Средства активизации познавательной деятельности на уроках математики

Определение признаков познавательного интереса и пути его раскрытия у учащихся. Виды нестандартных заданий. Разработка методических приемов создания ситуаций, способствующих развитию познавательной активности и интереса у подростков к математике.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 07.04.2022
Размер файла 27,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СРЕДСТВА АКТИВИЗАЦИИ ПОЗНАВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ НА УРОКАХ МАТЕМАТИКИ

Байрамгулова Алия Маратовна,

студент 5 курс, Факультет Математики и Информационных Технологий, Башкирский государственный институт, Россия, г. Стерлитамак

Воистинова Г.Х., кандидат педагогических наук, доцент доцент кафедры «Фундаментальной математики» Башкирский государственный институт, Россия, г. Стерлитамак

Аннотация

В статье рассматриваются методические приемы активации познавательной деятельности учащихся, а также раскрываются пути развития познавательного интереса. Демонстрируются примеры нестандартных математических задач для формирования познавательной деятельности у учащихся.

Ключевые слова: образовательный процесс, урок математики, ученики, познавательная активность.

Annotation

The article discusses methodological techniques for activating the cognitive activity of students, and also reveals the ways of developing cognitive interest. Examples of non-standard mathematical problems for the formation of cognitive activity in students are demonstrated.

Key words: educational process, math lesson, students, cognitive activity.

Вступление

Проблема развития познавательного интереса всегда остается актуальной для педагогической науки. Как отмечает С.Р. Сефибеков [7, с. 21 - 22], особую значимость эта проблема приобретает в нынешнее время, во время реализация Федерального государственного образовательного стандарта основного общего образования. В соответствии с новым стандартом каждый выпускник основной школы должен активно и заинтересованно познавать мир, осознавать ценность труда, науки и творчества.

Целью нашей статьи является раскрытие путей развития познавательного активности и интереса учащихся к математике.

Поставленная цель определила следующие основные задачи исследования:

1) Провести анализ научно-педагогической литературы по рассматриваемой проблеме и выявить сущностные черты и пути развития познавательного интереса школьников.

2) Предложить методические приемы создания ситуаций, способствующих развития познавательной активности и интереса подростков к математике.

Основная часть

Как развивать и поддерживать интерес к математике?

Именно эти вопросы возникают перед каждым педагогом.

Математика - это сложная и серьезная наука. А различное восприятие предмета у ученика и педагога вызывает потребность обратиться к этому вопросу.

Глазами большинства учеников математика является слишком сложной и к тому же скучной. Чаще всего это происходит именно потому, что при изучении этого предмета для учеников нет места творчеству, изяществу и красоте. Следовательно, происходит прагматичное отношение к предмету. А далее потребность в математике появляется для сдачи экзамена и поступления в ВУЗ и т.п. Таким образом, у учащихся происходит притупление интереса к математике, как к изучаемому предмету, так и к науке в целом.

С другой стороны математика глазами учителя является интересной и полезной наукой. Ведь для него математика представляется средством для интеллектуального развития учащихся. И в этом случае задача учителя состоит в том, чтобы дать представление о математике не как о системе истин, которые нужно заучивать, а как систему рассуждений, которая требует творческого мышления. Важно заинтересовать обучающихся внутренней красотой математики, а так же занимательностью и привлекательностью задач.

В методической литературе [3, 4, 6] можно найти различные способы, приемы, а также игровые ситуации, которые можно использовать для развития познавательной активности школьников.

Е.М. Минскин [5, с. 176] выделяет признаки, по которым можно сформировать познавательный интерес у учащихся:

1. Вопросы учеников, связанные с материалом урока. Вопросы всегда были показателем заинтересованности, а если его задает ученик во время урока - это показывает его заинтересованность и вовлеченность в процесс обучения. Обычно вопросы ученики задают тогда, когда они не до конца понимают материал урока.

2. Стремление у учащихся участвовать в дополнениях, в обсуждениях и в исправлениях ответов одноклассников на уроке.

3. Следующим показателем является уровень сосредоточенности у ученика на уроке. Слушает ли он внимательно учителя и отвечает на поставленные вопросы? Негативными показателями ученика можно считать, например, отвлечения учащегося от урока и замечания учителя.

4. Характер процесса обучения учеников. Например, как каждый учащийся принимает задание - с готовность или безразличием, а так же как выполняется эта задача - самостоятельно или путем подсказок.

По мнению Ю.К. Бабанского [2, с. 108], существуют следующие виды нестандартных заданий:

1. Пересказ (этот вид заданий подразумевает понимание содержания информации из разных источников в новом формате).

2. Планирование и проектирование (учащиеся планируют и создают проекты на основе материала урока).

3. Самопознание - происходят любые аспекты исследования личности.

4. Компиляция (учащиеся анализируют информацию из разных источников и создают свой продукт исследования).

5. Творческие задания (стихотворения, песни, пьесы, видеоролики).

