Взаимная интеграция информационно-математической подготовки инженеров в эпоху цифровизации

Исследование проблемы развития межпредметной интеграции на примере дисциплин "Информатика" и "Математика" при подготовке будущих инженеров в эпоху цифровизации. Анализ тенденций и направлений междисциплинарного обучения будущих инженерных кадров.

Рубрика Педагогика
Вид статья
Язык русский
Дата добавления 17.04.2022
Размер файла 60,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. Auer, M.A. (2014). Mezhdunarodnoe obshchestvo po inzhenernoi pedagogike (IGIP) i novye vyzovy v inzhenernom obrazovanii [International Society for Engineering Education (IGIP) and new challenges in engineering education]. In Vysshee obrazovanie v Rossii [Higher Education in Russia], 6, 28-33.

3. Babich, V.N., Kremlev, A.G. (2016). Informatsionno-matematicheskoe modelirovanie ob»ektov ar- hitektury [Information-mathematical modeling of architecture objects]. In Sbornik materialof Vserossijskoi nauchnoi konferencii s Mezhdunarodnym uchastiem «Teoriya sovremennogo goroda: proshloe, nastoyash- chee, budushchee» [Materials of the All-Russian scientific conference with international participation «Theory of the modern city: Past, Present, Future»]. Ekaterinburg, 45-47.

4. Baidenko, V.I. (2018). Bolonskii process: v preddverii tret'ego desiatiletiia [Bologna process: on the eve of the third decade]. In Vysshee obrazovanie v Rossii [Higher Education in Russia], 27(11), 136-148. DOI: 10.31992/0869-3617-2018-27-11-136-148

5. Berulava, M.N. (1993). Integraciya soderzhaniya obrazovaniya [Integration of educational content], Moscow, Pedagogika, 172 p.

6. Bezrukova, V.S. (1994). Integracionny'eprocessy vpedagogicheskoi teorii ipraktike [Integrationprocesses in pedagogical theory and practice]. Ekaterinburg, 152 p.

7. Chuchalin, A.I. (2007). Amerikanskaia i bolonskaia modeli inzhenera: sravnitel'nyj analiz kompeten- tsii [American and Bologna models of engineer: a comparative analysis of competences]. In Voprosy obrazovaniya [Educational Studies Moscow], 1, 84-93, available at: https://vo.hse.ru/data/2010/12/31/1208183718/ p84.pdf (accessed 18 April 2019)

8. Chuchalin, A.I. (2018). Modernizatsiia trehurovnevogo inzhenernogo obrazovaniia na osnove FGOS3++ i CDIO++ [Modernization of three-level engineering education based on GEF 3++ and CDIO++]. In Vysshee obrazovanie v Rossii [Higher Education in Russia], 4, 22-32.

9. Dalinger, V. A. (2002). Matematicheskoe modelirovanie kak sredstvo integratsii estest-venno-nauchnyh i matematicheskih distsiplin [Mathematical modeling as a means of integration of natural science and mathematical disciplines]. In Integratsiya obrazovaniya [Integration of Education], 4, 106-112. Available at: http://edumag.mrsu.ru/content/pdf/02-4.pdf (accessed 17 May 2019)

10. Dalinger, V.A. (2018). Obuchenie uchashchihsia resheniiu ekonomicheskih zadach v matematicheskih sredah MATHCAD i MAPLE [Training of students to solve the economic tasks in MATHCAD and MAPLE]. In Sovremennyeproblemy nauki i obrazovaniya [Modernproblems of science and education], 2, 108, available at: http://science-education.ru/ru/article/view?id=27529 (accessed 11 July 2019)

11. Dalinger, V.A., Moiseeva, N.A., Polyakova, T.A. (2020). Information and mathematical modeling as the basis for the professional activity of future engineers in the digitization era. In Advances in Social Science, Education and Humanities Research. Proceedings of the International Scientific Conference «Digitalization of Education: History, Trends and Prospects» (DETP 2020), France, Atlantis Press, 593-598. DOI: https://doi.org/10.2991/assehr.k.200509.108

12. Dolzhenko, R.A. (2017). Kontseptsiia CDIO kak osnova inzhenernogo obrazovaniia: promezhutochnye itogi i napravleniia dal'nejshego ispol'zovaniia v Rossii [CDIO concept as a basis of engineering education: intermediate results and directions of further use in Russia]. In Izvestiya Uralskogo gosudarstvennogo gor- nogo universiteta [News of the Ural State Mining University], 2 (46), 104-108. Available at: https://cyber- leninka.ru/article/n/kontseptsiya-cdio-kak-osnova-inzhenernogo-obrazovaniya-promezhutochnye-itogi-i- napravleniya-dalneyshego-ispolzovaniya-v-rossii (accessed 12 June 2019)

13. Drozdova, N.V., Lobanov, A.P. (2007). Kompetentnostnyj podhod kak novaya paradigma studento- centrirovannogo obrazovaniya [Competence approach as a new paradigm of student-centered education]. Minsk, RIVSH, 100 p.

