Эстетическая потребность и математическое образование

Формирование эстетических потребностей - важная проблема общеобразовательной школы. Процесс обучения математике. Связь и взаимоотношения математики и эстетики. Источники эстетических потребностей, связанных с процессом обучения математической науке.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 29.12.2020
Размер файла 46,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Армянский государственній педагогический университет имени Х. Абовяна, Республика Армения

Эстетическая потребность и математическое образование

Микаелян Гамлет Суренович

доктор педагогических наук

кандидат физико-математических наук, профессор

заведующий кафедрой математики и

методики ее преподавания

Аннотация

обучение математика эстетика школа

Формирование эстетических потребностей является одним из наиболее важных проблем общеобразовательной школы, и все преподаваемые учебные дисциплины должны активно участвовать в решении данной проблемы. Процесс обучения математике также имеет широкие возможности для решения этой проблемы. Эти возможности в первую очередь проистекают из глубинной связи и взаимоотношений математики и эстетики. В работе рассматриваются разные источники эстетических потребностей, связанных также и с процессом обучения математике.

Ключевые слова: эстетические потребности; процесс обучения математике; игра, польза; эстетические признаки математики.

Abstract

Aesthetic need is a person's attitude to aesthetic values, his interest in these values, the starting point for the formation of aesthetic, a basis that manifests itself in various ways and areas of human activity [12].

Aesthetic needs are forming from early childhood and continue to change, evolve throughout human life. They depend on the taste of a person, aesthetic development and other factors. All people, for example, have an aesthetic need for music. But one has enough folk songs, and the other has a need also for classical music. Here we are dealing with different aesthetic tastes of people, different levels of development.

The need for the same aesthetic values unites people, makes them meaningful for each other. Moreover, it is the aesthetic values in the first place, and also the need for them that unites the children of any nation, makes the country the motherland. That is why the formation of an aesthetic need is one of the most important problems of a comprehensive school, and all academic disciplines taught should be actively involved in solving this problem.

The process of learning mathematics also has ample opportunity to solve this problem. They primarily stem from the deep connection and relationship between mathematics and aesthetics. In general, each civilization intro-duced its perception of the beautiful, which put forward the corresponding aesthetic needs. Both civilization and aesthetics and aesthetic needs have gone through their stages of development. And at all these stages, mathe-matics had its active participation in the formation and development of aesthetic values, as well as the aesthetic needs underlying them.

The work examines various sources of aesthetic needs, also associated with the process of teaching mathe-matics.

Keywords: Aesthetic needs, mathematics learning process, game, profit, aesthetic features of mathematics.

Эстетическая потребность - это отношение человека к эстетическим ценностям, его интерес и заинтересованность к этим ценностям, отправная точка для формирования эстетического, основа, которая различным образом проявляется в различных областях человеческой деятельности [12]. Эстетической потребности присуще отсутствие корыстности и меркантильности. У эстетической потребности есть также тенденция к усилению.

Эстетические потребности формируются с раннего детского возраста и продолжают изменяться, развиваться на протяжении всей жизни человека. Они зависят от вкуса человека, эстетического развития и других факторов. У всех людей, например, есть эстетическая потребность в музыке. Но одному достаточно народных песен, а другой имеет потребность также и в классической музыке. Здесь мы имеем дело с различными эстетическими вкусами людей, разными уровнями развития.

Потребность в одних и тех же эстетических ценностях объединяет людей, делает их значимыми друг для друга. Более того, именно эстетические ценности в первую очередь, а также потребность в них объединяет детей любой нации, делает страну Родиной.

Армянская народная песня, музыка Комитаса и Арама Хачатряна - самые высокие и священные духовные ценности армянинского народа; и человек, обладающий потребностью в них, несет в себе дух армянского народа независимо от места его проживания. И у каждого народа имеются подобные ценности. Вот почему формирование эстетической потребности является одним из наиболее важных проблем общеобразовательной школы, и все преподаваемые учебные дисциплины должны активно участвовать в решении данной проблемы.

