Модель развития математической одаренности младших школьников
Модель развития математической одаренности младших школьников, состоящая из компонентов: целевой, методологический, процессуальный, диагностический, результативный. Методы, формы и средства, способствующие развитию у младших школьников одаренности.
Рубрика | Педагогика |
Вид | статья |
Язык | русский |
Дата добавления | 06.06.2023 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Модель развития математической одаренности младших школьников
Сергеева Б.В.
Микерова Г.Ж.
Затеева Т.Г.
Актуальность исследования определяется тем, что «Технико-экономический лицей» города Новороссийска - одно из ведущих учебных заведений юга России. Выпускники школы демонстрируют стабильно высокие результаты по математике (результаты ЕГЭ, олимпиады, конкурсы). Таким образом, работу по развитию математической одаренности необходимо начинать с начальной школы. В статье представлена модель развития математической одаренности младших школьников, состоящая из компонентов: целевой, методологический, процессуальный, диагностический, результативный.
Апробация и экспериментальная проверка разработанной в исследовании модели развития математической одаренности учащихся начальных классов предоставила возможность проверить результативность обозначенной модели. Практическое значение полученных итогов данной работы состоит в следующем: определен уровень развития математической одаренности учащихся, разработана система развития математической одаренности учащихся на уроках математики; представлены методы, формы и средства, способствующие развитию у младших школьников математической одаренности; определены уровни оценки сформированности данного вида одаренности. Эффективность доказана сравнением эмпирического показателя критерия Крамера-Уэлча Тэмп с критическим показателем Т0,05=1,96. Соотнесение итогов тестирования, которые были отмечены в экспериментальной группе на контрольном и констатирующем этапах проведенного эксперимента Таия=7,57>1,96 - доказывает правоту выдвинутого альтернативного предположения о значимости расхождений на показателе, равном 95%. Авторская концепция развития математической одаренности младших школьников, описанная в статье, разработанная на её основе модель, состоящая из компонентов: целевой, методологический, процессуальный, диагностический, результативный и комплекс способов развития математической одаренности учащихся, позволят расширить представления ученых мировой науки об этом феномене. Ключевые слова: математическая одаренность, структура, этапы, методы, формы, технологии, модель, диагностика, развитие математической одаренности, младшие школьники.
математический одаренность школьник
MODEL OF DEVELOPMENT OF MATHEMATICAL GIFTEDNESS OF YOUNGER STUDENTS
Sergeeva B.V.1, Mikerova G.J.1, Zateeva T.G.1, Gakame Y.D.1, Mardirosova G.B.1
"Technical and Economic Lyceum” of the city of Novorossiysk, one of the leading educational institutions in the south of Russia. School graduates demonstrate consistently high results in mathematics (results of the Unified State Exam, Olympiad, competitions). Thus, work on the development of mathematical giftedness must begin with elementary school. So, the goal of the work is to theoretically justify, develop a model for the development of mathematical giftedness of younger students and experimentally test its effectiveness. Testing and experimental verification of the model for the development of mathematical giftedness of younger students developed in the study made it possible to assess its effectiveness. The practical significance of the research results lies in the fact that the level of development of mathematical talent of students is determined, a system for the development of mathematical talent of students in mathematics lessons has been developed; presented methods, forms and means that contribute to the development of mathematical talent in younger students; the levels of assessment of the formation of this type of giftedness are determined. The effectiveness was proved by comparing the empirical value of the Kramer-Welch Tap test with a critical value of T0.05 = 1.96. Comparison of the results of diagnostics of the experimental group at the stating and control stages of the experiment Temp = 7.57 > 1.96 - determines the validity of the alternative hypothesis about the significance of differences at the level of 95%. The author's concept of the development of mathematical talent of younger students, described in the article, developed on its basis a model consisting of components: targeted, methodological, procedural, diagnostic, effective and complex methods for the development of mathematical talent of students will allow expanding the ideas of world science scientists about this phenomenon.
Keywords: mathematical giftedness, structure, stages, methods, forms, technologies, model, diagnostics, development of mathematical giftedness, junior students.
В условиях кардинальных изменений, происходящих как в экономике, так и в общественных процессах, обозначилась особая нужда в инициативных, креативных людях, обладающих не скованным ограничениями мышлением и широкими взглядами, которые были бы в силах нетривиально подходить к разрешению возникающих проблем и, рассуждая критично, ставить новые глобальные цели в системе образования во всем мире.
Математическая одаренность заявлена в качестве одной из основных задач концепции развития математического образования, утвержденной Правительством РФ в декабре 2013 г. [1]. В 1998 году под руководством действующего члена РАЕН Богоявленской Д.Б. (д-р психол. наук, профессор) была опубликована «Рабочая концепция одаренности». Согласно концепции, Богоявленская Д.Б. обозначает одаренность следующим определением, как «системное качество, характеризующее психику ребенка в целом. При этом именно личность, ее направленность, система ценностей ведут за собой развитие способностей и определяют, как будет реализовано индивидуальное дарование» [2]. Это понятие, определенное автором концепции, коренным образом отличается от устоявшегося в науке понимания одаренности как, прежде всего, высокой степени развития способностей школьника (подразумеваются, главным образом умственные способности). Обозначенная в «Концепции» её точка зрения ставит во главу угла вопросы не просто обучения одаренного школьника, но его воспитания. Также в указанной работе уделяется пристальное внимание чуткому отношению к одаренным детям и полному осознанию как выгоды, так и сложностей, связанных с их даром.
