Межстрановая сопоставимость результатов тестирования в международных сравнительных исследованиях высшего образования

Измерения эффекта образования с точки зрения качества человеческого капитала и компетентности населения. Подходы к установлению межстрановой сопоставимости конструкта. Пост-хок статистический анализ результатов тестирования групп будущих инженеров.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 30.08.2020
Размер файла 45,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

19. Hanushek E. A., Woessmann L. (2008) The Role of Cognitive Skills in Economic Development. Journal of Economic Literature, vol. 46, no 3, pp. 607-668.

20. Holland P. W., Wainer H. (1993) Differential Item Functioning. Hillsdale, NJ: Lawrence Erlbaum Associates.

21. Jamelske E. (2009) Measuring the Impact of a University First-Year Experience Program on Student GPA and Retention. Higher Education, vol. 57, no 3, pp. 373-391.

22. Jeon M., De Boeck P. (2016) A Generalized Item Response Tree Model for Psychological Assessments. Behavior Research Methods, vol. 48, no 3, pp. 1070-1085.

23. Kankaras M., Moors G. (2014) Analysis of Cross-Cultural Comparability of PISA 2009 Scores. Journal of Cross-Cultural Psychology, vol. 45, no 3, pp. 381399.

24. Kardanova E., Loyalka P., Chirikov I. et al. (2016) Developing Instruments to Assess and Compare the Quality of Engineering Education: The Case of China and Russia. Assessment & Evaluation in Higher Education, vol. 41, no 5, pp. 770-786.

25. Kuzminov Ya., Sorokin P., Froumin I. (2019) Obshchie i spetsialnye navyki kak komponenty chelovecheskogo kapitala: novye vyzovy dlya teorii i praktiki obrazovaniya [Generic and Specific Skills as Components of Human Capital: New Challenges for Education Theory and Practice]. Foresight and STI Governance, no 13 (S2), pp. 19-41.

26. Lenz S. A., Soler I. G., Dell'Aquilla J., Uribe P. M. (2017) Translation and Cross-Cultural Adaptation of Assessments for Use in Counseling Research. Measurement and Evaluation in Counseling and Development, vol. 50, no 4, pp. 224-231.

27. Liu O. L., Rios J. A., Borden V. (2015) The Effects of Motivational Instruction on College Students' Performance on Low-Stakes Assessment. Educational Assessment, vol. 20, no 2, pp. 79-94.

28. Loyalka P., Liu O. L., Li G. et al. (2019) Computer Science Skills Across China, India, Russia, and the United States. Proceedings of the National Academy of Sciences, vol. 116, no 14, pp. 6732-6736.

29. Magis D., Faзon B. (2013) Item Purification Does Not Always Improve DIF Detection: A Counterexample with Angoff's Delta Plot. Educational and Psychological Measurement, vol. 73, no 2, pp. 293-311.

30. Marginson S. (2019) Limitations of Human Capital Theory. Studies in Higher Education, vol. 44, no 2, pp. 287-301.

31. Martin M. O., Mullis I. V.S., Hooper M. (eds) (2016) Methods and Procedures in TIMSS2015. Available at: http://timssandpirls.bc.edu/publications/ timss/2015-methods.html (accessed 10 April 2020).

32. Meredith W. (1993) Measurement Invariance, Factor Analysis and Factorial Invariance. Psychometrika, vol. 58, no 4, pp. 525-543.

33. Meyer J. W., Ramirez F. O., Soysal Y. N. (1992) World Expansion of Mass Education, 1870-1980. Sociology of Education, vol. 65, no 2, pp. 128-149.

34. Mislevy R. J. (1988) Exploiting Collateral Information in the Estimation of Item Parameters. ETS Research Report Series, vol. 2, pp. 1-31.

35. Molenaar D., Tuerlinckx F., van der Maas H. L. (2015) A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times. Multivariate Behavioral Research, vol. 50, no 1, pp. 56-74.

36. OECD (2017) PISA 2015 Technical Report. Available at: https://www.oecd.org/ pisa/data/2015-technical-report/ (accessed 10 April 2020).

37. OECD (2016) PISA 2018 Translation and Adaptation Guidelines. Available at: https://www.oecd.org/pisa/pisaproducts/PISA-2018-translation-and-adap- tation-guidelines.pdf (accessed 10 April 2020).

38. OECD (2015) PISA 2018 Technical Standards. Available at: https://www.oecd. org/pisa/pisaproducts/PISA-2018-Technical-Standards.pdf (accessed 10 April 2020).

39. OECD (2010) Education at a Glance 2010: OECD Indicators. www.oecd.org/ edu/eag2010

40. Rauhvargers A. (2011) Global University Rankings and Their Impact: EUA Report on Rankings 2011. Brussels: European University Association.

41. Rogers H. J., Swaminathan H. (1993) A Comparison of Logistic Regression and Mantel-Haenszel Procedures for Detecting Differential Item Functioning. Applied Psychological Measurement, vol. 17, no 2, pp. 105-116.

42. Roussos L., Stout W. (1996) A Multidimensionality-Based DIF Analysis Paradigm. Applied Psychological Measurement, vol. 20, no 4, pp. 355-371.

43. Schmitt N., Kuljanin G. (2008) Measurement Invariance: Review of Practice and Implications. Human Resource Management Review, vol. 18, no 4, pp. 210222.