Процесс обучения математике также имеет широкие возможности для решения этой проблемы. Они в первую очередь проистекают из глубинной связи и взаимоотношений математики и эстетики. Вообще, каждая цивилизация привносила свое восприятие прекрасного, что и выдвигало соответствующие эстетические потребности. Как цивилизации, так и эстетика и эстетические потребности пережили свои этапы развития. И на всех этих этапах математика имела свое активное участие в формировании и развитии эстетических ценностей, а также лежащих в их основе эстетических потребностей.

Считается, что начало эстетической деятельности человека являются надписи и рисунки на скалах. Но это только первые человеческие представления прекрасного, а потребность красоты у человека была всегда. Откуда возникают эстетические потребности человека? В целом, существование мира, его составляющих элементов, частей, обеспечивается принципами оптимальности, стабильности и гармонии. Действительно, свет движется и проходит через прямую линию, то есть когда он проходит между двумя точками, выбирает кратчайший путь. Точно также и тело, которое пропускается в воздухе, выбирает самый короткий путь для достижения Земли, оно передвигается по вертикальной линии. Дерево, чтобы сохранить свое стабильное существование и облегчить притяжение Земли, растет вертикально вверх. Оптимальность и стабильность в свою очередь создают определенные отношения между частями предмета, которые подчиняются принципам симметрии и сравнения, тем создовая гармонию. Например, ветви деревьев формируются по принципу симметрии по отношению стволу, обеспечивая стабильность. Также поступает человек, его эстетическое требование как биологическое и социальное существо - стремление к гармонии с природой и обществом и, следовательно, эстетическая деятельность. Его эстетическое требование обусловлено принципами жизни, основываясь на его оптимальность и устойчивость. А основы оптимальности, стабильности и гармонии - математика: прямая линия, симметрия и другие математические понятия и концепции.

A каковы источники эстетических потребностей? Одним из таких первых источников является стремление к единству человеческого пола, которое диктуется инстиктом поддержания человеческого рода и реализуется принципами стабильности, оптимальности и гармонии. Действительно, неужели для того, чтобы сохранить человеческий тип не должны ли мы опираться на красоту? Все ли девушки были похожи друг на друга, или отличались своми очертаниями лица и тела? И разве эти очертания не придавали определенную красоту девушкам всех времен? А эти качества притягивали мужчин, делая их любымими. Такова ситуация предметов сегодня, так будет и в будущем, следовательно, так было и в прошлом. И неужели симметрия, сравнение и гармония не скрываются за этими прекрасными чертами. Это доказывает роль математмческих понятий в структуре человеческого тела. Всю эту красоту тело человека мы видем в работах художников античного времени и период возрождения. Принцип гармонии действует во всех областях человеческих отношений. Это одно из самых важных требований для социализации и существования человека. И здесь главная роль играет не только внешняя красота пар, но и их нравственные качества - добродеятельность, доброта, любовь и т. д., которые и определяют красивое поведение человека. А для образования нравственных качеств очень важна математическая деятельность и математическое образование. В то же время во всех этих отношениях действует принцип стабильности. И действительно, принцип устойчивости подталкивает человека к красоте нравственных отношений - доброте, любви, дружбе. Формирование таких отношений обусловлено также математической деятельностью и математическим образованием. Человек строит свои отношения также по принципу оптимальности. Он выбирает свою пару, друга, знакомого в своем окружении. Во всем этом сказанном существует и действует математика. Рассмотрим другой источник эстетических потребностей. Чем были заняты дети в древности? Если наблюдать за детенышами льва, то в их жизни выделяются два вида занятия. Одно из них-подготовка будущей жизни, путем воспитания. Их существование зависит от упражнений: сила, ловкость, хитрость, все эти качества и есть красота. И не случайно, что мы восхищаемся документальными фильмами, где мы видем жизнь животных, как они охотятся. Они прекрасны, и красота здесь, прежде всего, выражается с точки зрения силы, скорости, находчивости. И мы наблюдаем за всем этим с удовольствием.

