с элементами стохастики открывает широкие возможности для иллюстрации значимости математики в решении профессионально-прикладных задач.

Под профессионально-прикладной задачей будем понимать задачу, возникшую в реальной жизненной ситуации, а также в профессиональной деятельности (иногда содержащей математические термины), для решения которой необходимо привлечение математического (в данном случае стохастического) аппарата.

Профессионально-прикладная направленность обучения в школе требует, чтобы в процессе обучения элементам стохастики обеспечивалось органическое единство изложения теории и практики, развивающее у учащихся умения применять теорию для решения профессионально-прикладных задач и выполнять различные практические и лабораторные работы. Изучая элементы комбинаторики, теории вероятностей и статистики, учащиеся должны усвоить и оценить их профессионально-прикладные возможности и получить основные навыки в применении элементов стохастики при решении практических задач. Через задачи можно показать применение стохастических знаний для познания реального мира, познакомить учащихся с методами решения задач в науке и практической деятельности. Таким образом, при решении профессионально-прикладных задач формируются первые профессиональные интересы школьников, так как при этом учащиеся знакомятся с применением стохастических знаний в экономике, естествознании, технике, производстве, сельском хозяйстве и т.д.

Осуществление профессионально-прикладной направленности школьного курса стохастики связано с применением математического моделирования.

Использование моделирования в обучении имеет два аспекта. Во-первых, моделирование является тем особым содержанием, которое должно быть усвоено в результате обучения методом познания, и, во-вторых, моделирование является тем учебным действием и средством, без которого невозможно полноценное обучение [6].

Однако, как показывает практика, при решении задач с практическим содержанием старшеклассникам довольно сложно уяснить отношения между величинами в них, установить зависимость между данными и искомыми.

В основе решения таких задач как раз и лежит математическое моделирование, поэтому для реализации профессионально-прикладной направленности обучения стохастике необходимо организовать обучение элементам моделирования.

Специфика стохастики состоит в том, что она более других математических разделов связана с действительностью, т.е. границы реальных объектов и их моделей весьма размыты. Поэтому, с одной стороны, мы должны акцентировать внимание учащихся на данном обстоятельстве. С другой стороны, обучение должно быть построено так, чтобы учащиеся умели отличать реальные объекты от их моделей.

Процесс обучения стохастике должен в какой-то мере имитировать описанный процесс исследования в самой математике, раскрывать её связи с реальным миром, с другими областями знаний, в которых она находит всё новые и новые приложения.

Математическое (стохастическое) моделирование состоит из следующих этапов [4, 5]:

- этап перехода от ситуации, которую необходимо разрешить, к формальной математической модели этой ситуации, к четко поставленной математической задаче - этап формализации;

- решение поставленной математической задачи методами, развитыми в самой математике для задач данного типа, составляет содержание второго этапа - этапа решения задачи внутри построенной математической модели;

- третий этап сводится к интерпретации полученного решения математической задачи, применению этого решения к исходной ситуации и сопоставлению его с ней.

Коротко эти три этапа можно назвать:

1) построение математической модели;

2) получение математических результатов;

3) принятие решения (выводы в реальном мире).

Недооценка каждого из рассмотренных этапов приводит к значительным затруднениям в использовании метода математического моделирования при решении профессионально-прикладной стохастической задачи.

Для реализации описанного содержания процесса моделирования необходимо [1, с. 215-216]:

- знать некоторые объекты, отношения и факты определённой области деятельности;

- уметь в рассматриваемой ситуации отбросить несущественное и выделить основное;

- создать на полученной основе схему ситуации (явления);

- выбрать «язык», на котором будет рассматриваться полученная схема;

- получить из схемы требуемые выводы, т.е. решить задачу на выбранном «языке».

При обучении математическому моделированию можно отметить несколько уровней обучения в порядке нарастающей сложности [1, с. 216]:

1) обучение «языку», на котором будет вестись моделирование; сюда относится изучение теории и решение системы упражнений, непосредственно направленных на её закрепление;

2) обучение «переводу» реальной ситуации на данный математический язык;

3) обучение выбору существенных переменных и построение схемы их взаимосвязей;

4) обучение составлению математических выражений, реально существующих отношений и связей, в частности, составление уравнений по условию задачи;

5) обучение решению математически выраженных отношений и связей, истолкованию полученного ответа;

6) обучение исследованию полученного решения, в частности, простейшим навыкам самоконтроля.

Хорошими примерами, иллюстрирующими сказанное, являются следующие задачи.

Задача 1. Два школьных друга условились встретиться в определённом месте между двумя часами и половиной третьего дня. Пришедший первым ждёт другого в течение 20 минут, после чего уходит. Найти вероятность того, что встреча друзей состоится, если каждый из них наудачу выбирает момент своего прихода (в промежутке от двух часов до половины третьего) и моменты прихода обоих независимы.

1. Математическая модель. Пусть С={встреча друзей состоится}. Как видно, аксиоматическим, статистическим и классическим определениями вероятностей воспользоваться нельзя, тогда необходимо прибегнуть к геометрическому, но для этого надо задать меры.

Поступим следующим образом.

Обозначим момент прихода одного из друзей через х минут, а момент прихода другого через у минут. Для того чтобы встреча произошла, необходимо и достаточно, чтобы выполнялось условие .

Будем изображать х и у как декартовы координаты точек плоскости, в качестве единицы масштаба выберем минуты.

Все возможные исходы испытания изображаются точками фигуры, ограниченной квадратом, сторона которого равна 30; площадь этого квадрата .