14. Education for a complex society. «Educational Ecosystems for Social Transformation» (2018). In Doklad Global Education Futures, available at: https://drive.google.com/file/d/0B9ZvF6mQ5FMbST- FKVmhodU5rNTNiTXpUZ2QwZktiR0pzSmJR/view (accessed 8 May 2020)

15. Ershov, A.P. (1985). Ob informatsionnoi modeli mashiny [On the information model of the machine]. InMikroprocessornye sredstva i sistemy [Microprocessor based tools and systems], 4.

16. Ershov, A.P. (1986). Informatika: predmet i poniatie [Computer science: subject and concept]. In Kiber- netika. Stanovlenie informatiki [Cybernetics. The formation of computer science], Moscow, Nauka, 3-34.

17. Fedoseev, V.M. (2016). Nauchno-issledovatel'skaia rabota so studentami kak forma integracii inzhenernoi i matematicheskoi podgotovki v uchebnom processe vuza [Research work with students as a form of integration of engineering and mathematical training in the educational process of the University]. In Integraciya obrazovaniya [Integration of Education], 20 (1), 125-133. DOI: 10.15507/1991-- 9468.082.020.201601.125-133

18. Gein, A.G. (2000). Izuchenie informatsionnogo modelirovaniia kak sredstvo realizatsii mezhpredmetnyh sviazei informatiki s distsiplinami estestvennonauchnogo tsikla. Dissertatsiia doktorapedagogicheskih nauk [The study of information modeling as a means of implementing intersubject communications of computer science with the disciplines of the natural science cycle. The dissertation of Doctors of pedagogical sciences],

19. Hannafin, M.J., Hannafin, K.M. (2010). Cognition and student centered, web-based learning: Issues and implications for research and theory. In Learning and instruction in the digital age. Springer US, 11--23.

20. Karev, N.S., Martyushev, S.A. (2018). Issledovanie informatsionnyh potrebnostei budushchego inzhenera [Research of the information needs of the future engineer]. In Sbornik materialov Vserossijskoi studencheskoi nauchnoi konferentsii s Mezhdunarodnym uchastiem: v 3 chastyah: «STUDENT: NAUKA, PROFESSIYA, ZHIZN» [Collection of Materials of the V All-Russian student scientific conference with international participation: in 3 parts «STUDENT: SCIENCE, PROFESSION, LIFE»]. Omsk, 254--257.

21. Khekalo, E.E. (2015). Klassifikatsiia informatsionno-matematicheskih modelei [Classification of information-mathematical models]. In Nauchno-metodicheskij elektronnyj zhurnal «Koncept» [Scientific- methodical electronic journal «Concept»], 13, 886--890, available at: http://e-koncept.ru/2015/85178.htm (accessed 16 July 2019)

22. Klarin, M.V. (2018). Innovacionnye modeli obucheniya. Issledovaniya mirovogo opyta [Innovative learning models. The study of the world experience]. Moscow, LUCH, 640 p.

23. Krasavina, Iu.V., Shikhova, O.F. (2017). Metod elektronnyh mezhdistsiplinarnyh proektov kak effek- tivnaia forma organizatsii samostoyatel'noi raboty studentov vuza [Method of electronic interdisciplinary projects as an effective form of organization of independent work of University students]. In Obrazovanie i nauka [Education and Science], 19 (1), 160--176. DOI: 10.17853/1994--5639--2017--1--160--176

24. Mogilev, A.V., Pak, N.I., Khenner, E.K. (2012). Informatika [Informatics]. Moscow: Izdatel'skii tsentr «Akademiia», 848 p.