44. Schneider S. L. (2009) Confusing Credentials: The Cross-Nationally Comparable Measurement of Educational Attainment (PhD Thesis). Oxford: Oxford University.

45. Schultz T. W. (1961) Investment in Human Capital. The American Economic Review, vol. 51, no 1, pp. 1-17.

46. Shavelson R. J., Zlatkin-Troitschanskaia O., Marino J. P. (2018) International Performance Assessment of Learning in Higher Education (iPAL): Research and Development. Assessment of Learning Outcomes in Higher Education (eds O. Zlatkin-Troitschanskaia, M. Toepper, H. A. Pant, C. Lautenbach, C. Kuhn), Springer, pp. 193-214.

47. Tijmstra J., Bolsinova M. A., Jeon M. (2018) Generalized Mixture IRT Models with Different Item-Response Structures: A Case Study Using Likert-Scale Data. Behavior Research Methods, vol. 50, no 6, pp. 2325-2344.

48. Tremblay K. (2013) OECD Assessment of Higher Education Learning Outcomes (AHELO): Rationale, Challenges and Initial Insights from the Feasibility Study. Modeling and Measuring Competencies in Higher Education (eds S. Blцmeke, O. Zlatkin-Troitschanskaia, Ch. Kuhn, Ju. Fege), Rotterdam: Brill Sense, pp. 113-126.

49. Van de Vijver F., Tanzer N. K. (2004) Bias and Equivalence in Cross-Cultural Assessment: An Overview. European Review of Applied Psychology, vol. 54, no 2, pp. 119-135.

50. Van der Linden W. J. (2007) A Hierarchical Framework for Modeling Speed and Accuracy on Test Items. Psychometrika, vol. 72, no 3, pp. 287-308.

51. Wang W. C., Wilson M. (2005) The Rasch Testlet Model. Applied Psychological Measurement, vol. 29, no 2, pp. 126-149.

52. Wang W. C., Shih C. L., Sun G. W. (2012) The DIF-free-then-DIF Strategy for the Assessment of Differential Item Functioning. Educational and Psychological Measurement, vol. 72, no 4, pp. 687-708.

53. Wynd C. A., Schmidt B., Schaefer M. A. (2003) Two Quantitative Approaches for Estimating Content Validity. Western Journal of Nursing Research, vol. 25, no 5, pp. 508-518.

54. Zhu W., Ennis C. D., Chen A. (1998) Many-Faceted Rasch Modeling Expert Judgment in Test Development. Measurement in Physical Education and Exercise Science, vol. 2, no 1, pp. 21-39.

55. Zlatkin-Troitschanskaia O., Pant H. A., Greiff S. (2019) Assessing Generic and Domain-Specific Academic Competencies in Higher Education. Zeitschrift fьr Pдdagogische Psychologie, vol. 33, no 2, pp. 91-93. ¦

56. Zlatkin-Troitschanskaia O., Pant H. A., Lautenbach C., Molerov D., Toepper M., Brьckner S. (2017) Modeling and Measuring Competencies in Higher Education. Approaches to Challenges in Higher Education Policy and Practice. Wiesbaden: Springer.

Аннотация

Межстрановая сопоставимость результатов тестирования в международных сравнительных исследованиях высшего образования. Федерякин Денис Александрович, стажер-исследователь Центра психометрики и измерений в образовании Института образования НИУ ВШЭ

В последние 30 лет наблюдается возросший интерес к международным сравнительным исследованиям качества образования, особенно на ступени среднего образования. Главным методологическим вызовом в организации этих исследований является установление межстрановой сопоставимости результатов тестирования. Межстрановая сопоставимость результатов подразумевает, что измерительный инструмент функционирует одинаково во всех сравниваемых странах, несмотря на различия языков и культур. Специфика системы высшего образования осложняет процесс установления межстрановой сопоставимости результатов. В статье рассматриваются современное понимание межстрановой сопоставимости результатов тестирования в исследованиях качества образования и способы ее установления. Анализируются специфические черты высшего образования, затрудняющие проведение стандартизированных измерений качества образования и установление межстрановой сопоставимости. Как пример преодоления этих вызовов описаны разработка дизайна и проведение международного сравнительного исследования качества высшего инженерного образования Study of Undergraduate Performance.

Ключевые слова: качество высшего образования, международные сравнительные исследования, межстрановая сопоставимость результатов тестирования, Study of Undergraduate Performance.

Abstract

Cross-National Comparability of Assessment in Higher Education. Author Denis Federiakin, Intern Researcher, Center for Psychometrics and Measurements in Education, Institute of Education, National Research University Higher School of Economics.

The last three decades have seen an increase in researchers' interest in international comparative assessments of educational outcomes, particularly at the level of secondary schools. Achieving cross-national comparability is the main methodological challenge in the design of such studies. Cross-national comparability of test scores implies that the measure operates similarly across all the participating countries, regardless of their linguistic and cultural differences. The process of achieving cross-national comparability in higher education is more complicated due to specific features of higher education. This article explores the modern understanding of cross-national comparability of student assessment results and the possible ways of achieving it. It analyzes the specific aspects of higher education that complicate standardized measurement of educational outcomes and trivial achievement of cross-national comparability. The process of designing and conducting the Study of Undergraduate Performance--an international comparative research project aimed to assess and compare higher engineering education across nations--is described as an example of overcoming those challenges.

Keywords quality of higher education, international comparative assessments, cross-cultural comparability of test scores, Study of Undergraduate Performance.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.