Исходя из вышеизложенного, главной задачей становится потребность в развитии личности одаренного школьника в целом, а не только выявленных особых индивидуальных способностей ребенка. Соответственно, образовательный процесс должен воздействовать на всю личность ученика, а не ограничиваться лишь его интеллектуальным развитием. Цели и способы обучения для обеспечения его максимальной эффективности следует направить на такие важные черты интеллектуально одаренных школьников, как тяга к знаниям, познавательная активность, развитая способность к мышлению.
В научных трудах в области педагогики и психологии развитие математических талантов у учащихся начальной школы анализируется с разных сторон: с позиции развития креативного мышления. Данную точку зрения поддерживали Д.Б. Богоявленская [2], Л.М. Киселева [3], Е.С. Канин [4] и др. Развитие математической одаренности в части наращивания креативных способностей изучали И.Б. Мылова [5], Н.Б. Шумакова [6]. Математическую одаренность как развитие интеллектуальных способностей рассматривала Ф.Л. Ратнер [7]. Рассмотрением математической одаренности с точки зрения развития математических способностей и развития математического мышления занимались такие ученые, как В.А. Крутецкий [8], В.А. Тестов [9], Н.С. Лейтес [10].
Также мы поддерживаем зарубежных исследователей, которые считают, что возможности талантливых школьников обусловлены как их результатами, так и их теоретическими способностями в перечисленных ниже сферах, будь то одна область или их сочетание: мышление, наука, творчество, лидерство и общение, психомоторная и художественная активность.
Особое значение для настоящего исследования представляют работы зарубежных ученых. Д. Руссо [11] утверждает, что для развития математических способностей младших школьников необходимо использовать игры на уроках математики. Данный факт подтвержден исследованиями ученого в области влияния игры на развитие способностей, составляющих одаренность в математике.
Х. Каралар [12] считает необходимым в математическом образовании использовать STEM-технологию. Ученый рассматривает приращение математических способностей у дошкольников и учеников начальных классов, говоря о преемственности, в русле предметной образовательной среды для математического развития.
Рамазан Диврик [13] утверждает, что для развития математических способностей учащихся необходимо использовать решение нестандартных задач.
Многие ученые под одаренностью подразумевают потенциал человека к выдающимся результатам его действий, которые контрастируют с достижениями среднестатистических индивидуумов того же возраста и образования. Талантливым ребенком считают того, кто регулярно достигает высоких результатов, зафиксированных квалифицированными специалистами, благодаря особым способностям такого ученика. Будущие возможности талантливых школьников обусловлены «показателем достигнутых ими результатов и их ожидаемыми проявлениями в области коммуникации и руководства, творчества, мышления, науки, психомоторной и художественной активности».
Минобрнауки России определяет понятие одаренности в тесной связи с идеологией создания педагогической системы: «К одаренным относятся дети (или молодые люди), которых воспитатели или педагоги выявили в качестве обладателей способностей (уже имеющихся или возможных), заключающихся в их высоком потенциале в сферах организаторства или руководства, творческой, учебной или интеллектуальной деятельности, актерском мастерстве или изобразительном искусстве, в результате чего такие дети нуждаются в дополнительных занятиях, в обычных обстоятельствах обычно не предоставляемых школой».
Несмотря на многочисленные определения ученых понятия «одаренность», в настоящем исследовании использовалась дефиниция одарённости Дж. Рензулли [14].
Выдающиеся психологи и математики внесли свой вклад в развитие концепции «математических способностей». С.Л. Рубинштейн определил математическую одаренность как качество процессов анализа и синтеза, как общий компонент нескольких умственных способностей школьников.
Профессор В.А. Крутецкий [15] вывел главный компонент математических способностей учащихся - математическую направленность ума. Этот талант выражается в склонности ученика систематизировать ситуации и события математическим образом, перманентно замечать математические закономерности в окружающей действительности, а также обращать внимание на функциональные зависимости, количественные и пространственные отношения. В таблице 1 показаны различные трактовки учеными понятия «математическая одаренность».
Таблица 1 Определение понятия «математическая одаренность» в трактовках различных авторов
Автор |
Определение математической одаренности |
|
В.Ю. Шадрин |
комплекс познавательных возможностей индивидуума, особых способностей и высокой тяги к осуществлению математической деятельности, которая становится ведущим фактором достижения успеха и высоких результатов среди представителей одного возраста и социального класса, на базе личного способа познания математических дисциплин |
|
Д.Б. Богоявленская |
одна из разновидностей интеллектуальной одаренности, своеобразная сумма математических способностей, которые способны прогрессировать в процессе осуществления специальной математической деятельности |
|
Дж. Рензулли |
математические способности и приобретенный опыт, сила воли и любовь к труду, умственный потенциал или интеллект, совокупный срез личностных возможностей познания и развития способностей к освоению знаний |
|
В.А. Тестов |
специфическое индивидуально-психологическое понятие, содержащее в себе комплекс математических способностей |
Считаем, что определение профессора В.А. Крутецкого является одним из наиболее точно отражающих данное понятие. Он полагал, что математическая одаренность - это обеспечивающая успех отдельного индивидуума в осуществлении математической деятельности при определенной совокупности математических способностей. Талантливые дети в области математики ярко проявляют потребность в исследовательской и поисковой деятельности - стремление к открытиям, активную умственную работу, самопознание [16].