Неравенство равносильно системе неравенств:

Исходы испытания, благоприятствующие событию А, удовлетворяют системе неравенств:

Решениями этой системы неравенств являются координаты всех точек плоскости, расположенных на рисунке в заштрихованной области, т.е. между граничными прямыми: ; ; ; ; ; и на самих граничных прямых. Точки плоскости, принадлежащие заштрихованной области, характеризуют исходы испытания, благоприятствующие событию А. Площадь заштрихованной фигуры равна .

2. Математические результаты. , или .

3. Реальный мир. При переводе результата, полученного в ходе математических вычислений, заключаем, что вероятность встречи друзей в назначенное время равна 89%.

Задача 2. Всхожесть клубнелуковиц гладиолуса равна 80%. Сколько нужно посадить клубнелуковиц, чтобы наивероятнейшее число взошедших из них было равно 100?

1. Математическая модель. Пусть А={посаженная клубнелуковица гладиолуса прорастёт}.

Тогда по условию , и . Воспользуемся неравенством .

2. Математические результаты. , или , сл., или .

3. Реальный мир. При переводе результата, полученного в ходе математических вычислений, заключаем, что необходимо посадить 124 или 125 клубнелуковиц гладиолуса, чтобы наивероятнейшее число взошедших из них равнялось 100.

Задача 3. В литературоведении существует способ определения подлинности произведения по отношению к какому-либо автору. Основан он на соотношении частотности появления отдельных слов в тексте. Для этого анализируются два произведения: подлинное и то, подлинность которого необходимо установить. Если частоты слов совпадают, то тексты принадлежат одному автору, а если нет, то различным. Предположим, что мы имеем два текста, при этом среди 800 слов текста подлинника (контрольная выборка) слово «колокол» встречается 23 раза, а среди 1270 слов проверяемого текста (экспериментальная выборка) - 50 раз. Принадлежат ли эти тексты одному автору?

1. Математическая модель.

Выдвигаем гипотезы:

={два текста принадлежат одному автору};

={тексты принадлежат разным авторам}.

Найдём процентные доли (относительные частоты) появления слова «колокол» в текстах:

для текста-подлинника - или 2,9%;

для проверяемого текста - или 3,9%.

Казалось бы, проценты различны и поэтому уже можно сделать вывод о различных авторах, но останавливаться на этом не будем и рассчитаем значение статистики с помощью критерия - Фишера: - математическая модель рассматриваемой ситуации.

2. Математические результаты. С помощью статистических таблиц вычислим значения и , помня при этом, что всегда соответствует большей процентной доле.

Тогда (для 3,9%), (для 2,9%), , .

Рассчитаем эмпирическое значение критерия:

.

Строим «ось значимости:

В нашем случае попало в зону незначимости. В соответствии с правилом принятия решения, мы оставляем гипотезу и отвергаем .

3. Реальный мир. При переводе результата, полученного в ходе математических вычислений, заключаем, что данные два текста принадлежат одному автору.

Процесс обучения решению профессионально-прикладных стохастических задач является наиболее эффективным и часто незаменимым средством усвоения учащимися понятий и методов школьного курса стохастики. Стохастическая задача является важным средством обучения математике, её решение формирует навыки самостоятельной работы, приёмы умственной деятельности, учит методам поиска, способствует развитию критичности мышления и творческих способностей, открывает новые факты.

Реальные задачи с профессионально-прикладным содержанием в школьной математике встречаются очень редко. Связано это с тем, что этап построения математической модели внематематической ситуации требует больших знаний и математической культуры. В связи с этим возникла проблема подбора и разработки задач профессионально-прикладного характера, которые могут использоваться в обучении стохастике. Материал для составления профессионально-прикладных задач можно заимствовать из различных отраслей народного хозяйства в результате знакомства с современной технической литературой, различными справочниками.

С помощью некоторой модификации целый ряд традиционных задач стохастики, сформулированных на языке внематематических терминов, мог бы стать задачами профессионально-прикладного характера. Расширение круга таких задач в обучении математике положительно повлияло бы на отношение учащихся (и общества) к математике, повысилась бы мотивация к обучению. Участие стохастической проблематики в математическом и общем образовании стало бы более разносторонним.

Резюмируя вышесказанное, следует ещё раз подчеркнуть, что аппарат стохастики является важным компонентом в формировании общеинтеллектуальной и профессиональной культуры современного человека, для мотивации овладения которым необходим постоянный показ практической важности данного раздела математики.

Литература

стохастика математический обучение

1. Виленкин Н.Я. Воспитание мыслительных способностей учащихся в процессе обучения математике / А.Я. Блох, Н.Я. Виленкин, Р.К. Таварткиладзе // Современные проблемы методики преподавания математики: сб. статей. Учеб. пособие для студентов мат. и физ.-мат. спец. пед. ин-тов; сост. Н.С. Антонов, В.А. Гусев. - М.: Просвещение, 1985.

2. Козлов С.Д. Математика в школе. Какой ей быть? // Математика в школе, 2001. - № 3.

3. Некрасов П.А. Об учебных особенностях двух направлений математического курса средней школы // Математическое образование. - 1914. - № 3.

4. Плоцки А. Стохастика в школе как математика в стадии созидания и как новый элемент математического и общего образования: дис. … докт. пед. наук в форме научного доклада: 13.00.02. - СПб., 1992.

5. Плоцки А. Стохастические задачи и прикладная направленность в обучении математике // Математика в школе. - 1991. - № 3.

6. Фридман Л.М. Сюжетные задачи по математике. История, теория, методика: учеб. пос. для учителей и студентов педвузов и колледжей. - М.: Школьная пресса, 2002.

7. Щербатых С.В. Научно-методические особенности реализации прикладной направленности обучения стохастике в профильных классах общеобразовательной школы: монография. - Елец: ЕГУ им. И.А. Бунина, 2008.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.