Рассмотрим другой источник эстетической потребности. Чем занимались дети в древности? Если мы посмотрим на детенышей льва, то увидим, что основным занятием их жизни является игра, которая также призвана подготовить их будущей жизни. Данные игры, направленные на подготовку поддержания жизни, составлены из упражнений на силу, ловкость и изобретательность, а эти качества выражают эстетику. Не случайно, что мы получаем эстетическое удовольствие от таких документальных фильмов, где показаны сцены из жизни животных. Они прекрасны, и красота здесь в первую очередь выражается в демонстрации силы, скорости, ловкости и изобретательности.

Трудно представить, что ребенок в древности не проходил аналогичный путь. Если бы это было не так, то человек не смог бы переносить самые тяжелые условия жизни так, как лев или любое другое животное.

Игра считается видом бескорыстной деятельности человека, главной мотивацией которого является не результат, а сам процесс. К эстетической стороне игры первым обратился И. Кант. Ф. Шиллер представляет искусство как игру, в которой человек раскрывает свою сущность [10]. И. Хёйзинга [9] считает, что игра игра более древняя, чем культура, оно не биологическое, а культурное явление, и культура выходит на первый план в виде игры. Е. Финк считает, что игра является фундаментальной особенностью человеческого существования, без которой человеческое бытие свелось бы лишь к растительному существованию. Он считает, что культура как явление рождается на основе игры [8].

Игра является одной из ключевых сфер человеческой деятельности, одним из важнейших источников удовольствия в жизни. Она призвана помочь человеку с самоутверждением, измерением его способностей, получением ответа на вопрос «я могу?» и реализацией других подобных задач. И для этого люди часами сидят перед шахматной доской, соревнуются на футбольном поле или другими способами тратят на различные игры большую часть времени, отведенного им Богом. Все эти игры имеют свои собственные законы, следуя которым необходимо достичь победы или решить какую-либо проблему. Путь к победе или решение проблем всегда наполнен трудностями, запретами или препятствиями, которые обусловлены правилами игры или же созданы соперником, и для преодоления которых требуется сила, ловкость, изобретательность, ум, другие волевые и психические качества. Их решения, как правило, оказываются неожиданными, с использованием глубоких вычислений и технически сложных трюков, которые включают в себя очевидные эстетические признаки, чем и привлекают внимание своих зрителей. Все эти качества наблюдаются, наличествуют, выражаются также в процессе математической деятельности. Более того, Пол Докхард [1] называет математическую деятельность игрой.

Однако эта математическая игра также является процессом самоутверждения людей, связи со своим внутренним миром и далека от взаимоотношений с другими людьми.

Вот почему люди неохотно играют в математическую «игру». Между тем она обладает уникальными проявлениями эстетики и проявляет особые эстетические потребности (см. также [5, стр. 97-311]). В случае включения в процесс игры обучения создается возможность активно вовлечь всех учащихся в процесс, исчезает их пассивность, а учащийся выступает в качестве субъекта вместе со всеми функциями, свойственными субъекту: действовать, нести ответственность и т.д. Чудесным образом реализуя социализацию студентов, игра развивает их совместные возможности, дает возможность самореализации, самовыражения, взаимопомощи, дружбы, развлечения и другие возможности для проявления духовной радости. В игру также входят творческие элементы. Без творчества невозможно добиться успеха в какой-либо игре. В игре наличествует ряд эстетических особенностей, которые лучше всего проявляются и становятся очевидными в процессе обучения. Действительно, игра полна неожиданных, непредсказуемых интеллектуальных поисков, проявлениями усилий, направленных на достижение цели, которые находят свое выражение не только в процессе овладения изученным материалом, но больше продиктованы и выступают в качестве решения той или иной игровой ситуации.

