Элементы истории математики при преподавании темы "Тригонометрия"
Использование исторического материала на уроках математики. Становление тригонометрии как науки в IV-VI вв. в Индии, Древнем Египте. Возникновение тригонометрического учения из практики строительства или определения расстояний до недоступных объектов.
Рубрика | Педагогика |
Вид | конспект урока |
Язык | русский |
Дата добавления | 09.04.2019 |
Размер файла | 17,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.Ru/
Размещено на http://www.Allbest.Ru/
Размещено на http://www.Allbest.Ru/
Башкирский государственный университет
Стерлитамакский филиал
Sterlitamak branch «Bashkir state University»
Элементы истории математики при преподавании темы «Тригонометрия»
Elements of history of mathematics in the teaching of the topic «Trigonometry»
Исхакова Н.Г., Ishakova N.G
Дорофеева А.В., Dorofeeva V.A.
Стерлитамак, Sterlitamak
Республика Башкортостан
Математика как учебный предмет имеет большие возможности для раскрытия роли научных методов в познании окружающего нас мира. Одной из таких возможностей является введение в курс математики средней школы элементов историзма.
Эмоциональный рассказ учителя или короткие заранее подготовленные сообщения учащихся на уроках, доклады на кружковых, факультативных занятиях, на математических вечерах помогают учителю проводить работу по воспитанию материалистического мировоззрения в комплексе.
При изучении любой учебной темы учителя волнует мотивация обучения, а точнее, мотивация учебной деятельности учащихся. Мотивация начинается тогда, когда учитель пытается объяснить, как возникло то или иное математическое понятие, как открыли математический факт, какие задачи практики привели к их появлению, какой путь прошло человечество, прежде чем формулировка изучаемого понятия стала современной. Говоря проще, учителю надо ответить на стандартный детский вопрос:
«Кто впервые придумал рассматривать изучаемое математическое понятие и зачем?»
Для того чтобы понимание учащимися опытного происхождения математических понятий переросло в мировоззрение, необходимо останавливаться на этих вопросах неоднократно, систематически. Для кратких исторических сведений достаточно 2-5 минут урока. Затрата времени окупается повышением интереса к данной теме.
Исторический материал может быть использован на любом этапе урока (но не на каждом уроке). Иногда эти сведения полезно дать перед объяснением нового, а в других случаях использовать их для обобщения какого-нибудь раздела. Это зависит от педагогической интуиции учителя.
Тригонометрия, как и всякая наука, вырастала из потребностей человеческой практики, но эти потребности не ограничивались, как мы уже упоминали выше, только лишь потребностями строительства или нахождения расстояний до недоступных объектов. Задачи мореплавания, требовавшие по звёздам определять правильный курс корабля, задачи определения по звёздам пути при движении караванов в пустыне, задачи земледелия, требовавшие введения точного календаря, и многие другие обусловили развитие астрономии, а с ней и тригонометрии. Причём сферическая тригонометрия развивалась наряду с плоской.
По сути, тригонометрия появилась в древности как один из разделов астрономии. Дело в том, что преобладающей гипотезой о строении Вселенной была геоцентрическая, согласно которой Земля есть шар, расположенный в центре небесной сферы, которая равномерно вращается вокруг своей оси. Светила считаются расположенными на этой сфере. При изучении их движения большое значение приобретают задачи о расположении точек и фигур на сфере. Работы, в которых подобные задачи решаются, получили название сферики. Плоская тригонометрия при таких условиях отнюдь не играла лишь второстепенную роль по сравнению со сферической тригонометрией. У неё была своя область приложений: помимо решения задач на определение расстояний до недоступных объектов, она являлась частью практической астрономии - фигуры на сфере проектировались на плоскость горизонта, меридиана и т.д., и таким образом многие задачи сводились к плоским случаям.
Отдельные вопросы из тригонометрии уже успешно решали древнегреческие астрономы, однако они рассматривали хорды, а не синусы, косинусы и другие, как говорили в древности, линии. Если говорить точнее, то греческие астрономы рассматривали, по сути, только синус, вместо которого использовали хорду, равную удвоенной линии синуса половинной дуги.
