О самостоятельной работе студентов и не только
Анализ вопросов, связанных с сокращением учебных планов и программ по высшей математике и увеличением в связи с этим объема самостоятельной работы студентов. Ее зависимость от интернета Определение реального объема времени на самостоятельное обучение.
Рубрика | Педагогика |
Вид | статья |
Язык | русский |
Дата добавления | 31.05.2022 |
Размер файла | 204,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
О самостоятельной работе студентов и не только
А.М. Гальмак, доктор физико-математических наук; О.А. Шендрикова, старший преподаватель; И.В. Юрченко, старший преподаватель, Могилевский государственный университет продовольствия
В статье рассматриваются вопросы, связанные с сокращением учебных планов и учебных программ по высшей математике и увеличением в связи с этим объема самостоятельной работы студентов. Анализируются результаты проведенных в студенческих группах опросов с целью определения реального объема времени, которое студенты используют для самостоятельной работы. Отмечается, что указанный реальный объем времени меньше планируемого более чем в два раза. Объясняется это тем, что почти треть суток студенты проводят в интернете и общаются с помощью мобильной связи, не используя их в целях обучения.
Констатируется, что в настоящее время именно интернет и мобильная связь являются одной из причин неудовлетворительных результатов ЦТ и низких экзаменационных оценок в вузе, в частности по высшей математике. Резюмируется, что масштабное сокращение учебных планов и учебных программ по высшей математике является стратегической ошибкой, которая уже оказала и продолжает оказывать негативное воздействие на все стороны жизни общества и государства.
Ключевые слова: самостоятельная работа, интернет, мобильная связь.
On students' independent work
Galmak A., Shendrikova O., Yurchenko I
The article deals with the problems connected with the reduction of academic hours in the curricula and educational programs for Higher Mathematics and with the increase in the amount of independent work. The results of the surveys conducted in academic groups to determine the actual amount of time used by students for independent work are analyzed. The indicated amount of time is found out to be more than twice less than the planned one. This is due to the fact that almost a third of the day students spend on the Internet and use their mobile phones for communication rather than for educational purposes. The Internet and mobile communication are stated to be among the main reasons of unsatisfactory results in the centralized testing and low marks in Higher Mathematics exams in higher educational institutions. The authors conclude that a large-scale reduction of hours in the curricula and educational programs for Higher Mathematics is a strategic mistake which has affected and goes on affecting negatively all spheres of the society and the state.
Keywords: independent work, Internet, mobile communication.
Введение
Результаты проводимого ежегодно централизованного тестирования (ЦТ) неуклонно фиксируют катастрофически низкий уровень знаний по математике выпускников средней школы, большинство из которых, несмотря на это, без проблем становятся студентами вузов. Средние баллы ЦТ по стране настолько низкие, что их если не скрывают, то уж точно стараются не афишировать. Попробуйте, например, найти в открытых источниках, в том числе в интернете, средние баллы ЦТ-2014, ЦТ-2015, ЦТ-2016 и ЦТ-2017.
Занимаясь поиском этой информации, вы узнаете: количество зарегистрировавшихся на ЦТ; количество принявших в нем участие и количество не явившихся на него; количество набравших 100 баллов, 0 баллов и минимум баллов, необходимый для конкретных предметов. Указывается даже количество нарушителей, удаленных из аудитории. В некоторые годы сообщались и средние баллы, но не по стране, а отдельно по школам, гимназиям и лицеям, а также для 1-го профильного предмета и для 2-го профильного предмета.
Только в этом году. впервые после 2013 г.. были официально названы средние баллы ЦТ-2018 по стране. По математике этот балл оказался равным 32. Максимальный балл. как известно. равен 100. В 2013 г. средний балл ЦТ по математике был равным 21.56. Если перевести эти баллы в десятибалльную шкалу. то можно сказать. что математические знания школьников в 2013 г. заслуживали в среднем оценки 2. то есть являлись неудовлетворительными. А по результатам ЦТ-2018 математические знания школьников оказались уже удовлетворительными. так как по школьным меркам “тройка” - удовлетворительная оценка. Вузовские критерии оценки знаний являются более строгими: минимальной положительной оценкой считается “четверка”.
Справедливости ради заметим. что. предвидя неизбежное нелестное для средней школы сравнение результатов ЦТ с оценками. полученными школьниками на выпускных экзаменах. чиновники от образования неоднократно подчеркивали. что ни в коем случае нельзя переводить результаты ЦТ в десятибалльную шкалу.
В статье [1]. опубликованной в 2015 г.. мы уже сравнивали результаты ЦТ-2014. выпускных школьных экзаменов по математике и входного контроля (ВК). который проводится в каждой студенческой группе на первом практическом занятии по высшей математике. При этом. следуя пожеланиям чиновников. мы не стали делить результаты ЦТ на 10 для перевода их в десятибалльную шкалу. Операцию деления мы заменили операцией умножения. Школьные экзаменационные оценки и оценки. полученные первокурсниками на ВК. умноженные на 10. можно. с некоторыми оговорками. сравнивать с их же баллами. набранными на ЦТ.
Для группы ТРХ-141 были получены следующие средние оценки: выпускной школьный экзамен - 70.7. ЦТ - 27.35. ВК - 30.04. В следующем 2015 г. для группы ТРЗ-151 наблюдался еще больший отрыв школьных оценок от результатов ЦТ: выпускной школьный экзамен - 66. ЦТ - 22.73. ВК - 24. В группах. в которых обучаются студенты с более высокими баллами ЦТ. картина та же. Например. в 2017 г. для группы БУП-171 экономического факультета она выглядела так: выпускной школьный экзамен - 88. ЦТ - 38.8. ВК - 43.5. А вот свежие результаты за 2018 году для группы ТЭТ- 181 экономического факультета. которые мы для большей наглядности представили в виде следующей диаграммы.
Как видим, из года в год результаты ЦТ и ВК сопоставимы между собой, но значительно отличаются от оценки школьного выпускного экзамена по математике. Конкретно, эта оценка завышены в 2-3 раза в сравнении с результатами ЦТ. Имея это в виду, мы в [1] отмечали, что результаты выпускных школьных экзаменов, как и средний балл школьного аттестата, не могут служить достоверными оценками знаний выпускников средней школы, а в качестве объективной оценки школьной подготовки будущих студентов можно использовать результаты ЦТ.
Рис. 1 Средние оценки по математике на выпускном школьном экзамене. ЦТ и ВК для группы ТЭТ-181 в 2018 г.