25. Moiseeva, N.A., Poliakova, T.A. (2018). Mezhpredmetnye sviazi matematiki i informatiki v sisteme nepreryvnogo inzhenernogo obrazovaniia [Interdisciplinary connections of mathematics and Informatics in the system of continuous engineering education]. In Nauka o cheloveke: gumanitarnye issledovaniia [The Science of Person: Humanitarian Researches], 1 (31), 85--93. DOI: 10.17238/issn1998--5320.2018.31.85

26. Moiseeva, N.A. (2018). Sovremennyi vzgliad na nauchno-issledovatel'skuiu rabotu studentov po in- formatike v sisteme nepreryvnogo inzhenernogo obrazovaniia [A modern view on the research work of students in computer science in the system of continuous engineering education]. In Sbornik nauchnyh trudov nacional'noi nauchno-prakticheskoi konferencii «Obrazovanie. Transport. Innovacii. Stroitel'stvo» [Collection of scientific papers of the national scientific and practical conference: «Education. Transport. Innovations. Construction»], Omsk, 681--684.

27. Monica, C. (2019). Mathematical Modeling in Engineering Design Projects: Insights from an Undergraduate Capstone Design Project and a Year-Long Graduate Course. Available at: https://www.research- gate.net/publication/267242510_Mathematical_Modeling_in_Engineering_Design_Projects_Insights_ from_an_Undergraduate_Capstone_Design_Project_and_a_Year-Long_Graduate_Course (accessed 24 May 2019)

28. Nastashchuk, N.A., Poliakova, T.A. (2017). Znachimost' vuzovskogo kursa discipliny «Matematika» v discipline «Bnformatika» dlia budushchih inzhenerov transportnoi otrasli [The significance of the university course of the discipline «mathematics» in the discipline «informatics» for future engineers of the transport industry]. In Nauka o cheloveke: gumanitarnye issledovaniia [The Science of Person: Humanitarian Researches], 1(27), 132--140. DOI 10.17238/issn1998--5320.2017.27.132.

29. Nosko, I.V. (2011). Studentotsentrirovannoe obrazovanie kak osnovopolagayushchii printsip Bolon- skih reform v vysshei shkole [Student-centered education as a fundamental principle of Bologna reforms in higher education]. In Vektor nauki Tol'iattinskogo gosudarstvennogo universiteta. Seriia: Pedagogika, Psihologiia [Science Vector of Togliatti State University. Series: Pedagogy, Psychology], 1(4), 135--138.

30. Noskov, M.V., Popova, V.V. (2015) Realizatsiia mezhpredmetnyh svyazei matematiki i informatiki v sovremennom uchebnom processe [The implementation of interdisciplinary connections of mathematics and information science in modern educational process]. In Vestnik Krasnoiarskogo gosudarstvennogo pedagogicheskogo universiteta im. V. P. Astaf'eva [Bulletin of Krasnoyarsk State Pedagogical University V.P. Astafiev], 1 (31), 65-68, available at: https://cyberleninka.ru/article/n7realizatsiya-mezhpredmetnyh- svyazey-matematiki-i-informatiki-v-sovremennom-uchebnom-protsesse

31. Pak, N.I., Doroshenko, E.G., Hegai L. B. (2015). O neobhodimosti i vozmozhnosti organizatsii lichnostno tsentrirovannogo obucheniia v vuze [On the necessity and possibility of organizing personality-centered education at a university]. In Pedagogicheskoe obrazovanie vRossii [Pedagogical education in Russia], 7, 16-23.

32. Pak, N.I., Doroshenko, E.G., Hegaj, L.B. (2017). Organizatsiia student-tsentrirovannogo obucheniia studentov informatike na osnove uchebnyh dorozhnyh kart [Organization of student-centered teaching of computer science students on the basis of educational road maps]. In Nizhegorodskoe obrazovanie [Nizhny Novgorod education], 1, 56-65.

33. Perminov, E.A., Gadzhiev, D.D., Abdurazakov, M.M. (2019). Ob aktual'nosti fundamentalizatsii matematicheskoi podgotovki studentov pedagogicheskih napravlenii v tsifrovuiu epohu [About the relevance of fundamentalizing the mathematical preparation of students in pedagogical areas in the digital age]. In Obrazovanie i nauka [The Education and Science Journal], 21(5), 87-112. DOI: 10.17853/1994-56392019-5-87-112

34. Prikhod'ko, V.M., Solov'iev, A.N. (2013). IGIP i tendentsii inzhenernoj pedagogiki v Rossii i v mire [IGIP and tendencies of engineering pedagogy in Russia and in the world]. In Vysshee obrazovanie vRossii [Higher Education in Russia], 6, 26-32.