Начало учению о тригонометрических величинах было положено в Индии, начиная с IV-VI вв. Индийские учёные впервые в науке стали употреблять линию синуса как половину хорды, и составили первые тригонометрические таблицы синусов (полухорд). Им были известны также основное тригонометрическое тождество, формулы приведения, формулы синуса половинного угла.
В IX-X вв. центр математических исследований, значит и центр развития тригонометрического знания, переместился в Среднюю Азию, где трудами арабских математиков тригонометрия впервые выделилась из астрономии как самостоятельная наука. В частности, учёные стран ислама ввели новые тригонометрические величины: тангенс и котангенс. В трактате «Плоские четырёхугольники» учёного - энциклопедиста и государственного деятеля XIII в. Насирэддина Туси плоская и сферическая тригонометрия выступают как самостоятельные предметы. Для сравнения, в Европе тригонометрия достигла этого уровня, стала успешно развиваться и трактоваться как самостоятельная наука лишь в XV в., и начало этому было положено трудами немецкого астронома и математика, профессора Региомонтана.
Впервые тригонометрические соотношения вводятся в курсе геометрии следующим образом. Рассматривается прямоугольный треугольник АВС (угол С - прямой), и на уровне определений утверждается:
sin a =АС/АВ, cos a = ВС/АВ, tg а = АС/ВС, ctg а = ВС/АС.. (*)
Учащимся легче запоминаются эти определения, если учитель пользуется опорными сигналами:
sin a = противоположный катет/гипотенуза,
cos a = прилежащий катет/гипотенуза,
tg a = противолежащий катет/прилежащий катет,
ctg a = прилежащий катет/противолежащий катет.
Представленные определения и использованная для них символика являются необычными и сложными для учащихся, поэтому понимание учебного материала во многом зависит от иллюстрации глубинной сущности понятий, а для этого полезно обратиться к истории математики.
В первую очередь нас будут интересовать вопросы: «Откуда появилась необходимость рассматривать представленные выше соотношения сторон прямоугольного треугольника?» и «Как появилась символика, используемая в определениях(*)?»
Ключ к отгадке надо искать в практической деятельности людей. Причем речь идет о временах настолько далеких (может второе тысячелетие до н.э., а может и ранее), что никакими письменными свидетельствами, позволяющими дать однозначный ответ мы не располагаем. Поэтому позволим себе высказать некоторые догадки.
В древние времена строительство сооружений велось примерно, таким образом, и такими средствами, как сегодня строят небольшие дома и подсобные помещения. При этом строители используют нехитрые инструменты: веревку, отвес, колышки и прочее. Между прочим, в Древнем Египте существовали люди специальной профессии, которых называли гарпедонапты, что значит, натягивали веревки. С них начиналось строительство. А зачем нужны веревки строителям? Чтобы ровно в линию выкладывать кирпичи и камни. Предложим учащимся вслушаться в слова «линия» и «лен». исторический тригонометрия урок математика
Действительно, откроем этимологический словарь: Линия. Через посредство немецкого языка заимствовано в начале 18 века из латыни. Лат. linea - «нитка» - производное от linum - «лен».
Еще веревка нужна для того, чтобы получить прямой угол, например в целях строительства привычного нам четырехугольного дома. Ведь такой дом построить легче всего. А строительство домов иных форм и сейчас является трудной архитектурной задачей.
Учащиеся уже знают, что одним из важнейших изобретений человечества было изобретение колеса. А почему? Да потому, что в природе колеса нет. Колесо - это именно человеческое изобретение. Теперь другой вопрос: а есть ли в природе прямой угол? Примеры привести можно (ветка, растущая перпендикулярно стволу дерева; само дерево, растущее перпендикулярно к земле и т.п.), но вряд ли перечисленное годится для того, чтобы создать шаблон прямого угла.
Издавна строители научились получать прямой угол с помощью веревки. В Древнем Египте заметили, что если на веревке завязать узелки на равном расстоянии друг от друга, и натянуть веревку так, чтобы, говоря современным языком, получился треугольник со сторонами 3, 4, 5, то угол, лежащий против наибольшей стороны, окажется прямым. С тех пор треугольник со сторонами 3, 4, 5 называют египетским.
Историю с натягиванием веревки продолжают еще несколько древних терминов: катет - значит «отвес», гипотенуза - «натянутая», другой катет прямоугольного треугольника не назывался катетом (т.е. отвесом), о нем говорили как об основании. По натянутой веревке (другими словами, по гипотенузе) можно проводить стачивание боковой грани строящейся пирамиды.