Стремительный и на первый взгляд труднообъяснимый рост среднего балла ЦТ по математике, как оказалось, никак не связан с реальным уровнем знаний школьников, который за последние пять лет не только не повысился, но по-прежнему демонстрирует тенденцию к понижению. Об этом хорошо осведомлены и сами школьные учителя, и особенно вузовские преподаватели, каждодневно сталкивающиеся со сложнейшей проблемой преподавания дисциплин, использующих математический аппарат, студентам, имеющим почти нулевой уровень математической подготовки и не знакомым с математической фразеологией на уровне средней школы.
Например, во всей группе и даже на всем потоке может не найтись ни одного студента, понимающего смысл предложения, содержащего фразу “необходимо и достаточно” или эквивалентную ей фразу “тогда и только тогда, когда”. По крайней мере, первую фразу школьники многократно должны были слышать на уроках математики и встречать на страницах учебников. Случаются вообще курьезные случаи. Недавно на лекции студент-заочник, сидевший на первом ряду, после слов лектора “рассмотрим уравнение” вдруг прекратил записывать лекцию и уставился на доску, в то время как остальные продолжали конспектировать.
- Что случилось? - поинтересовался преподаватель у студента.
- Вы же сказали “рассмотрим уравнение”, вот я его и рассматриваю, - простодушно ответил студент.
В нашей практике это первый случай буквального понимания стандартной математической фразы “рассмотрим ...”.
Еще десять и даже пять лет назад невозможно было представить, что незнание студентами таблицы умножения, неумение расставлять скобки, умножать в столбик и делить “уголком” будет носить массовый характер. Уже не редкость - студенты, которые путают параллельность с перпендикулярностью, прямую с плоскостью, а вертикаль с горизонталью.
О таких студентах можно сказать, что в школе они на протяжении многих лет просто проводили время, вместо того, чтобы учиться. Если называть вещи своими именами, то можно констатировать, что средняя школа не справляется с выполнением своей основной задачи. Ее механизм вроде бы формально функционирует, но работает в основном вхолостую. Как еще иначе интерпретировать результаты ЦТ?
Для того чтобы хоть как-то улучшить ситуацию или, по крайней мере, создать видимость ее улучшения, составители тестовых заданий вынуждены подстраиваться под уровень тестируемых. Достигается это включением в тесты упрощенных заданий, что естественно влечет за собой повышение среднего балла ЦТ. Иногда уровень сложности тестовых заданий понижается до такой степени, что иначе как примитивными их назвать сложно.
Большинство выпускников средней школы доверяют результатам ЦТ и реально оценивают уровень своих знаний по математике. Их не вводят в заблуждение высокие оценки в аттестатах о среднем образовании, так как они знают им цену. Однако, как всегда, бывают исключения из правил. Встречаются самоуверенные неучи, для которых нет авторитетов кроме них самих, и которые неспособны признавать собственные ошибки.
Показательный в этом плане случай произошел около года назад на практических занятиях по высшей математике. Студент, решая у доски задачу, применил неверную формулу 4а2 + Ь2 = а + Ь . В последнее время это еще не массовая, но уже довольно распространенная ошибка среди выпускников средней школы, вызванная незнанием свойств степеней. Эта ошибка всплывала и раньше, но была довольно редким явлением.
Как и положено в подобных ситуациях, преподаватель указал на ошибку, но его авторитета оказалось недостаточно. То, что последовало дальше, стало для него полной неожиданностью. Студент не просто не согласился, но стал активно возражать. Делал он это очень самоуверенно, напористо, с убедительными интонациями в голосе:
- Я всегда так делаю... Нас так в школе учили.... На следующее занятие я принесу учебник, и все увидят, что я прав, а Вы ошибаетесь.
Со стороны, для непосвященных все это выглядело довольно убедительно. Оживились и студенты. Похоже, необычное, на грани хамства поведение студента стало неожиданностью и для них. Кто-то, не исключено, подумал, что их товарищ и впрямь такой умный, а “доцент - тупой”, как в известной юмористической миниатюре Карцева и Ильченко.
Преподавателю ничего не оставалось, как, несмотря на дефицит времени, заняться “школой”. Он предложил студенту применить выдуманную им формулу к конкретным числам а = 2 и Ь = 2. В результате на доске появилась запись 78 = 74+4 = 422 + 22 = 2 + 2 = 4 .
Затем обе части полученного равенства 48 = 4 были возведены в квадрат и все увидели равенство 8 = 16, ложность которого очевидна даже самому самоуверенному недоучке.
Преподаватель посчитал дело сделанным, тем более, что студент у доски перестал возражать, переваривая полученное неверное равенство. И вдруг наступившую тишину прервал голос студентки с места: “Алесь Михайлович, все-таки у Вас где-то ошибка”. Тут, как говорится, хоть плачь, хоть смейся; хоть стой, хоть падай; хоть на стенку лезь.
В сложившейся ситуации, учитывая отсутствие у большинства студентов математических знаний, умений и навыков, в том числе элементарных, которые приобретаются в школе, вузовские преподаватели, причем не только преподающие математику, вынуждены при проведении практических занятий значительную часть времени тратить на “школьную” математику. Иногда приходится отвлекаться на нее и на лекциях.
Делается все это за счет времени, предусмотренного учебными планами на преподавание “вузовской” математики. В результате сокращается время на освоение всех изучаемых в вузе разделов высшей математики и некоторых других, опирающихся на нее дисциплин, что влечет за собой уменьшение количества выполняемых упражнений и рассматриваемых задач, которые к тому же приходится упрощать. Особенно ощутим дефицит времени для решения задач практической направленности, так как прежде чем приступать к решению такого рода задач, требуется предварительно выполнить большое число промежуточных упражнений и заданий, прививающих и закрепляющих необходимые в дальнейшем умения и навыки.
В разделе “Введение в математический анализ” невозможно, например, приступить к рассмотрению практико-ориентированных задач на максимум и минимум, не выполнив в аудитории под контролем преподавателя, а затем дома самостоятельно десятки упражнений на нахождение производных, используя таблицу производных и основные правила дифференцирования. Для шлифовки и усовершенствования приобретенных на этом этапе навыков студенты должны выполнить значительное количество более сложных упражнений, применяя теорему о дифференцировании сложной функции.
Конечно, невозможно одномоментно восполнить отсутствующие у студентов школьные знания по математике и ликвидировать многочисленные и обширные пробелы в их математическом образовании, которые накапливались годами. В рамках курса высшей математики сделать это нереально, так как включение в учебные программы часов для дублирования “школьной” математики, будет противоречить Образовательным стандартам высшего образования по соответствующим специальностям.