Таким образом, после исследования трудов в области психологии, педагогики и методологии указанных областей определяем математическую одаренность младшего школьника в контексте представленного исследования как интегративное свойство индивидуума, которое вмещает в себя опыт самостоятельной математической деятельности и математическую грамотность, а также умение использовать их в новой ситуации с ориентацией на личностное развитие. На основе анализа работ вышеуказанных ученых в исследовании разработана структура математической одаренности, представленная на рисунке 1 [17].
Цель исследования - теоретически обосновать, разработать модель развития математической одаренности младших школьников и экспериментально проверить её эффективность.
Материалы и методы исследования
Методологической основой исследования стали личностно ориентированный, целостный, ценностный, аксиологический, системно-деятельностный подходы, принципы равенства, диалогичности, единства, взаимного доверия; совместного поиска и принятия решений, технологичности обучения, индивидуализации обучения, эвристической деятельности, творческой самореализации учащихся.
Рис. 1. Структура математической одаренности младших школьников
В процессе исследования применялись методы: метод теоретического анализа психологической и педагогической литературы, научных трудов и методического обеспечения по рассматриваемой проблеме исследования; методы тестирования, анкетирования, наблюдения, экспертной оценки; естественный педагогический эксперимент; срезовые диагностические работы; методы математического и статистического анализа (Крамера- Уэлча); внедрение разработанной модели и полученных рекомендаций; анализирование и систематизация результатов проведенной работы и их последующее применение на практике в учреждениях образования.
В целях обработки полученных результатов диагностики применялись методы математической статистики: критерий Крамера-Уэлча.
Результаты исследования и их обсуждение
На основе вышеизложенных теоретико-методологических позиций в ходе исследования была научно обоснована, разработана и экспериментально апробирована модель развития математической одаренности младших школьников, которая представлена на рисунке 2.
Рис. 2. Модель развития математической одаренности младших школьников
Реализация модели развития математической одаренности младших школьников требует не только проведения соответствующего эксперимента, но и проведения диагностики качества образовательного процесса. Таким образом, она состояла из двух уровней: уровень проектирования, заключающийся в апробации созданной модели в процессе образования и последующем оценивании итогов внедрения, анализе динамики развития математических талантов учеников начальных классов, и уровень реализации - этап тактической педагогической разработки отдельных видов учебных занятий для математически одаренных младших школьников в рамках модели развития математической одаренности младших школьников. Для этого в исследовании была разработана модель диагностики развития математической одаренности младших школьников, представленная в таблице 2 [18-20].
Диагностика математической одаренности младших школьников
Таблица 2
КОМПОНЕНТЫ МАТЕМАТИЧЕСКОЙ ОДАРЁННОСТИ |
||||||
МОТИВАЦИОН НЫЙ |
ОПЕРАЦИОНАЛЬНО-ДЕЯТЕЛЬНОСТНЫЙ |
КОГНИТИВ НЫЙ |
РЕФЛЕКСИ ВНЫЙ |
|||
Математическая деятельность |
Творческая деятельность |
Исследовател ьская деятельность |
||||
Мотивационная направленность |
Математические способности |
Креативность, творческое мышление |
Поисковая активность, исследовательс кие умения |
Математичес кие знания, умения |
Оценочные умения, действия самоанализа |
|
1. Методика для проведения диагностики учебной мотивации |
Методика Зямбецявичене. Методика «Сложение чисел |
1. Опросники для школьников и их родителей для определения креативности |
1. Диагностик а исследовательс ких умений. |
1. Контрольная диагности ческая работа. |
1. Рефлекси вная карта уроков. |
|
учащихся |
с |
(творческого |
2. Рейтинг |
2. Наблюдени |
2. Листы |
|
(методика М.В. |
переключением». |
мышления) |
исследовательс |
е. |
самоконтроля |
|
Матюхиной в |
3. Методика |
ученика. |
ких |
3. Диагности |
||
модификации |
оценки |
2. Тестирование |
способностей. |
ческие |
3. Методик |
|
Н.Ц. Бадмаевой). |
логического |
креативности по |
3. Метод |
задания |
а А.И. |
|
2. Методика |
мышления. |
Вильямсу. |
экспертной |
(составленны |
Липкиной «Тр |
|
«Познавательная |
4. Методика |
3. Диагностика |
оценки. |
е в |
и оценки». |
|
потребность» |
оценки |
творческого |
4. Метод |
соответствии |
4. «Шкала |
|
В.С. Юркевич. |
математического |
мышления (Е. |
наблюдения. |
с |
Бруковера» |
|
3. Методика |
мышления |
Торренс в |
Экспертная |
классификац |
(модификаци |
|
«Познавательная |
«числовые ряды». |
интерпретации |
оценка |
ией МС по |
я методики |
|
активность |
5. Исследование |
Е. Туник). |
поисковой |
В.А. |
«Лесенка» |
|
младшего школьника» А. А. Горчинской. 4. Определение уровня познавательного интереса младших школьников по методике Г.И. Щукиной |
влияния прошлого опыта на способ решения. Методика «Интеллектуальна я лабильность». Методика «Повороты фигур» Н.И. Поливанова, И.В. Ривина. Тест для школьников «Оперативная память» А.Р. Лурия. Методика «Сложение чисел с переключением» |
4. Диагностика творческого мышления (Туник Е.Е.). Опросник креативности Дж. Рензулли (в интерпретации Туник Е.Е.). |
деятельности |
Крутецкому). |
В.Г. Щур) |
Очень важным было обеспечение бесперебойного функционирования при разработке диагностической модели, создание необходимых условий для минимизации сроков процесса диагностики результатов формирования математической одаренности у учащихся начальных классов и приведение в соответствие показателей оценки образовательного процесса с соответствующими показателями, установленными ФГОС НОО и принятыми обществом и государством [21].