Теперь мы подошли к главному вопросу: «Как объяснить строителям, по какому углу стачивать грань пирамиды?» ( В Древнем Египте пирамиду выкладывали из грубых крупных камней, и надо было их отшлифовать или иным образом подкорректировать.) Один из способов: задать отношение высоты пирамиды к апофеме, или, если говорить о плоскости, задать отношение катета - отвеса к гипотенузе. Вот и получается прообраз косинуса угла стачивания. А когда задавались другие отношения - отношение катета - основания к катету - отвесу или отношение катета - основания к гипотенузе - это были прообразы понятий тангенса и синуса угла.
Теперь мы понимаем: рассматривать отношение длин сторон прямоугольного треугольника очень удобно, так как для всех подобных прямоугольных треугольников эти отношения сохраняются (все правильно, как потом узнают учащиеся, у подобных треугольников углы равны, а, значит, равны и тригонометрические функции углов.
Судя по всему, на идею подобных фигур люди обратили внимание достаточно давно. Одинаковые по форме, но различные по величине фигуры встречаются в вавилонских и египетских памятниках. В сохранившееся погребальной камере отца фараона Рамсеса II имеется стена, покрытая сетью квадратиков, с помощью которой на стену перенесены в увеличенном виде рисунки меньших размеров (своего рода «палетка»).
До этого момента рассматривалась самая глубинная предыстория зарождения тригонометрических знаний, но именно она отразилась в самом слове тригонометрия, которое буквально означает измерение треугольников.
Действительно, термин тригонометрия состоит из двух греческих слов: тригоном, что означает «треугольник» и метрейн, что означает «измерять». Кроме того, данный первичный исторический рассказ помогает объединить в сознании учащихся такие темы, как знакомство с прямоугольным треугольником, теорема Пифагора, тригонометрические соотношения в прямоугольном треугольнике. И главное, у учащихся возникает желание посмотреть на эти темы как с исторической, та и с современной точки зрения, т.е. повышается интерес к изучению геометрии.
Библиографический список
1. Александрова Н.В. История математических терминов, понятий, обозначений: Словарь-справочник. - Изд. 3-е испр. ? М.: Изд-во ЛКИ, 2008. ? 248 с.
2. Глейзер Г.И. История математики в школе. ? М.: Просвещение, 2002. ? 156 с.
3. Дорофеев А.В., Латыпова А.Ф. История математики: Учебное пособие. - Стерлитамак: Стерлитамакский филиал БашГУ, 2015. - 79 с.
4. История математики с древнейших времен до начала XIX века / под ред. А.П. Юшкевича / в 3-х т.- М.: Наука, 1970-72.
5. Методика и технология обучения математике: Курс лекции: пособие для ВУЗов [текст] /под ред. Н.С. Стефановой, Н.С. Подходовой. М.: Дрофа, 2005 г. 416 с.
Размещено на allbest.ru
...Подобные документы
История развития тригонометрических понятий. Психолого-педагогические основы преподавания тригонометрии в средней школе. Требования к отбору историко-научного материала для включения в процесс обучения математике. Мотивация как двигатель обучения.
дипломная работа [95,0 K], добавлен 30.03.2011Математика как одна из наиболее абстрактных наук, изучаемых в начальной школе. Знакомство с особенностями использования исторического материала на уроках математики в 4 классе. Анализ основных проблем развития познавательной активности школьников.
дипломная работа [4,0 M], добавлен 10.07.2015Понятие образовательного потенциала и определение форм организации занятий с использованием исторического и географического материала. Реализация образовательного потенциала при использовании исторического и географического материала на уроках математики.
курсовая работа [50,9 K], добавлен 16.01.2014Рассмотрение методики введения в школьный курс математики понятий синуса, косинуса, тангенса, основных тригонометрических тождеств (на геометрическом и алгебраическом материалах), функций, преобразований, способов решения уравнений и неравенств.
реферат [459,8 K], добавлен 07.03.2010Использование мультимедийного проектора как средства повышения качества знаний учащихся. Особенности информационных технологий в общеобразовательной школе. Информационные технологии в преподавании математики. Разработка уроков математики в школе.