В преподавательской среде уже давно обсуждаются и предлагаются самые разные меры по устранению математической безграмотности первокурсников. Большинство склоняется к мысли, и мы с ними согласны, что самой действенной из предлагаемых мер является расширение учебных программ по высшей математике включением в них раздела “Элементарная математика”. В идеале желательно посвятить элементарной математике весь первый семестр. Только так можно реально подтянуть математическую подготовку бывших школьников до приемлемого уровня, стартуя с которого, они смогут адекватно воспринимать курс высшей математики.
К сожалению, составителей учебных планов мнение профессионалов не интересует, они его попросту игнорируют и поступают ровно наоборот. Их стараниями давно запущен процесс ползучей дематематизации высшего образования.
С последствиями этого процесса уже не первый год сталкиваются руководители предприятий и организаций при приеме на работу выпускников вузов, которые не в состоянии с помощью четырех арифметических действий провести элементарные расчеты с целью определения количества сырья, материалов и комплектующих, необходимых для нормальной работы вверенных им подразделений. К счастью, почти всегда находятся подчиненные с хорошим средним образованием, способные выполнить эту работу за своих дипломированных горе-начальников.
Процесс дематематизации высшего образования уже набрал обороты и идет полным ходом. Из года в год, от семестра к семестру происходит постоянное сокращение часов, отводимых на изучение высшей математики. Вначале стыдливо отщипывали небольшие кусочки, заменяя экзамены зачетами; затем, разогрев аппетит, стали откусывать куски побольше и повкуснее, сокращая число контрольных работ на заочном факультете, которые в конце концов под благовидными, но не очень убедительными предлогами вообще отменили. Дальше - больше, стали внаглую проглатывать как у заочников, так и у дневников целые семестры, сжимая четырехсеместровые курсы высшей математики до двухсеместровых. В настоящее время курс высшей математики в техническом вузе в сравнении с прежним стандартным курсом, например, десятилетней давности, не говоря уже о таком же курсе советского времени, выглядит как обглоданная курица. И даже в таком не очень аппетитном виде ее не оставляют в покое, вертят бедную и так и эдак, придирчиво разглядывая со всех сторон, и пытаясь найти, чего бы такого еще отгрызть. Удивительно, но каждый раз умудряются хоть что-то, да найти.
В 2017 г. мы отмечали [2], что в то время в некоторых технических вузах курс высшей математики для инженеров был сжат до двух семестров и рассчитан на 192 часа аудиторных занятий (64 часа - лекции, 128 часов - практические занятия). Мало кто сегодня знает. что в Советском Союзе этот же курс читался не менее 5 семестров и был рассчитан на 510 часов аудиторных занятий (289 часов - лекции. 221 час - практические занятия и лабораторные работы). Сравнение - шокирующее и не для слабонервных.
Казалось бы. смехотворные 192 часа аудиторных занятий должны были охладить пыл оптимизаторов математического образования. Как бы не так. Прошел всего один год. и в 2018 г. установлен новый исторический минимум - 175 часов аудиторных занятий (64 часа - лекции. 111 часов - практические занятия). Интересно. остановятся ли на этом?
Все возражения против сокращения и сжатия учебных планов и учебных программ по высшей математике. подкрепленные вескими аргументами. остаются гласом вопиющего в пустыне и парируются ссылками на присутствующую в учебных планах и учебных программах графу “самостоятельная работа”. основное назначение которой. как считает большинство преподавателей. состоит в том. чтобы оправдать и завуалировать сокращение аудиторной нагрузки. Об этой графе вспоминают всякий раз при очередном сокращении. так как одновременно с ним возрастает объем самостоятельной работы.
К примеру. в учебном плане 2017 г. соотношение аудиторная нагрузка / самостоятельная работа имело вид 192 / 260. В учебном плане 2018 г. это соотношение изменилось на следующее 175 / 275. то есть в очередной раз без каких-либо внятных объяснений и убедительных обоснований обкорнали аудиторную нагрузку. увеличив одновременно объем самостоятельной работы. Чем не иллюстрация универсального закона сохранения. который в оригинальной формулировке М.В. Ломоносова из его письма знаменитому математику Леонарду Эйлеру от 5 июля 1748 г. звучит так: все изменения. совершающиеся в природе. происходят таким образом. что сколько к чему прибавилось. столько же отнимется от другого”.
Имея в виду соотношение 175 / 275. можно сказать. что инициаторы перевода аудиторной работы в самостоятельную. делая это многократно. не заметили как перешагнули черту. отделяющую дневное обучение от заочного. и фактически нечаянно изобрели новую форму обучения высшей математике - заочно-дневную (61% - заочная форма. 39% - дневная форма).
Складывается впечатление. что учебные программы по высшей математике составляют математикофобы. страдающие по каким-то причинам комплексом неполноценности по отношению ко всему. что связано с математикой. особенно высшей. Как иначе объяснить появление в вузах “новой” дисциплины “математика”. мало чем отличающейся от традиционной “высшей математики”. Под какой чиновничий стол закатилось при этом исчезнувшее из названия дисциплины “высшая математика” слово “высшая”.
Особенно интересно это знать студентам. которых “осчастливили” новой дисциплиной. в то время как везунчики из параллельных потоков по старой доброй традиции продолжают изучать дисциплину с престижным названием “высшая математика”. Получив дипломы о высшем образовании. и. заглянув в прилагающиеся к ним выписки. в которых перечислены все изучавшиеся в вузе дисциплины с соответствующими оценками. первые зримо и явственно осознают свою второсортность. так как. в отличие от вторых. никогда не смогут документально подтвердить. что изучали высшую математику.
Университетские преподаватели давно заметили. что слабая школьная подготовка является не единственным недостатком выпускников средней школы. препятствующим их успешному обучению в вузе. Знакомство и общение с первокурсниками, особенно во время практических занятий, обнаруживает, что большинство из них не умеют самостоятельно работать, так как не владеют элементарными навыками самостоятельной работы, которые они должны были приобрести еще в школе. Такое возможно, если предположить, что там они самостоятельно не работали. В дальнейшем выясняется, что и в вузе бывшие школьники стараются не отягощать себя самостоятельной работой. Почему так происходит?
В поисках ответа на этот вопрос, мы заинтересовались темой “Самостоятельная работа студентов” и провели соответствующий опрос, результаты которого указывают на то, что вряд ли составители учебных планов, планируя часы на самостоятельную работу студентов, задавались вопросом: как сами студенты распределяют свое время в течение суток? Другими словами, каков суточный бюджет времени среднего студента?
Опрос проводился анонимно в каждой из четырех групп I курса технологического факультета после сдачи последнего экзамена по высшей математике. Всего было опрошено 85 студентов. Форма и время проведения опроса были выбраны не случайно. С одной стороны, они не давали студентам поводов для искажения результатов опроса. С другой стороны, при выставлении экзаменационной оценки исключалась возможность использования преподавателем полученных результатов, что также способствовало повышению их достоверности.