6. Аналитическая задача (поиск и систематизация информации).

7. Выводы на основе противоречивых фактов (детектив, головоломка, таинственная история и. т. д.)

8. Убеждение и склонение на свою сторону оппонентов или нейтрально настроенных лиц.

9. Оценка - обоснование определенной точки зрения.

10. Журналистское расследование - объективное изложение информации (разделение мнений и фактов).

Как показала практика, в процессе преподавания, если перед учениками поставить в начале урока проблемный вопрос «Что бы это значило?», а так же стараться совместно с ними ответить на этот вопрос, можно добиться усвоения школьной программы.

Приведем примеры из практики преподавания одного из авторов статьи различных ситуаций, способствующих активации познавательной активности школьников;

1. Ученики привыкли к тому, что учитель не можешь делать ошибки при решении математических задач, следовательно, они копируют его решения, что может означать, что они не заинтересованы в математике. Можно решая на доске, умышленно допустить ошибку.

(4х + 8)1-4=20;

(4х + 8)1=20-4;

(4х + 8)1=16;

(4х + 8)=16:1;

4х=16-8;

х=2;

Дальше наблюдаем за классом. У всех недоумение, а учитель делает вид, что не понимает, в чем ошибка. Можно предложить им решить самостоятельно и найти ошибку. Класс увлечено и самостоятельно решает пример и находит ошибку. Таким способом можно развить у учеников внимательность и заинтересовать их материалом урока, следовательно, и предметом.

2. При изучении темы «Решение квадратных уравнений» ученики привыкли приходить к результату с красивыми целыми дробями. Учитывая это, учитель специально подсказкой сбивает учеников с толку. Например, ученик решает:

6х - 2х - 1 = 0;

D = b2 - 4ac; D=6*2-4-6-(-1)=6+24=35.

Здесь учитель, вроде подсказывая, говорит, что

D=35.

После этого обычно ученик, не задумываясь, следует этой подсказке. Даем ему возможность решить задачу, а затем сделать проверку. В результате он понимает, что подсказка неверна, и верным решение будет при D=30. Ученик надолго после этого сохраняет отвращение к любой подсказке. Он старается лучше усвоить материал, чтобы уверенно чувствовать себя в творческих спорах с учителем и другими учениками.

3. При объяснении темы «Области возрастания и убывания функции», учитель решил создать проблемную ситуацию и объяснить эту тему следующим образом. Чертим на доске координатную плоскость (Рис. 1) и на ней - произвольную кривую

у=f(x).

Функция на отрезке [a; b] определена. В точке (а; ^а)) изображаем схематично самолет. Ученикам задаем вопросы: «Где самолет поднимается?», «Где самолет опускается?», «Где самолет пересекает ось ОХ?» и т.д. Они с удовольствием отвечают на них. Далее решаем примеры на закрепление, т.к. новую тему ученики усвоили. В самом конце урока, прямо в центре доски, привлекая внимание учащихся, пишем название темы: «Возрастание и убывание функции» - и благодарим ребят, которые активно помогали в раскрытии содержания темы.

Это только малая часть примеров создания ситуаций, способствующих активации познавательной деятельности учащихся. При подаче математического материала различными методами, на наш взгляд, важно пытаться повышать у учеников любознательность и внимательность к учебному предмету. познавательный интерес учащийся математика

Ну, а победой является тот момент, что теперь на вопрос «Зачем вы изучаете математику?», ученики отвечают: «для развития мышления, творчества, логики» а также, что «математика - серьезная, сложная, но интересная наука». Уверены, что всему этому способствует планомерная работа учителя в этом направлении.

Использованные источники

1. Айзенберг М.И. Обучение учащихся методам самостоятельной работы // Математика в школе. - 1982. - №6. - С. 32.

2. Бабанский Ю.К. Выбор методов обучения в средней школе. - М.: Просвещение, 1981. - 108 с.

3. Воистинова Г.Х., Сагитова Г.Г. Некоторые приемы обучения решению текстовых задач по математике // Проектирование и реализация математического образования в школе и вузе. - Уфа: Башкирский государственный университет, 2015. - С. 26-31.

4. Воистинова Г.Х., Солощенко М.Ю. Избранные вопросы методики обучения математике: внеурочная работа. Учеб. пособие для студ. направления «Педагогическое образование», профилей «Математика», «Математика. Информатика», «Математика, Физика» / Отв. Ред. С.С. Салаватова. - Стерлитамак: Стерлитамакский филиал БашГУ, 2015. - 83 с.

5. Минскин Е.М. От игры к знаниям. - М.: Просвещение, 1987. - 176 с.

6. Пичурин Л.Ф. Воспитание учащихся при обучении математике: книга для учителя. - М.: Просвещение, 1987. - 175 с.

7. Сефибеков С.Р. Внеклассная работа по математике. - М.: Просвещение, 1988. - 80 с.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.