При создании диагностической модели необходимо было обеспечить её надежность, ускорить процедуру оценки результатов развития математической одаренности младших школьников, а также согласовать критерии оценки учебной деятельности младшего школьника с критериями оценки, представленными в ФГОС НОО, выдвигаемыми обществом и государством. В процессе проведения естественного педагогического эксперимента важной частью являлось установление показателей и уровней развития математической одаренности младших школьников, что служило также и основой проектирования системы диагностики качества математического образования младших школьников.
Деятельность учителя начальных классов, согласно модели развития математической одаренности младших школьников, осуществлялась в соответствии с этапами, разработанными в процессе исследования и показанными в таблице 3.
Таблица 3
Этапы деятельности учителя начальных классов в развитии математической одаренности младших школьников
Диагностический |
|||
Виды деятельности |
Содержание |
Продукт |
|
1. Выявление одаренных детей |
Определение параметров одаренности. Подбор диагностического инструментария. Осуществление диагностической процедуры. Обработка результатов исследования |
Протокол исследований. Диагностическое заключение |
|
2. Составление индивидуальной программы для математически одаренных детей |
Составление разделов индивидуальной программы |
Бланк индивидуальной программы |
|
Педагогический |
|||
Виды деятельности |
Содержание |
Продукт |
|
1. Развитие математической одаренности на уроке |
Подбор методов обучения. Подбор педагогических технологий обучения. Подбор форм индивидуально дифференцированного обучения младших школьников (дифференциация индивидуальная, групповая, смешанная) |
Проектирование уроков, направленных на развитие математической одаренности |
|
Развитие математической одаренности во внеурочной деятельности |
Составление спецкурсов. Организация и реализация специализированных школьных лагерей с потоками талантливых школьников |
Программа спецкурсов, направленных на развитие математической одаренности Программа работы лагеря |
|
Аналитический |
|||
Виды деятельности |
Содержание |
Продукт |
|
Обобщение результатов |
Проведение конференции. Разработка методических материалов. Динамика развития математической одаренности младших школьников |
Сборник работ по итогам конференции. Методические рекомендации |
Представим реализацию этих этапов работы.
Диагностический. Выявление одаренных учащихся.
Одна из основных сложностей указанного процесса состоит в том, что выявление одаренных школьников базируется как на объективных параметрах, например их высоких оценках, так и на субъективной составляющей - опыте педагога и его профессиональной интуиции [22]. Для более эффективного выявления математически одаренных учеников использована совокупность психологических, педагогических и даже медицинских мероприятий в комплексе. При этом объектами изучения были и сами школьники, и их родители.
В процессе проведения исследования рассматривалась проблематика, связанная с его осуществлением:
проблема обоснованности используемых методов и сравнение итогов. В результате мы были нацелены на применение максимально зарекомендованных и валидных диагностических инструментов. Также при разработке методик проводилась их стандартизация и адаптация с целью максимально возможного соответствия возрастным критериям развития учеников начальных классов;
принимались во внимание специфические нюансы отдельных оценочных случаев, воздействующих на эффективность реализации используемых методов обучения, а также на стимулирование испытуемых, состояние их психики, и при влиянии указанных личностных характеристик - на итоговые результаты проведенной диагностики. В соответствии с вышеуказанными обстоятельствами индивидуальное и общее тестирование проводилось как стандартное учебное занятие, и у тестируемых учеников не было необходимости особым образом адаптироваться к проводимому тесту;
диагностика производилась строго с научной целью, поэтому приватность итоговых данных тестирования достигалась анонимностью испытуемых.
Используемые методы исследования: лонгитюд и поперечный срез. Проведение лонгитюда было необходимо с целью изучения развития учеников начальной школы, обладающих математическими талантами.