В приведенной ниже таблице 1 содержатся результаты опроса для группы ТРХ- 181, в которой обучается 25 студентов.
Таблица 1 - Бюджет времени студентов группы ТРХ-181
№ |
Время, затраченное в неделю на практику по математике |
Время, затраченное в неделю на теорию по математике |
Время, проведенное в интернете, не связанное с учебой, в день |
Телефон (разговоры, СМС, не связанные с учебой), в день |
Время отхода ко сну в течение недели |
Подъем в воскресенье |
|
1 |
30 мин |
2 часа |
9 часов |
1 час |
01:00 |
11:30 |
|
2 |
40 мин |
1 час |
8 часов |
30 мин |
02:00 |
13:30 |
|
3 |
40 мин |
40 мин |
7 часов |
40 мин |
23:00 |
10:30 |
|
4 |
1 час |
30 мин |
5 часов |
1 час |
00:00 |
10:00 |
|
5 |
4 час |
1 час |
6 часов |
2 часа |
02:00 |
10:00 |
|
6 |
40 мин |
40 мин |
5 часов |
3 часа |
03:00 |
14:30 |
|
7 |
2 часа |
30 мин |
5 часов |
1 час |
01:00 |
9:00 |
|
8 |
2 часа |
1 час |
6 часов |
30 мин |
01:00 |
12:30 |
|
9 |
1 час |
30 мин |
7 часов |
3 часа |
03:00 |
13:00 |
|
10 |
1 час |
25 мин |
8 часов |
3 часа |
04:00 |
11:00 |
|
11 |
2 часа |
30 мин |
8 часов |
30 мин |
00:00 |
7:40 |
|
12 |
4 часа |
1 час |
8 часов |
1 час |
00:00 |
8:00 |
|
13 |
2 часа |
30 мин |
8 часов |
1 час |
03:00 |
10:00 |
|
14 |
2 часа |
1,5 часа |
7 часов |
1 час |
02:30 |
12:00 |
|
15 |
2 часа |
2 часа |
12 часов |
1 час |
00:00 |
11:30 |
|
16 |
2 часа |
30 мин |
6 часов |
20 мин |
02:30 |
10:00 |
|
17 |
2 часа |
1 час |
5 часов |
1 час |
00:00 |
11:00 |
|
18 |
1.5 часа |
1 час |
6 часов |
1 час |
23:00 |
11:00 |
|
19 |
2 часа |
1 час |
4 часа |
2 часа |
01:00 |
10:00 |
|
20 |
3 часа |
1 час |
5 часов |
1 час |
12:00 |
11:00 |
|
21 |
3.5 часа |
1 час |
8 часов |
5 мин |
12:00 |
11:00 |
|
22 |
2 часа |
2 часа |
7 часов |
1 час |
01:00 |
14:00 |
|
23 |
50 мин |
3 часа |
5 часов |
1 час |
23:00 |
10:00 |
|
24 |
30 мин |
1 час |
6 часов |
- |
23:00 |
7:30 |
|
25 |
2 часа |
1 час |
8 часов |
1.20 час |
02:00 |
14:00 |
|
Среднее |
|||||||
1 час 49 мин |
1 час 03 мин |
6 часов 45 мин |
1 час 12 мин |
1 час 00 мин |
10 час 58 мин |
Для групп ТРЗ-181, ТРК-181 и ТРБ-181 получены аналогичные результаты.
Анализируя полученные в ходе опроса результаты, мы, прежде всего, обратили внимание на время, проведенное в интернете, не связанное с учебой. Мы были готовы к довольно большим числам, но 6 ч 45 мин, то есть почти 7 часов, нас поразили и озадачили. Если к этому времени приплюсовать время, потраченное на мобильную связь, не связанное с учебой, то получится почти треть суток (7 ч 57 мин). В реальности это означает, что студенты совмещают учебу с “работой” в интернете, где они, с учетом мобильной связи, проводят полный восьмичасовой рабочий день. И еще не факт, что учеба - это основной вид их деятельности, а “работа” в интернете - халтура на стороне. Не исключено, что в ряде случаев указанные два вида деятельности меняются местами.
Можно выразиться еще более резко и определенно. Если человек, на протяжении длительного периода времени бесцельно проводит в интернете почти треть суток, то с большой долей уверенности можно предположить, что у него уже сформировалась устойчивая зависимость от интернета. Другими словами, значительная часть современной молодежи, особенно студенты, как наиболее продвинутые ее представители, прочно сидят на интернетовской игле.
Как видно из таблицы, объем самостоятельной работы, затраченной студентом в течение недели на высшую математику, составляет 2 часа и 52 минуты или 24 минуты и 34 секунды в день, в том числе и в воскресенье. Это реальность, а что предлагает учебный план? Для того чтобы это узнать, нужно вначале из общего объема самостоятельной работы вычесть время, необходимое для подготовки к двум экзаменам: 275 - 2 х 36 = 203 часа. Далее, разделив 203 на 34 - количество учебных недель в двух семестрах, получим планируемую недельную самостоятельную работу по высшей математике - 6 часов, точнее 5,97 часа.
Сравнивая реальные 2 часа и 52 минуты и плановые 6 часов, приходим к выводу: либо студенты недорабатывают, либо план завышен более чем в два раза. В данном случае с планом, конечно же, все нормально. А вот студенты почему-то действительно недорабатывают. Объяснить это можно по-разному, но одна из причин, причем, как нам кажется, в настоящее время главнейшая, почти очевидна, так как лежит на поверхности, точнее, находится в третьей и четвертой графах таблицы 1.
Попробуем теперь зайти с другого конца. Вычтем из 24 часов время, затраченное на интернет и мобильную связь, не связанное с учебой (7 часов и 57 минут); затем 8 часов сна, необходимых, как считают медики, каждому молодому человеку для восстановления сил; и, наконец, время, проведенное в течение дня в аудиториях, лабораториях и на занятиях по физкультуре согласно учебному плану (в среднем 6 часов). Если от полученных 2 часов и 3 минут отбросить еще время, необходимое для утреннего туалета, для приема пищи (желательно трехразового), на переезды-переходы к месту учебы и обратно домой или в общежитие, то выяснится, что у студентов с понедельника по субботу фактически не остается свободного времени, часть которого они могли бы потратить на самостоятельную работу.
