Проблемы, возникающие при изучении темы "Производная и её применение"

Понятие производной функции, его применение при доказательстве разных тождеств. Использование дифференциального исчисления при исследовании функций. Логический подход при введении производной в качестве базисного понятия при определении предела функции.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 22.02.2019
Размер файла 14,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Стерлитамакский филиал Башкирского Государственного Университета

Проблемы, возникающие при изучении темы «Производная и её применение»

Никитина Елена Александровна (Научный руководитель: канд. физ.-мат. наук, доцент Шабаева А.Ф.)

В 10 классе ученики приступают к изучению этого раздела математики, который называется , как нам известно , «Математический анализ». Конечно, в школе ученики ограничиваются в изучении лишь одних из основных элементов математического анализа. Вначале осуществляется знакомство с серьезнейшим разделом высшей математики. Здесь изучают довольно важные моменты, например, как ведет себя функция. Этот анализ почти всегда связан с таким понятием как ,предел, только затем ученики изучают производную - важнейшую математическую модель, построение которой также основано на понятии предела.

Понятие производной произошло как результат долгих усилий, который был направлен на решение таких задач , как задача о проведение касательной к кривой, о нахождении скорости равноускоренного или равнозамедленного движения. Похожими задачами занимались математики с древнего времени. доказательство производный исчисление функция

В курсе «Алгебра и начала анализа» при обобщении материалов темы «Производная и её применение» можно с позиций теории дифференциального исчисления продемонстрировать , как с помощью понятия производной можно получить единую трактовку таких понятий, как скорость химической реакции, мгновенная скорость прямолинейного неравномерного движения, линейная плотность неоднородного стержня, сила тока в цепи. Также можно более тесно объединить понятие производной с такими содержательно-методическими линиями курса математики, как линия уравнений и неравенств, линия тождественных преобразований.

Такое, понятие производной функции может применяться при доказательстве различных тождеств, благодаря этому усиливается прикладная направленность курса, расширяется класс решаемых задач. Один из учёных утверждал, что с помощью производной можно получить для нужд техники довольно простейшие и очень удобные для вычислений формулы. Производная создана для упрощения многих сложных и даже не решаемых задач.

Обобщая материалы о использовании производной к приближенным вычислениям, можно показать ученикам идею линеаризации функции.

Также дифференциальное исчисление широко используется при исследований функций. Благодаря производной можно найти промежутки монотонности функции, её точки экстремума , наибольшие и наименьшие значения.

Сама тема «Производная» очень интересна в изучении ,но в то же время и сложна. При помощи производной можно довольно точно , а главное просто построить различные графики, решить задачи и уравнения, исследовать функции и многое другое.

Довольно разные подходы к введению производной определяются логической связью этого понятия с более общим понятием предела функции в точке.

Логический подход при введении производной в качестве базисного понятия использует определение предела функции в точке.

В настоящее время в школьных программах по алгебре при начальном изучении производной функции обычно применяют исторический подход, то есть изначально формируются понятия производной, и только потом, понятие предела функции. Именнно при таком подходе большое внимание будет отводиться практическим аспектам изучения производной и как уже доказано, это лучше воспринимается учениками.

При изучении темы «Производная» начинают проявляются известные нам трудности, они связанны с осуществлением предельных переходов. Поэтому очень важно придать изложению возможно больше наглядности и конкретный характер.

Также у многих учеников возникает проблема. Они не могут заметить связи между скоростью и производной , что снижает качество успеваемости как на уроках алгебры , так и на физики.

При изучении применения производной важнейшая роль отводится наглядным представлениям о производной. Опираясь на геометрический и механический смысл сразу становится видно ясные критерии возрастания и убывания функций, признаки максимума минимума.

При решение различных тестовых задач геометрического, физического и практического содержания с использованием производной позволяет ученикам ознакомиться со многими этапами решения прикладных задач: составление математической модели (перевод задачи на язык функций), решение полученной задачи средствами математического анализа, и наконец, интерпретация полученного решения в терминах исходной задачи.

Тема « Производной» является одной из важнейших тем в курсе алгебры для старшеклассников, поскольку смысл производной в экономике, математике, физике и геометрии. Именно поэтому данная

тема должна быть понятна ученикам не только классам физико-математического профиля, но и гуманитариям. Для того чтобы , учащимся было легче понять эту тему можно показать им подходящую задачу, которая раскрывает физический смысл понятия производной: свободное падение тела, движение которого не будет являться равномерным. Опишем скорость падения в каждый момент времени t, то есть введём понятие мгновенной скорости свободного падения тела. Как нам уже известно, что среднююскорость можно определить отношением , причём чем меньше значение , тем менее будет «заметно» изменение средней скорости падения. При отношение стремится к значению мгновенной скорости. Следовательно , мгновенная скорость характеризует скорость изменения пути в момент времени t. Обобщая и дополняя вышеизложенное скажем , что производная нашла довольно широкое применение :

а ) в алгебре она применяется при изучении функций и построении различных графиков функций ; б ) в физике используется при решении задач на нахождения скорости неравномерного движения, плотности неоднородного тело и др.;

в ) в тригонометрии используется при нахождении тангенса угла касательной к кривой, а также применяется в геометрии, астрономии, химии ,аэродинамике, биологии .

Список литературы

1. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.2: Задачник для общеобразоват. учреждений / А.Г. Мордкович, Л.О. Денищева, Т.Н. Мишустина, Е.Е. Тульчинская; Под ред.А.Г. Мордковича. - 5-е изд. - М.: Мнемозина, 2014.

2. К.О. Ананченко «Общая методика преподавания математики в школе» 1997.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.