Перейдем к другому источнику проявления эстетики. Еще в далеком прошлом охота за жизненными потребностями первобытного человека была возможна благодаря силе, скорости, находчивости, ловкости и т. д. , и эти качества были ценнимы, понравились человеку. Человек считал и считает эти качества красивыми и в те времена, и сейчас. Все эти качества нужны человеку, чтобы обеспечить свое существование в этом мире. И математика играет большкю роль в формировании и развитии этих качеств. Математика помогает формированию и развитию силовых и скоростных характеристик для наиболее важного умственного процесса, такого как мышление. Действительно, есть общее мнение, что математика играет ту же роль в развитии мышлении, что и спортивные упражнения в физическом развитии человека. И математическая деятельность, независимо от полезности и запоминания в памяти ее содержания, развивает человеческое мышление, силу и скорость мышления. Вся математика, ее концепции, теории и доказательства являются результатом человеческого мышления. Отметим также, что математика имеет отдельный раздел своих задач, которые решаются только с помощью изобретательских подходов.

В следующем этапе своего развития, в этапе земледелия, когда человек нуждался в новых условиях и способах для обеспечения своего быта: дом, разные бытовые предметы, эстетическая потребность выявила новые проявления. Выяснилось, /хотя человек понял это поздно/что красота и эстетическая потребности лежат в основе природных явлений. Действительно, неужели вертикальный рост не придает дереву и цветку дополнительную эстетическую ценность? И это потому, что так легче преодолеть притяжение Земли. Как было сказмо, человек не может построить собственный дом, не преодолев эту силу. Он просто рухнет, если его стены не будут подниматься вертикально вверх. Много говориться об искусстве гончарской работы, которая присуствует в его глиняных посудах. Например, круговая форма дает индивидуальную эстетическую прелесть чаши. Однако, несомненно, что падаль, которая циркулирует глиняный горшок, не возник сразу. Изначально глиняные горшки были бесформенные, но позже они получили определенный вид, потому что это приводит к полезности и стойкости. Как мы видем, здесь присуствуют три основные ценности архитектуры: полезность, стойкость и красота. Или точнее, потребность полезности и стойкости приводит к красоте. И одним из главных путей ведущих к ним является математика. То есть, с самого начала эстетическая потребность, путь ведущий к красоте , прошел через математику или ее соправаждением. В дальнейшем весь процесс развития искусства сохранил эту тенденцию.

Но как способствовать формированию эстетической потребности с помощью процесса математического обучения? Начнем с красивой речи и человеческой потребности в ней. Что из себя представляет красивая речь? Более правильным будет вопрос, когда именно речь считается красивой? Первой важной особенностью красивой речи является наличие в ней истины, выражение этой истины, ее аргументированность и обоснование. Законами аргументации и доказательства занимается логика, а целью математики является построение аргументированной речи. По этой причине, если логика является эстетикой аргументированной речи и доказательства, то математика, как заметил Пол Локхард, является искусством аргументированной речи и доказательства [1]. И это искусство доказательства является одной из важнейших, если не основных, целей математического обучения и математической деятельности. Дело в том, что математические суждения имеют четкое и однозначное значение, процесс математических суждений осуществляется по логическим законам, и даже если содержание математического материала не остается в памяти учащегося, однако, ход математической деятельности способствует формированию и развитию логического мышления у учащегося.