Полагаем, что и в воскресенье студенты не очень-то обременяют себя самостоятельной работой. В этот день студенты, как правило, отсыпаются (см. таблицу), отдыхают, общаются, развлекаются, участвуют в спортивных мероприятиях, используют для поездок к папам-мамам и обратно к месту учебы и, конечно же, не забывают про интернет и мобильную связь. Отвлекающими от учебной, в том числе самостоятельной работы, следует признать множащиеся год от года инициативы, акции и мероприятия, для участия в которых привлекаются студенты. Причем такое бывает не только в воскресенье, но и в будние дни.
Сокращая время на гигиенические процедуры, прием пищи и переезды-переходы, а также недосыпая, студенты, как показывают результаты опроса, все же умудряются находить хоть какой-то минимум времени для самостоятельной работы. Для высшей математики этот минимум по результатам опроса составляет 2 часа и 52 минуты в неделю или 24 минуты и 34 секунды в день. Для остальных изучаемых на первом курсе дисциплин (общая и неорганическая химия, органическая химия, инженерная графика, информатика, иностранный язык, физика) подобные опросы не проводились. Поэтому можно только предполагать, каков реальный объем самостоятельной работы по всем изучаемым на первом курсе дисциплинам. Для простоты расчетов было бы соблазнительным считать, что из полученных выше 2 часов 3 минут свободного времени студенты тратят на это ровно 1 час. Соответственно, общий недельный объем самостоятельной работы по всем дисциплинам должен быть равным 7 часам.
Согласно проведенным выше вычислениям, чуть меньше половины этого времени (2 часа и 52 минуты в неделю или 24 минуты и 34 секунды в день) они посвящают самостоятельной работе по высшей математике. Если бы студенты реально использовали для этих целей плановые 5,97 часа, то для самостоятельной работы по общей и неорганической химии, органической химии, инженерной графике, информатике, иностранному языку и физике времени не осталось бы.
Еще один вывод, следующий из проведенных выше вычислений, заключается в том, что восьмичасовой рабочий день в интернете с учетом мобильной связи - это естественный предел для всех студентов дневной формы обучения, а также для старшеклассников, у которых по 6-7 и даже 8 уроков в день. Превысить этот предел можно только, сокращая время сна, и пропуская занятия в университете и уроки в школе.
Будучи представителями точнейшей из наук, мы не будем соблазняться простотой расчетов. В нашем распоряжении достаточно данных, умело используя которые, можно без особых сложностей довольно точно определить реальное время, которое студенты посвящают самостоятельной работе по всем дисциплинам.
Для начала заметим, что в учебном плане 2018 г. общий объем самостоятельной работы по всем изучаемым на первом курсе дисциплинам равен 551 часу. В этот объем, разумеется, входят и 275 часов, запланированных для высшей математики. Далее найдем отношение 551/ 275 ~ 2. Это означает, что для того, чтобы определить реальный объем самостоятельной работы, затраченной студентом в течение дня на все дисциплины, необходимо реальные 24 минуты и 34 секунды самостоятельной работы по высшей математике умножить на 2. Полученные в результате 49 минут и 8 секунд оказались даже меньше того одного часа, который мы предложили выше, ссылаясь на простоту расчетов.
Из таблицы 1 можно извлечь много интересной, неожиданной и на первый взгляд противоречивой информации. Ограничимся только одним фактом. Четверо студентов группы (строки 1, 9, 10 и 15) проводят в интернете и общаются по мобильной связи 10 и более часов в сутки. Это означает, что если допустить, что их сон длится 8 часов и они не пропускают занятия, то самостоятельной работе они посвящают 24 - 10 - 8 - 6 = 0 часов времени. Однако сами студенты указывают, что на это у них уходит от 1 часа и 25 минут (строка 10) до 4 часов (строка 15) в неделю. Такое возможно в том случае, если они хронически недосыпают, пропускают занятия, а все необходимые для нормального функционирования организма процедуры проводят, не отрываясь от компьютера и не выпуская из рук мобильника. Некоторые студенты (строка 15), похоже, не выходят из интернета и во время лекций и практических занятий. Не исключено, что тому, кто заполнял строку 15, для отдыха и восстановления сил достаточно 4-5 часов сна или даже меньше, как Льву Толстому, Леонардо да Винчи, Николо Тесле и некоторым другим гениям.
Неумение и нежелание значительной части студентов правильно организовать свою самостоятельную работу особенно ярко проявляется в период сессии при подготовке к экзаменам. Как правило, на подготовку к каждому экзамену отводится три дня. И в прежние времена и сегодня добросовестные студенты, посвящали и посвящают изучению вопросов, выносимых на экзамен, 10-12 часов в день. Именно из этого всегда исходили составители учебных программ, планируя на подготовку к каждому экзамену 36 часов.
Ясно, что для того, чтобы по 10-12 часов в день готовиться к экзамену, современные студенты должны пожертвовать значительной частью времени, которое они тратят на интернет и мобильную связь. Способны ли они на такой подвиг? Всякий раз, результаты очередной сессии заставляют нас в этом усомниться. Для подтверждения своих догадок мы на протяжении последних пяти лет проводили в группах небольшой анонимный опрос с целью получения ответов на два вопроса: 1) сколько дней студент готовится к экзамену? 2) сколько в среднем времени в день он тратит на это?
Сразу скажем, что основная масса студентов готовится к экзамену на день меньше, чем предусмотрено расписанием экзаменов. Скорее всего, день, следующий за предыдущим экзаменом, они рассматривают, как день отдыха от него. Немало и тех, кто готовится к экзамену один день; для них, наверное, одного дня отдыха недостаточно.
Что касается ответа на второй вопрос, то и здесь радоваться нечему. Больше всего ответов расположено в промежутке от 2 до 4 часов, меньше - в промежутке от 4 до 6 часов, и совсем редко (единичные случаи) - в промежутке от 6 до 10 часов. Из всех опрошенных студентов, ни один не ответил, что готовился к экзамену каждый день по 10 и более часов.
По результатам опроса среднее время ежедневной подготовки к экзамену по высшей математике для каждой группы колеблется в промежутке от 3 до 4 часов. Но и из этого «неправильного правила» бывают исключения, причем не в лучшую сторону. В 2017/2018 учебном году худшая успеваемость среди групп технологического факультета в весеннем семестре была в группе ТРЗ-171 - 4,05 по десятибалльной шкале (3 “двойки”, 7 “четверок”, 3 “шестерки” и 3 “семерки”, 4 студента из-за невыполнения контрольных точек были не допущены к экзамену, то есть получили так называемые “деканские двойки”). Такие низкие экзаменационные оценки легко объяснимы, если обратиться к таблице 2, в первой строке которой стоят ответы студентов этой группы на первый из сформулированных выше вопросов; соответственно во второй строке - ответы на второй вопрос.