дипломная работа [287,2 K], добавлен 11.05.2008Развитие речи учащихся на уроках математики через устные упражнения. Диагностика уровня сформированности диалогической речи младших школьников на уроках математики. Исследование развития диалогической речи на уроках математики в начальной школе.
дипломная работа [527,4 K], добавлен 19.12.2022Методика формування творчої особистості при вивченні математики. Роль гри та нестандартних уроків у підвищенні інтересу учнів до вивчення математики. Реалізація міжпредметних зв'язків на уроках математики. Незвичайні творчі вправи до уроків математики.
практическая работа [38,7 K], добавлен 29.07.2010Особенности восприятия в обучении младшего школьника. Принцип наглядности в обучении. Классификация и использование наглядных пособий по математике. Использование наглядности на уроках математики в первом классе при изучении чисел первого десятка.
дипломная работа [170,9 K], добавлен 25.06.2009Інтерактивні технології як новий, творчий, цікавий підхід до організації навчальної діяльності учнів, їх використання на уроках математики. Сутність інтерактивних методів навчання, особливості їх впровадження. Інтерактивні вправи на уроках математики.
курсовая работа [183,3 K], добавлен 20.06.2012Особливості організації позакласної роботи з математики. Види позакласної роботи з математики. Цікава математики у хвилини відпочинку й на групових заняттях після уроків. Математична газета і математичний куточок в газеті.
курсовая работа [36,1 K], добавлен 24.05.2002Проблема игровой деятельности в педагогической и методической литературе. Методика использования дидактических игр на уроках математики в 1 классе при изучении темы "Нумерация чисел в пределах сотни". Способы использования дидактических игр.
дипломная работа [215,1 K], добавлен 01.11.2004Психолого-педагогічні передумови використання дидактичних ігор на уроках математики та систематизація досвіду класоводів щодо їх використання. Розробка системи дидактичних ігор на уроках математики у першому класі, її призначення та оцінка ефективності.
дипломная работа [87,1 K], добавлен 14.07.2009Методика использования заданий исследовательского характера на уроках математики как средства развития мыслительной деятельности младших школьников; систематизация и апробация развивающих упражнений, рекомендации по их использованию в начальной школе.
курсовая работа [229,2 K], добавлен 15.02.2013Изучение нетрадиционных форм занятий как средства формирования познавательных интересов. Обзор методических указаний к использованию игр на уроках математики в первом классе. Анализ серии дидактических игр и их влияния на усвоение учебного материала.
курсовая работа [44,3 K], добавлен 24.06.2011Использование дифференцированного подхода на уроках математики как основа формирования индивидуализма ребенка. Технологии разноуровневого обучения. Групповая и индивидуальная форма работы. Выявление математических способностей учащихся младших классов.
курсовая работа [33,9 K], добавлен 14.10.2013Теоретические основы развития внимания учащихся в процессе обучения математике. Дидактическая игра и ее роль. Психолого–педагогическое обоснование понятия "внимание". Использование дидактических игр на уроках математики в 5 классе. Результаты исследования
дипломная работа [116,6 K], добавлен 24.06.2008Організація самостійної роботи на уроках математики і в позаурочний час. Труднощі при проведенні самостійної роботи. Шляхи організації групової навчальної діяльності. Роль і місце дидактичних ігор на уроках математики. Вимоги до ігрової діяльності учнів.
курсовая работа [47,6 K], добавлен 06.09.2012Роль учителя у процесах формування математичного мислення. Незвичайні творчі вправи до уроків математики. Загальні форми виховної роботи. Форми навчання учнів школи на уроках математики: розробка лабораторно-практичних робіт, уроку-казки та уроку-гри.
курсовая работа [841,9 K], добавлен 08.11.2011Понятие "информационные технологии", их виды, роль и значение в процессе обучения. Анализ опыта работ учителей ростовской гимназии им. Кекина по организации деятельности младших школьников на уроках математики с использованием информационных технологий.
курсовая работа [28,6 K], добавлен 06.12.2010Использование дидактических игр как средства обучения. Анализ реализации занимательных задач на уроках математики в начальной школе. Исследование уровня сформированности мыслительной деятельности учащихся и их познавательного интереса к математике.
дипломная работа [1,3 M], добавлен 14.05.2015