В этих целях применялись разнообразные способы в процессе тестирования детей для выявления степени их одаренности, а также замерялась степень их прогрессирования в том или ином компоненте математической одаренности. Итоги опросов и проведенные групповые тестирования позволили выявить учащихся, для которых проведена более углубленная индивидуальная диагностика.
Констатирующий этап
Рассматриваемый эксперимент состоял в ежегодном осуществлении срезов, которые замеряли уровень математической одаренности младших школьников. В исследовании участвовали 114 школьников начальных классов обучения. Лонгитюдный метод позволил оценить динамику развития указанных талантов учащихся с 2018 по 2022 год.
Также в проведенное нами исследование были включены 115 младших школьников «Морского технического лицея» г. Новороссийска для сравнения с другими образовательными учреждениями по внедрению указанной ранее модели.
1. Констатирующий этап заключался в осуществлении первичного контроля навыков и освоенных знаний у младших школьников для выявления:
показателя базовых способностей, умений и знаний в области математики;
степени освоения общеобразовательных знаний, навыков и умений.
В целях диагностики показателя базовых знаний в области математики, общеобразовательных знаний, умений и навыков применялись особым образом выбранные тесты. Изучались творческие навыки, способность применять на практике полученные ранее теоретические знания, действовать по указанному алгоритму, эффективно функционировать в незнакомой обстановке. Количественное отображение результатов исследования базовых знаний и навыков в области математических наук демонстрируется в таблице 4.
Таблица 4
Результаты диагностики базовых знаний и навыков в области математики
Группа |
Кол-во |
«5» |
«4» |
«3» |
«2» |
Сред. балл |
Степень обученности, % |
||||||
кол- во |
% |
кол -во |
% |
кол- во |
% |
кол -во |
% |
||||||
МТЛ |
КГ |
120 |
2 |
4 |
14 |
28 |
25 |
50 |
9 |
18 |
3,18 |
42,8 |
|
ТЭЛ |
ЭГ |
117 |
3 |
5,8 |
12 |
23,1 |
30 |
57,6 |
7 |
13,5 |
3,21 |
43,5 |
Для оценки результатов диагностики, проведенной по указанной методике, используется ориентировочная таблица, в которой первый уровень обозначается как критический (22-23%), второй уровень фиксируется в качестве допустимого (33-39%), третий уровень указан как оптимальный (40-46%), а четвертый уровень признан высшим (47-51%). Как видно из представленных табличных данных, как экспериментальная, так и контрольная группы демонстрируют оптимальный базовый уровень освоения математики.
Определялся уровень развития компонентов математической одаренности младших школьников.
Рис. 3. Определение уровня развития компонентов математической одаренности младших школьников на констатирующем этапе экспериментальной работы
Проведение экспертной оценки родителей уровня и выявленной динамики развития показателей математической одаренности у детей.
Для обнаружения признаков имеющейся одаренности у детей применялась «Шкала рейтинга поведенческих характеристик одаренных детей», составленная Дж. Рензулли. Этот инструмент предоставляет педагогам возможность первичного выявления талантливых и способных школьников в области математики.
Итоги расчета показателя однородности при осуществлении измерения составляющих математической одаренности Х2эмп. = 7,75, измерения уровней развития математической одаренности Х2эмп. = 55,4, совокупных результатов проведенной диагностики математической одаренности младших школьников Х2эмп. = 61,6, удостоверяют, что Х2эмп>Х20,05. Из указанного вытекает, что точность в различиях свойств экспериментальной и контрольной исследуемых групп по завершении проведенного эксперимента составила 95%.
Рассмотрев итоги констатирующего этапа проведенного эксперимента в части диагностики степени развития математической одаренности младших школьников, можно заключить, что младшие школьники в обеих группах демонстрируют минимальные различия в степени включенности в образовательные и познавательные процессы (наиболее предпочтительные для каждого из учеников виды учебной деятельности, их мотивация, демонстрация мыслительных процессов на занятиях по математике, внутреннее стремление к изучению математики). Критерий освоения того или иного дидактического навыка тесно связан со степенью включения младшего школьника в процесс обучения. Указанное обстоятельство позволяет нам сделать вывод как о поэтапности формирования ученика начальных классов в качестве субъекта учебных процессов, так и о пролонгированном развитии у школьников математической одаренности. Именно поэтому крайне важно реализовать прицельное и упорядоченное проектирование процесса обучения, которое создавало бы условия для эффективного развития математических талантов младших школьников, а также организовать сопровождение данного процесса необходимыми дидактическими материалами.
Главной целью внеурочной деятельности в процессе развития математической одарённости становится помощь педагога в определении направления индивидуального развития способностей школьника на основе конкретных навыков, необходимого в каждом из индивидуальных случаев. Одаренный ученик должен принимать участие в занятиях кружка, элективных курсах, творческих мастерских, специальных курсах по выбору, быть членом научного общества школы, вести исследовательскую деятельность. Он может работать в лекционных группах, изучать авторские курсы, работать в творческих коллективах при вузах. Одарённые ученики могут участвовать в совместной работе с учителями, будучи руководителями классных исследовательских секций по математике.