Таблица 2 - Ответы студентов группы ТРЗ-171 на вопросы 1 и 2
Дни |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
4 |
5 |
5 |
|
Часы |
2 |
2 |
2 |
2,5 |
3 |
3 |
5 |
7 |
1,5 |
1,5 |
2 |
2 |
2 |
2 |
2,5 |
3 |
4,5 |
3 |
2,5 |
5 |
Из таблицы видно, что один студент готовился к экзамену 4 дня, а два студента - даже 5 дней. Это можно объяснить тем, что они своевременно рассчитались с долгами по всем остальным предметам и имели возможность часть зачетной недели посвятить подготовке к экзамену по высшей математике.
Если каждый элемент первой строки таблицы 2 умножить на соответствующий ему элемент второй строки, то получим 138,5 - общее количество часов, которые студенты группы ТРЗ-171 затратили на подготовку к экзамену по высшей математике. Разделив 138,5 вначале на 20 - число студентов в группе, а затем на 3 - число дней, предусмотренных на подготовку к экзамену, получим среднее время ежедневной подготовки к экзамену - 2,3 часа, то есть 2 часа и 18 минут. Следовательно, каждый студент группы ТРЗ-171 в течении трех дней готовился к экзамену по высшей математике в среднем 6 часов и 54 минуты, вместо предусмотренных 36 часов. Комментарии, как говорится, излишни.
Удивительно, что студенты, готовившиеся к экзамену меньше трех часов в день, считают такое положение вещей нормой. Они не понимают, что признаваться в этом, даже анонимно, неприлично.
Иногда мы задавали студентам, получившим неудовлетворительную оценку на экзамене, традиционный в таких случаях вопрос: чем они занимались все дни подготовки к экзамену? Почти все студенты отвечали также традиционно: учили. Правда, не уточняя при этом, как долго они это делали. Некоторые студенты затруднялись с ответом на поставленный вопрос. А в прошлом учебном году один студент, отвечая на него, заявил, что все три дня перед экзаменом он отдыхал и набирался сил. Так как экзамен, который студент завалил, стоял в расписании первым, то отдыхать от предыдущего экзамена он не мог. Поэтому экзаменатор поинтересовался, от чего конкретно студент отдыхал. Не испытывая ни тени смущения, он признался, что отдыхал от прошедшего трудного семестра.
Анализируя ответы на сформулированные выше вопросы 1) и 2), можно сделать вывод, что ради успешной сдачи экзамена и получения более высокой оценки, студенты не готовы жертвовать даже небольшой частью времени, которое они тратят на интернет и мобильную связь. Более того, почти наверняка, можно утверждать, что в дни сессии это время возрастает. Для того чтобы убедиться в этом, достаточно поинтересоваться как в эти дни распределяются 6 часов, которые на протяжении всего семестре студенты ежедневно, исключая выходные, использовали для посещения аудиторных занятий. Несомненно, что полученные нами по результатам опроса 2 часа и 18 минут ежедневной подготовки к экзамену взяты из этих “сэкономленных” шести часов. Полагаем, что оставшиеся 3 часа и 42 минуты были разделены между сном, интернетом и мобильной связью.
Постоянное и неоправданное сокращение в учебных планах времени на изучение высшей математики - это стратегическая ошибка, совершаемая составителями учебных планов по высшей математике, которые, по-видимому, не осознают серьезность проблемы дематематизации высшей школы и не в состоянии предвидеть катастрофические последствия своей разрушительной деятельности.
Вирус дематематизации через пораженных им выпускников средних и особенно высших учебных заведений уже вышел за границы сферы образования и постепенно захватывает все новые и новые области. проникает во все сферы общественной жизни и поражает все ткани и органы государственного организма. препятствуя нормальному функционированию и развитию общества и государства. В цехах промышленных предприятий. конструкторских бюро. школьных классах и вузовских аудиториях. банковских офисах и министерских кабинетах оказываются слабо подготовленные в математическом плане. точнее. неполноценные инженеры. технологи. конструкторы. учителя и преподаватели. банкиры и управленцы. Своим некомпетентным действием или бездействием недоучки могут навредить не меньше любых внешних врагов и внутренней оппозиции. С кем вообще. мы собираемся строить цифровую экономику. о которой сейчас так много говорят и пишут.
Отдельно отметим, что подобная нерадостная перспектива грозит и нашей армии. В ее штабах и подразделениях, оснащенных самой современной техникой и новейшим вооружением. могут оказаться военнослужащие. неподготовленные к их обслуживанию и командиры. неспособные в реальных боевых условиях быстро просчитывать последствия принимаемых ими решений. А это уже напрямую связано с безопасностью страны.
Дематематизация. возникающая прежде всего там. где начинают пренебрежительно относиться к математике. не является чисто белорусским изобретением. Под ее безжалостным катком оказывались многие государства. в том числе и развитые страны Западной Европы. Не избежали подобной участи и великие державы - США и Россия, славящиеся глубокими математическими традициями и общепризнанными выдающимися достижениями своих математиков. без участия которых не могли быть реализованы грандиозные проекты в космической и военной областях.
В это трудно поверить. но к началу 2000-х гг. уровень математической подготовки школьных учителей математики в США упал до такой степени. что разделить дробь на дробь, например. 1/2 на 1/4 могли от одного до двух процентов от их общего количества. На этот поразительный факт неоднократно указывал в своих статьях и интервью знакомый не понаслышке с западной системой образования выдающийся российский математик В.И. Арнольд. При этом он ссылался на статистику. опубликованную Американским математическим обществом.
В.И. Арнольд обнародовал еще один неизвестный широкой общественности скандальный факт, касающийся уже российской системы образования. К 2000-м гг. дематематизаторы в России набрали такой вес и обнаглели до такой степени, что подготовили проект, по которому из программы средней школы должна была быть полностью исключена геометрия. К поставленной цели они шли напролом, отмахиваясь от протестующих математиков как от назойливых мух. Поставили на место зарвавшихся реформаторов-фантазеров и похоронили их мракобесный проект трезвомыслящие реалисты из Министерства обороны. вовремя подоспевшие на помощь математикам.
К концу первого десятилетия XXI в. плачевное состояние математического образования в США стало столь очевидным. что не замечать его и не реагировать на него было уже невозможно. Реакция последовала на самом высоком уровне. Приведем несколько фрагментов из выступления президента США Барака Обамы 27 апреля 2009 г. на ежегодном собрании американской Национальной академии наук: поскольку мы знаем, что прогресс и процветание будущих поколений будет зависеть от того, как мы сейчас обучаем следующее поколение, я объявляю о новом решении о поддержке математического и естественнонаучного образования.... Ведь мы знаем, что страна, которая опередит нас в образовании сегодня, завтра обгонит нас и в других областях.... И я призываю штаты радикально повысить результаты математического и естественнонаучного обучения... Я также призываю штаты улучшить подготовку учителей и привлечь новых высококвалифицированных учителей математики и естественных наук, которые могли бы увлечь учеников и оживить преподавание этих предметов в наших школах”.