35. Rodionov, M.A., Fedoseev, V.M., Ledovets, Zh., Shabanov, G.I., Akimova, I.V. (2018). Osobennosti proektirovaniia tekhnologicheskogo komponenta integrirovannoi metodicheskoi sistemy matematicheskoi podgotovki budushchih inzhenerov [Features of design of technological component of integrated methodical system of mathematical training of future engineers]. In Integraciya obrazovaniya [Integration of Education], 22 (2), 383-400. DOI: 10.15507/1991-9468.091.022.201802.383-400

36. Salleh, T.S, Zakaria, E. (2016). The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus. In The Turkish Online Journal of Educational Technology, 15 (3), 183-194, available at: https://files.eric.ed.gov/fulltext/EJ1106377.pdf (accessed 24 July 2019)

37. Samarskii, A.A., Mikhailov, A.P. (2005). Matematicheskoe modelirovanie: Idei. Metody. Primery [Mathematical modeling: Ideas. Methods. Examples]. Moscow: FIZMATLIT, 320 p.

38. Sovetov, B. Ia., Sovetov, S. Ia. (2017). Modelirovanie sistem [Modeling of systems], Moscow: Iurait, 343 p.

39. Student-Centred Learning. Toolkit for students, staff and higher education institutions. - ESU. Brussels, October (2010). Available at: https://www.esu-online.org/wp-content/uploads/2017/10/SCL_toolkit_ ESU_EI.compressed.pdf (accessed 15 June 2019)

40. Taajamaa, V., Airola, A., Pahikkala, T., Salakoski, T., Eskandari, M., Karanian, B. (2016). O-CDIO: Emphasizing Design Thinking in CDIO Engineering Cycle. In International Journal of Engineering Education, 32 (3), 1530-1539, available at: https://www.researchgate.net/publication/305045559_OCDIO_Em- phasizing_Design_Thinking_in_CDIO_Engineering_Cycle (accessed 11 July 2019)

41. Vaganova, O.I., Iliashenko, L.K. (2018). Osnovnye napravleniia realizatsii tekhnologii studentotsen- trirovannogo obucheniia v vuze [The main directions of the implementation of student-centered learning technologies in the university]. In Vestnik Mininskogo universiteta [Bulletin of the Minin University], 6(3), 2. DOI: 10.26795/2307-1281-2018-6-3-2

42. Vaganova, O.I., Prohorova, M.P., Karpova, M.A. (2019). Realizatsiia studentocentrirovannogo obucheniia v vysshem uchebnom zavedenii [Implementation of student-centered learning in a higher educational institution]. In Karel'skii nauchnyi zhurnal [Karelian Scientific Journal], 2(27), 56-58. DOI 10.26140/ knz4-2019-0802-0014.

43. Vainshtein, Iu. V. Shershneva, V.A., Safonov, K.V. (2016). Ideologiia CDIO v obuchenii matematike [Ideology of CDIO in teaching mathematics]. In Vysshee obrazovanie vRossii [Higher education in Russia], 2, 75-82.

44. Verbiczkii, A.A. (2010). Kontekstno-kompetentnostnyi podhod k modernizatsii obrazovaniia [Context- competency-based approach to the modernization of education]. In Vysshee obrazovanie v Rossii [Higher education in Russia], 5, 32-37.

45. Wright, G.B. (2011). Student-Centered Learning in Higher Education. In International Journal of Teaching and Learning in Higher Education, 23 (3), 93-94.

46. Yasseri, Dar, Finley, Patrick M., Mayfield, Blayne E., Davis, David W., Thompson, Penny, Vogler, Jane S. (2018). The hard work of soft skills: augmenting the project-based learning experience with interdisciplinary teamwork. In Instructional Science, 46 (3), 457-488. DOI: 10.1007/s11251-017--9438-9

47. Zabalawi, I. (2018). Engineering Education for the Future World: The CDIO Approach, pp. 102, available at: http://www.cdio.org/files/document/file/Engineering%20Education%20for%20the%20Future%20 World%20-%20The%20CDIO%20Approach.pdf (accessed 11 July 2019)

48. Zagvyazinskiy, V.I. (2006). Teoriia obucheniia: sovremennaia interpretatsiia: uchebnoe posobie [Theory of learning: modern interpretation], Moscow: Academiia, 192 p.

49. Journal of Siberian Federal University. Humanities & Social Sciences 2021 14(9): 1420-1431

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.