Эффективность формирующего этапа проведенного эксперимента определялась применяемой педагогической программой. Указанная программа осуществлялась путем использования разнообразных методик, которые развивали математическую одаренность школьников и, что крайне важно, нравились им (различные математические игры, составление математических заданий, занятия по развитию креативности и др.). Составленная учебная программа заключалась не только в повторении указанных в ней действий, но также нуждалась в регулярном проявлении самостоятельности учениками начальных классов в части выбора необходимых фактов и случаев, заданий, понимания их взаимовлияния, анализа результатов научной деятельности великих ученых в области математики и последующего обобщения полученных знаний. Педагоги применяли инструменты по моделированию в процессе учебной деятельности позитивных ситуаций: подтверждения правоты, поощрения, успеха. При помощи данных ситуаций преподаватели стимулировали у учащихся аргументационное подкрепление заявленных школьниками мнений, содействовали в обеспечении самостоятельной оценки учениками своих действий и их взаимооценки. Данная структура образовательной деятельности позволяла ученикам младших классов получать математические навыки и знания и демонстрировала им организацию процесса по развитию математической одаренности.
Далее мы проанализируем, каким образом происходят изменения уровня математической одаренности младших школьников на втором году обучения. Рисунок 4 демонстрирует динамику критериев математической одаренности. У детей прослеживаются изменения по всем компонентам математической одаренности. Анализируя рисунок 5, разберем, как происходят изменения показателей математической одаренности младших школьников на третьем году обучения. Как и в ранее рассматриваемых выборках для изучения, видна позитивная динамика развития математической одаренности.
Рис. 4. Определение уровня развития компонентов математической одаренности младших школьников на втором году обучения в процессе экспериментальной работы
В указанной исследуемой группе к моменту окончания лонгитюдного исследования наблюдается актуальная готовность по всем критериям компонентов математической одарённости. Отслеживание изменений показателей развития математической одаренности у учеников начальных классов обучения с помощью использования сравнения объективной диагностики школьников, а также экспертного взгляда педагогов и родителей дало возможность оценить развитие компонентов математической одаренности.
Рис. 5. Определение уровня развития компонентов математической одаренности младших школьников на третьем году обучения в процессе экспериментальной работы
В таблице 5 отражены итоги расчета параметров, присущих экспериментальной и контрольной группам по ранее обозначенным формулам по завершении эксперимента.
Таблица 5
Итоги расчетов показателей в соответствии с критериями Крамера-Уэлча
Сегмент |
Показатель |
До проведения эксперимента |
После проведения эксперимента |
|||
Экспериментальн ый |
Тэмп-7,57 |
N |
54,00 |
N |
54,00 |
|
Хо |
3,78 |
Х1 |
4,69 |
|||
Dx |
0,52 |
Dx |
0,26 |
|||
Контрольный |
Тэмп-1,32 |
M |
115,00 |
M |
115,00 |
|
Yo |
3,77 |
Y1 |
3,91 |
|||
Dy |
0,68 |
Dy |
0,61 |
|||
То,о5 -1,96 |
Тэмп |
0,80 |
Тэмп |
7,75 |
Мы наблюдаем, что на старте исследования показатели в контрольном и экспериментальном сегменте совпадают, а по завершении эксперимента они разнятся. Таким образом, становится возможным заключить, что выявленные изменения произошли именно в результате реализации составленной экспериментальной модели развития математической одаренности младших школьников.
Подводя итоги проведенной работы, можно заключить следующее.
Процесс поиска и обнаружения математически одаренных учеников состоит из нескольких этапов. Первый этап - это использование рейтинговых шкал, рекомендаций, опросников, анкет для определения предварительной оценки математической одаренности. Далее на втором этапе проводится индивидуальная диагностика в форме тестирования и по её результатам определяется окончательный отбор таких учащихся, который зависит от направленности одаренности школьника.
В представленном исследовании разработана структура математической одаренности младших школьников, которая содержит в себе элементы: 1) мотивационно-ценностный (мотивация к осуществлению математической деятельности, отношение к математической деятельности): познавательная активность, познавательные потребности, познавательный интерес; 2) когнитивный (математические знания: факты, понятия, законы, теории; данные о составе математической деятельности, о способах и формах математического познания); 3) операционально-технологический (опыт использования обретенных математических знаний на практике): творческая деятельность, математические способности, поисковая деятельность, исследовательская активность; 4) рефлексивный (включение в осуществляемую математическую деятельность, осмысление математической деятельности): самоанализ, самосознание, самооценка, самоконтроль.
Учителя начальных классов при осуществлении контролирующей функции следовали принципу гуманизации в соответствии с «Рабочей концепцией одаренности». Педагоги стремились к применению индивидуализированных и персонифицированных способов проверки результатов работы учащихся на добровольной основе, так как работа педагога в области развития математических талантов учеников нуждается в четкой систематизации, базируется на индивидуальных и персонализированных принципах с целью удовлетворения потребностей младших школьников.