Кардинально пересмотрели на высшем уровне отношение к математическому образованию и в России. Распоряжением правительства РФ от 24 декабря 2013 г., подписанного премьер-министром Д.А. Медведевым, была утверждена Концепция развития математического образования, в которой были определены базовые принципы, цели, задачи и основные направления математического образования в России. Так как наша система образования имеет общую родословную с российской, то указанная Концепция представляет для нас несомненный интерес и по этой причине заслуживает пристального внимания.
В Концепции констатируется, что “изучение математики играет системообразующую роль в образовании... Развитые страны и страны, совершающие в настоящее время технологический рывок, вкладывают существенные ресурсы в развитие математики и математического образования.... Форсированное развитие математического образования и науки... будет способствовать улучшению положения и повышению престижа России в мире.. Повышение уровня математической образованности.... обеспечит потребности в квалифицированных специалистах для наукоемкого и высокотехнологичного производства”.
Далее в разделе Концепции, посвященном проблемам развития математического образования, отмечается, что “низкая учебная мотивация школьников и студентов связана с общественной недооценкой математического образования... Потребности будущих специалистов в математических знаниях и методах учитываются недостаточно.... В Российской Федерации не хватает учителей и преподавателей образовательных организаций высшего образования, которые могут качественно преподавать математику.”.
Задачами развития математического образования в Российской Федерации согласно Концепции являются “модернизация содержания учебных программ математического образования на всех уровнях... обеспечение отсутствия пробелов в базовых знаниях для каждого обучающегося... Повышение качества работы преподавателей математики. усиление механизмов их материальной и социальной поддержки.”.
В заключительном разделе Концепции отмечается, что ее реализация “обеспечит новый уровень математического образования, что улучшит преподавание других предметов и ускорит развитие не только математики, но и других наук и технологий. Это позволит России достигнуть стратегической цели и занять лидирующее положение в мировой науке, технологии и экономике”.
Беларусь рискует оказаться на задворках цивилизованного мира в числе экономически, технологически и информационно отсталых стран со всеми вытекающими отсюда негативными последствиями, угрожающими безопасности и обороноспособности государства, если в ближайшее время не разработает по примеру других стран собственную долговременную и амбициозную программу по поддержке и развитию математики и математического образования.
Мы не должны дожидаться пока наши учителя математики станут похожими на своих американских коллег образца 2000-х. Пора заканчивать дематематизацию и начинать движение в обратном направлении, запустив процесс рематематизации. Начинать, несомненно, надо с подготовки учителей. Наших детей должны учить отлично подготовленные учителя, желательно самые лучшие в мире. Достижение этой стратегической цели в нынешних реалиях практически невозможно, так как в последние как минимум два десятилетия студентами математических и физико-математических факультетов становились. мягко говоря. не лучшие абитуриенты. Лучшие выбирали международные отношения. экономику. юриспруденцию и информационные технологии. хорошие предпочитали престижные технические специальности.
Заметим, что дематематизация коснулась даже названий факультетов. В некоторых педуниверситетах сегодня нет факультетов. в названиях которых присутствовало бы слово “математика” или производные от него слова.
Говоря об абитуриентах математических и физико-математических факультетов, мы нисколько не сгущаем краски. Каждый желающий, посетив сайты педуниверситетов. может своими глазами увидеть. какие абитуриенты становились студентами этих факультетов. В 2018 г. в БГПУ имени М. Танка наименьший проходной балл (133) был на специальность “Математика и информатика”. Эта же специальность с проходным баллом 107 оказалась наименее востребованной в 2018 г. и в Мозырском педуниверситете имени И.П. Шамякина. второе место в рейтинге непопулярности досталось специальности “Физика и информатика” с проходным баллом 108. Все указанные баллы. напомним. являются суммой результатов ЦТ по трем предметам и среднего балла аттестата.
Назрела необходимость в переориентации потоков абитуриентов таким образом, чтобы лучшие из них выбирали педагогические вузы. Добиться этого можно быстро и недорого, достаточно вначале повысить в два раза (не менее) стипендию всем студентам математических и физико-математических специальностей, а затем и студентам всех педагогических факультетов. Лучшими в мире должны быть не только наши учителя и преподаватели математики и физики, но и наши учителя и преподаватели истории. географии. языков. химии и биологии.
Заключение
Возвращаясь к теме самостоятельной работы студентов, заметим, что если задать вопросы из проведенных нами опросов выпускникам средней школы. то. вряд ли. мы получим более оптимистичные результаты. Что-то нам подсказывает, что они будут даже более удручающими. Можно утверждать, что в настоящее время и в школе, и в вузе в ходе образовательного процесса практически не задействован его важнейший компонент - самостоятельная работа обучающихся. А это и есть на сегодня. по-нашему мнению. одна из основных причин слабой успеваемости школьников и студентов. В свою очередь. дефицит времени для самостоятельной работы обусловлен тем. как мы установили. по крайней мере. для студентов. что почти треть суток они проводят в интернете и общаются с помощью мобильной связи. не используя их в целях обучения. По свойству транзитивности, именно интернет и мобильная связь являются одной из причин неудовлетворительных результатов ЦТ и низких экзаменационных оценок в вузе. в частности по высшей математике.
Из сказанного следует, что одним из способов повышения качества среднего и высшего образования является увеличение реального объема времени, используемого обучающимися для самостоятельной работы. А для этого достаточно всего лишь сократить время на интернет и мобильную связь. Если, например. сократить его с 8 часов до 7 часов. то есть только на один час. и при этом использовать этот освободившийся час для самостоятельной работы. то можно реально увеличить ее объем с одного часа до почти двух часов в день. то есть почти в два раза. Соответственно и для высшей математики объем самостоятельной работы возрастет в два раза.
Легко сказать: сократить время на интернет и мобильную связь. А как это сделать? Как освободить молодежь вообще. и учащуюся молодежь в частности. из добровольного интернетовского заточения? Сегодня это общемировая проблема. которая не имеет простых решений. Не предлагаем таких решений и мы.
Если проблематично сократить время, проводимое в интернете, то можно попытаться ослабить его влияние на самостоятельную работу студентов. Ее зависимость от интернета особенно остро проявилась после того, как объем самостоятельной работы довели до гигантских размеров, урезав соответственно время аудиторной работы. В наибольшей степени пострадал от этого курс высшей математики, в котором объем самостоятельной работы составляет 61%. По-нашему мнению, непомерное увеличение объема самостоятельной работы до невероятных размеров было ошибочным. Для исправления ошибки достаточно в учебном плане часть часов из графы “самостоятельная работа” вернуть в графу “аудиторная работа”. Тем самым ослабнет зависимость самостоятельной работы от интернета, и за счет увеличения объема аудиторной работы повысится успеваемость студентов.