Трудно представить жизнедеятельность человека без обоснованной, аргументированной речи. Следовательно, каждый нуждается в обоснованной, аргументированной речи. Но у учащихся не всегда наличествует осознание этого. Общеобразовательная школа на сегодня оставила без внимания проблему формирования ценностей у учащегося в целом и культуру аргументированной речи - в частности. Подобное восприятие аргументатиной речи отсутствует у будущих учителей математики. В своей преподавательской практике у меня есть привычка в отдельных случаях выделять проведение определенной части лекции студентам - будущим учителям, что постоянно делает меня свидетелем низкого уровня культуры речи. Мне приходится вести особый разговор о культуре речи, рассказывать о неоценимой роли искусства в создании красивого образа человека. И аргументов для убеждения более чем достаточно. Конечно, каждый хочет быть красивым, по крайней мере красиво выглядеть. По этой причине девушка часами проводит перед зеркалом косметическую работу для получения более привлекательного внешнего вида. Но она забывает, что наиболее красивой и самой привлекательной частью человека является его речь, а самой привлекательной частью речи - искусства - является, как уже отмечалось выше, ее четкость, ясность, убедительность, аргументированность, доказанность. Не случайно красивыми глазами считаются умные глаза. И обладатель таких умных глаз, в конце концов, пользуется большим уважением и репутацией на протяжении большего времени взаимоотношения с людьми. Таким образом, следует работать над приобретением этой истиной красоты аргументированной речи, ежедневно тратить часы на ее сформирование и развитие, как девушка проводит часы перед зеркалом. Добавим, что результат последнего является временным, исчезающим, а плоды работы, направленные на формирование красивой речи, остаются с человеком на всю жизнь. Поэтому в процессе обучения математике следует работать над тем, чтобы сделать роль аргументированности, обоснованности, доказательства еще более весомым. Значит, при изучении математики важно работать над тем, чтобы сделать значимым роль обоснования, аргументации и докозательств. Во многих западных учебниках математики, параллельно доказательствам шагов теоремы, приводятся также их аргументации, которые помогают в формировании культуре речи. В моих учебниках алгебры для средней школы сделанно больше. Доказательства представлены в виде деревев Генцена, в котором можно следить как последовательности доказанным шагам, так и аргументации этих шагов, увидеть весь механизм суждений и выводов. И.Л. Тимофеева [6], придает большое значение таким доказательствам в системе подготовки и переподготовки учителей, а для учащихся решение проблемы считает важной и труднорешаемой задачей. Уважаемый профессор, к сожалению не был знаком с армянским опытом, который был реализован много лет назад его работой. Вновь обратимся к Полу Локхарду [1]. Он отмечает, что если математическая деятельность сводится лишь к техническим упражнениям, не отвечает на вопрос «почему?», она становится только скелетом и далека от реализации образовательных и ценностных, в частности эстетических, задач.

Следующим источником эстетической потребности является необходимость поиска решений на поставленные жизнью задач, потребность поиска ответа на них. А человек обычно ищет красоту. Поэтому потребность в поиске, в нахождении - это прежде всего эстетическая потребность. Существует два типа поиска: материальный и духовный.

Одним из видов духовного поиска является умственный или интеллектуальный поиск. Реализацией интеллектуального поиска, результатом подобного рода поисков является вся математика. И поскольку математика богата красотой, математическую деятельность можно рассматривать как деятельность удовлетворения потребности в эстетике. Тем не менее существует определенный тип интеллектуального поиска, который требует незначительных знаний, но огромного напряга мысли. Такой поиск повышает интерес человека к самому себе, отвечает на вопрос «я могу?», а нахождение решения добавляет дополнительную эстетическую ценность и шарм человеческой деятельности. Согласно описанию В. Тихомирова, это «задачи на все времена» [7]. В качестве примера такой задачи он приводит следующую задачу из книги «Задачи для развития молодого ума» Алкуина. «Человек должен был на лодке перевести через реку волка, козу и капусту. Но лодка вмещала лишь двух. Однако нельзя было оставить наедине и без контроля козу и волка, козу и капусту. Как будет действовать человек?». За два с половиной века до Алкуина армянский мыслитель и математик Анания Ширакаци включил подобные задачи в своем задачнике [11].