Выявлена эффективность использования педагогических технологий в реализации модели развития математической одаренности младших школьников. Каждая из действенных педагогических технологий базируется на налаживании эффективных взаимосвязей действующих субъектов с целью получения требуемого результата. Неотъемлемыми характеристиками педагогических технологий должны быть: результативность, изменчивость, процессуальность, прогностичность, регулируемость, возобновимость и диагностичность.
Представлена модель развития математической одаренности младших школьников, состоящая из компонентов: целевой, методологический, процессуальный, диагностический, результативный и комплекс способов развития математической одаренности младших школьников, которая позволит расширить представления ученых мировой науки об этом феномене. Базируясь на выявленной логике развития математической одаренности у учеников начальных классов и руководствуясь положениями педагогики и психологии, разработали теоретическую базу для создания авторской модели, составляющие элементы которой становятся залогом для развития математической одарённости у учащихся на основе индивидуализированного и персонализированного подходов.
Список литературы
Концепция развития математического образования в Российской Федерации. Распоряжение Правительства Российской Федерации от 24 декабря 2013 г. № 2506-р (с изменениями на 8 октября 2020 года). [Электронный ресурс]. URL: https://docs.cntd.ru/document/499067348 (дата обращения: 30.05.2022).
Богоявленская Д.Б. К проблеме выявления одаренности у детей младшего возраста // Воспитание и обучение детей младшего школьного возраста. 2016. № 5. С. 78-79.
Киселева Л.М. Детская одаренность в современной образовательной практике // Начальная школа. 2016. № 5/6. С. 29-30.
Канин Е.С. Математические способности учащихся и их развитие // Вестник Вятского государственного университета. 2013. № 2-1. С. 152-158.
Мылова И.Б. Одаренные дети: современная отечественная методология // Народное образование. 2016. № 4/5. С. 178-188.
Шумакова Н.Б. Специфика и проблемы развития одаренных детей в младшем школьном возрасте // Психологическая наука и образование. 2018. Т. 10. № 1. С. 1-7.
Ратнер Ф.Л., Губайдуллина Р.Н. Проблемы и барьеры одаренных детей // Вестник Томского государственного педагогического университета. 2014. Вып. 5 (146). С. 105-109.
Крутецкий В.А. Психология математических способностей школьников. М.: Просвещение, 2010. 431 с.
Тестов В.А. Математическая одаренность и её развитие // Перспективы Науки и Образования. 2014. № 6 (12). С. 60-67.
Лейтес Н.С. Возрастная одаренность школьников. М.: Издательский центр «Академия», 2013. 320 с.
Russo L. How Primary Teachers Use Games to Support Their Teaching of Mathematics. IEJEE. 2021. Vol. 13. № 4. Р. 407-419.
Karalar H., Sidekli S., Yildirim B. STEM in Transition from Primary School to Middle School: Primary School Students' Attitudes. 2021. Vol. 13. № 5. Р. 687-697.
Divrik Pusat Ramazan, Ay§e Pilten, Ta§ Menti§ Effect of Inquiry-Based Learning Method Supported by Metacognitive Strategies on Fourth-Grade Students' Problem-Solving and Problem-
Posing Skills: A Mixed Methods Research. International Electronic Journal of Elementary Education. 2020. Vol.13. Is. 2. Р. 287-308.
Renzulli J.S. What Makes Giftedness? Reexamining a Definition. Reexamining a Definition. Phi Delta Kappan, Leipzig. 1977. № 60 (3). Р. 180-184.
Сергеева Б.В. К проблеме выявления одаренности у детей младшего возраста // Вестник КазНПУ им. Абая, серия «Педагогические науки». 2022. № 1 (73). С. 272-283.
Трикозенко И.В. Перспективные подходы к развитию интеллектуального и творческого потенциала одаренных детей // Концепт. 2014. № S13. С. 136-140.
Сергеева Б.В., Степанова Е.Е., Тулина Н.В., Герасименко А.А. Организационнометодическое обеспечение подготовки учителя начальных классов к развитию математической одаренности младших школьников: учебное пособие. Краснодар, Новация, 2022. 185 с.
Савенков А.И. Психология детской одаренности. М.: Генезис, 2016. 442 с.
Агаханов Н.Х. Средовый подход как условие развития математически одаренных школьников // Вестник ТГПУ (TSPU Bulletin). 2013. № 1 (129). С. 120-124.
Савлюбаева Н.З., Шилина Н.В. Развитие познавательных способностей младших школьников через задания повышенной трудности на занятиях факультатива по математике // XXIII Ершовские чтения: межвузовский сборник научных статей. И., 2013. С. 186-187.
Комиссарова О.В. Система работы с одаренными и высокомотивированными учащимися // Амурский научный вестник. 2017. № 1. С. 97-104.
Хамидуллина Л.В. Личностно-ориентированное обучение одаренных учащихся на уроках математики // Человек и образование. 2012. № 4. С. 30-34.
Размещено на Allbest.ru
...Подобные документы
Понятие и содержание творческой одаренности младших школьников, определение главных факторов формирования данной педагогической категории. Организационно-педагогические условия, способствующие развитию одаренности детей в школах инновационного типа.