самостоятельная работа обучение математика
Список использованных источников
1. Гальмак А.М. Об оценке математической подготовки первокурсников / А.М. Гальмак, О.А. Шендрикова, И.В. Юрченко / Веснік Магілеускага дзяржаунага універсітзта імя А.А. Куляшова. Сер. С, Псіхолага-педагагічньїя навукі: педагогіка, псіхалогія, методыка. - 2015. - № 1(45). - С. 93-100.
2. Гальмак А.М. О чтении лекций и не только / А.М. Гальмак, О.А. Шендрикова, И.В. Юрченко / Веснік Магілеускага дзяржаунага універсітзта імя А.А. Куляшова. Сер. С, Псіхолага-педагагічньїя навукі: педагогіка, псіхалогія, методыка. - 2017. - № 2(50). - С. 17-26.
Размещено на Allbest.ru
...Подобные документы
Формирование графика самостоятельной работы студентов с обязательной организацией планирования этой работы во времени и ее координация. Эффективный способ выявления действительной их загрузки. Занятость студентов в учебной работе в различных ВУЗах.
контрольная работа [16,9 K], добавлен 25.06.2013Роль самостоятельной работы студентов в образовательном процессе. О мотивации самостоятельной работы студентов. Организация и формы самостоятельной работы. Методическое обеспечение и контроль самостоятельной работы.
реферат [24,1 K], добавлен 24.04.2007Мотивации самостоятельной работы студентов, ее организация и формы. Методическое обеспечение и контроль самостоятельной работы, ее планирование. Организация внеаудиторной самостоятельной работы студентов. Контроль и управление, источники получения знания.
курсовая работа [73,8 K], добавлен 12.11.2013Исследование особенностей самостоятельной работы студентов в современных условиях развития высшего профессионального образования. Анализ ее значения в формировании специалиста. Организация контроля самостоятельной работы студентов специальности "История".
дипломная работа [336,8 K], добавлен 21.10.2015Сущность понятия "мотивация". Приемы для активизации самостоятельной работы студентов. Учебно-методическое обеспечение процесса обучения. Внеаудиторное чтение, научно-практические конференции. Комплект пособий для самостоятельной аудиторной работы.
реферат [11,6 K], добавлен 11.12.2012Цели, содержание и условия самостоятельной работы студентов в среднем профессиональном образовании. Разработка методических рекомендаций для преподавателей и студентов педагогического колледжа по изучению курса организации самостоятельной работы.
курсовая работа [44,6 K], добавлен 11.11.2014Сущность самостоятельной работы студентов, концептуальные основы. Разработка и обоснование метода организации дифференцированной самостоятельной работы студентов техникума, обеспечение системы педагогических условий для его внедрения; диагностирование.
дипломная работа [1,1 M], добавлен 03.03.2013Основные принципы организации самостоятельной работы студентов ВУЗа. Формы проведения практических занятий. Ориентация учебного процесса на самостоятельную работу и повышение ее эффективности. Формирование навыков исследовательской работы студентов.
презентация [1,0 M], добавлен 11.06.2013Самостоятельная работа студентов в современных условиях развития высшего профессионального образования, ее значение в формировании специалиста. Нормативная база организации самостоятельной работы студентов специальности "история", особенности ее контроля.
дипломная работа [270,4 K], добавлен 17.11.2015Обоснование понятия "информационные технологии обучения", их роль в педагогике. Экспериментальная работа по применению мультимедийного учебника как эффективного средства организации, осуществления и контроля самостоятельной работы студентов в вузе.
дипломная работа [794,2 K], добавлен 29.05.2013Самостоятельная работа студентов как форма их учебной деятельности. Виды организации работы студентов начального профессионального образования. Методика организации самостоятельной работы на уроках информатики с использованием инструкционных карт.
курсовая работа [92,9 K], добавлен 10.09.2014Аналитическое исследование хозяйственной деятельности предприятия. Психологический анализ личности студентов. Разработка авторского педагогического пакета заданий для самостоятельной работы по дисциплине "Экономика организации", его частичная апробация.
дипломная работа [827,6 K], добавлен 23.03.2011Понятие и значение самостоятельной работы студентов педагогических колледжей при изучении курса "Методика физического воспитания и развитие детей дошкольного возраста". Изучение и анализ опыта работы преподавателя Клинцовского педагогического училища.
дипломная работа [71,4 K], добавлен 26.05.2008Специфика вузовского обучения. Психолого-педагогические аспекты самостоятельной работы студентов. Общая характеристика активного обучения. Сущность и принципы деловой игры. Эвристические технологии обучения. Практическое изучение активности студентов.
дипломная работа [2,5 M], добавлен 25.06.2011Обучение студентов умению самостоятельно приобретать знания на уроках математики. Вовлечение учащихся в активную деятельность на различных этапах обучения. Методика проведения самостоятельных работ со студентами с использованием взаимной проверки.
статья [22,7 K], добавлен 05.04.2013Организация самостоятельной учебной работы. Понятие о самостоятельной работе ученика. Уровни самостоятельной деятельности школьников. Требования к организации самостоятельной деятельности учащихся на уроке. Виды самостоятельных работ в обучении.
контрольная работа [24,3 K], добавлен 17.11.2011Цели и содержание образования, технологии обучения. Анализ места работы над учебником и учебной литературой в организации самостоятельной деятельности учащихся в процессе обучения. Создание кластеров как одна из форм самостоятельной творческой работы.
статья [68,4 K], добавлен 22.04.2015Теоретическое определение понятия, необходимости и проведения научно-исследовательской работы в высшей школе. Формирование готовности студентов ВУЗа к деятельности средствами проблемного обучения. Системный подход к научной работе в условиях ВУЗа.
курсовая работа [41,2 K], добавлен 04.12.2009Понятие самостоятельной работы в дидактике. Виды самостоятельной работы учащихся по физике. Дидактические принципы построения системы самостоятельных работ учащихся и руководство ей. Индивидуальные учебные задания по физике и самостояельная работа.
курсовая работа [2,5 M], добавлен 24.07.2010Проблемы формирования культуры умственного труда студентов вуза в условиях технологизации образовательного процесса. Показатели и оценка уровня культуры интеллектуального труда студентов, особенности самостоятельной работы. Самопрезентация студента вуза.
контрольная работа [1,3 M], добавлен 19.04.2015