Американский психолог А. Маслоу считает эстетикой достижение гармонии в жизни, обогащение ее красотой, потребность в общении с искусством: потребность, которая утверждает гармонию, порядок и красоту [2]. Мы уже говорили об утверждении гармонии и красоты посредством математической деятельности. Математическая деятельность также играет важную роль в утверждении порядка и формировании потребности в его создании. И, с одной стороны, такая деятельность учит, обучает правилам и свойствам порядка, с другой стороны, вызывает потребность иметь дело с такими отношениями, которые, согласно А. Маслоу, также являются эстетическими потребностями. Рассмотрим также потенциал математического образования в формировании и развитии в общении с искусством. Известно, что некоторые разделы математики широко участвуют в создании произведений музыки, изобразительного искусства, архитектуры, литературы, хачкарного ремесла и других областей искусства [3]-[5]. По этой причине, используя эти разделы в содержании математического образования, можно объяснить связь между математикой и упомянутыми отраслями искусства. Такие уроки математики способствуют также формированию эстетических потребностей к искусству и к ее работам.

Список использованных источников

1. Локхард П., Плач математика. URL: www.livelib.ru/book/1000487179.

2. Маслоу А. Дальные пределы человеческой психики. М.: Евразия, 1999. 432 с.

3. Микаелян Г.С. Математика и литература. Армянский язык и литература, 2012. № 7. (на армянском языке).

4. Микаелян Г.С. Симметрия в хачкарах. Математика в школе, 2013. № 1.

5. Микаелян Г.С. Прекрасное, математика и образование. Ч. 1. Прекрасное и математика, 2014.

6. Тимофеева И.Л. Методическая система обучения студентов педагогических вузов математической логике на основе теории естественного вывода: дисс. ... д-ра пед. наук. М., 2005. 400 с.

7. Тихомиров В. Математика в школе, 2007. № 3. С. 42-44.

8. Финк Э. Основные феномены человеческого бытия. Проблемы человека в западной философии. М., 1988. С. 357-402.

9. Хёйзинга И. Ното Ludens, Человек играющий. М.: Издательство Ивана Лимбаха, 2011. 416 с.

10. Шиллер Ф. Собрание сочинений в 7 томах. 19551957. Т. 6. 794 с.

11. Петросян Г.Б., Абраамян А.Г. Библиография Анании Ширакаци. Ереван: Советский писатель, 1979.

12. Эстетика: Словарь. Под общ. ред. А.А. Беляева. М.: Политиздат, 1989.

References

1. Lokhard P., Cry Mathematics. Retrieved from www.livelib.ru/book/1000487179.

2. Maslow A. (1997). Distal limits of the human psyche. Moscow: Eurasia. 432 p.

3. Mikaelian, H.S. (2012). Mathematics and literature. Armenian language and literature. 7. (in Armenian).

4. Mikaelian, H.S. (2013). Symetry in khachkars, Mathematics at school (in Armenian). 1.

5. Mikaelian, H.S. (2014). Beauty, Mathematics and Education. Part 1. Beauty and Mathematics. Yerevan (in Armenian).

6. Timofeeva, I.L. (2005). Methodical system of teaching students of pedagogical universities of mathematical logic based on the theory of natural inference. (Doctor Science Dissertation). Moscow. 400 p.

7. Tikhomirov, V. (2007). Mathematics at school. 3. 4244.

8. Fink E. (1988). The main phenomena of human existence. Human problems in Western philosophy, Moscow. 357-402.

9. Huizinga I. (2011). Ното Ludens. The Man Playing, Moscow: Ivan Limbach Publishing House. 416 p.

10. Schiller, F. (1955-1957). Collected Works in 7 Volumes. Vol. 6.

11. Petrosyan, G.B., Abrahamyan, A.G. (1979). Bibliography of Anania Shirakatsi. Yerevan: Soviet writer.

12. Aesthetics: Dictionary (1989). In A.A. Belyaev (Ed.) Moscow.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.