дипломная работа [176,5 K], добавлен 08.06.2015Теоретические вопросы психологии одаренности младших школьников. Определение понятия способность. Проблема одаренности в младшем школьном возрасте. Исследование творческой активности младших школьников.
дипломная работа [67,9 K], добавлен 12.11.2002Одаренность как психологический и педагогический феномен. Историко-теоретическое обоснование проблемы развития одаренности младших школьников в условиях образовательной школы. Особенности обучения и психологические принципы развития детского интеллекта.
курсовая работа [46,3 K], добавлен 10.03.2012Определение понятий "способность" и "одаренность". Особенности детей с различными видами одаренности. Особенности личностного развития одаренных детей. Диагностика одаренности младших школьников. Карта интересов младших школьников, характеристика ученика.
курсовая работа [45,6 K], добавлен 12.03.2011Особенности и принципы обучения одаренных детей. Оценка интеллектуального развития младших школьников. Измерение общего интеллекта. Диагностика понимания и воспроизведения содержания рассказа. Выявление способности к обобщению, анализу и классификации.
дипломная работа [98,8 K], добавлен 14.01.2014Понятие интеллекта, интеллектуальной одаренности, диагностика уровня ее развития в средней школе. Виды одаренности и их признаки. Условия развития одаренности детей. Экспериментальное исследование выявления эмоциональной одаренности школьников.
дипломная работа [768,0 K], добавлен 29.07.2011Воображение как стержневое психологическое образование в структуре креативного детского творчества. Методы развития творческих способностей и одаренности младших школьников к хореографическому искусству во время занятий в любительских коллективах.
курсовая работа [55,5 K], добавлен 23.01.2015Морально-психологические особенности младших школьников как объекта и субъекта патриотического воспитания. Формы и методы воспитания младших школьников в учебное и внеучебное время. Единство школы и семьи в патриотическом воспитании младших школьников.
курсовая работа [53,4 K], добавлен 17.04.2015Понятия "одаренность", "задатки" и "склонности", виды одаренности, различия и взаимодействия между этими понятиями. Сложности психического развития одаренных детей. Выявление одаренных школьников в классе, методика работы учителя по ее развитию.
курсовая работа [69,0 K], добавлен 22.06.2015Теоретические основы исследования проблемы развитие речи младших школьников. Анализ результатов проведения экспериментальной работы по развитию речи младших школьников МОУ Погорельской общеобразовательной школы Чановского района Новосибирской области.
дипломная работа [397,4 K], добавлен 17.11.2010Творческая деятельность как характеристика одаренности школьников. Формы и средства развития творческой одаренности. Сущность и структура профильной подготовки учащихся. Элективный курс "Колибри" как форма организации работы с одаренными детьми.
курсовая работа [1,9 M], добавлен 09.09.2014Мышление как психический процесс. Особенности математического мышления младших школьников. Основные методы и приемы работы с задачей в начальной школе. Модель текста задачи как основа формирования и развития наглядно-образного мышления младших школьников.
курсовая работа [122,1 K], добавлен 19.11.2012Традиции использования фантазии, образов и сказочных текстов в процессе обучения младших школьников. Психологические особенности развития младших школьников. Изучения опыта работы учителей начальных классов в развитии младших школьников с помощью сказок.
курсовая работа [42,5 K], добавлен 07.06.2010Гуманистическая этико-педагогическая концепция Н.Е. Щурковой. Методы, средства и формы воспитания этической культуры младших школьников. Диагностика уровня сформированности этических качеств младших школьников в учебно-воспитательной деятельности.
курсовая работа [136,1 K], добавлен 28.08.2014Теоретические аспекты и состояние исследований проблемы формирования самоконтроля у младших школьников. Психологические особенности младших школьников. Изучения опыта работы учителей начальных классов по формированию самоконтроля у младших школьников.
курсовая работа [39,2 K], добавлен 07.06.2010Приобщение младших школьников к литературе. Система работы по развитию самостоятельной читательской деятельности младших школьников. Приемы и методы развития интереса к чтению на уроках литературного чтения. Эффективность литературного образования.
реферат [69,7 K], добавлен 03.03.2011Теоретические основы проблемы развития музыкального восприятия младших школьников. Формирование у школьников эмоционального отношения к музыкальному образу. Последовательность и особенности развития музыкального восприятия у младших школьников.
курсовая работа [61,1 K], добавлен 27.09.2014Сущность и природа нравственности. Методы и приемы духовно-нравственного воспитания младших школьников. Изучение уровня развития духовно – нравственных качеств у младших школьников. Работа по духовно-нравственному воспитанию в начальной школе.
курсовая работа [55,6 K], добавлен 19.01.2007Критерии и уровни развития памяти у младших школьников. Методы и приемы ее развития. Основные принципы организации игры. Средства обучения, обеспечивающие развитие памяти младших школьников на уроках английского языка. Общие условия успешного запоминания.
дипломная работа [236,7 K], добавлен 02.02.2013Особенности психического развития и формирования математических знаний, умений, навыков у младших школьников с трудностями в обучении. Методы и средства стимулирования познавательной активности младших школьников, условия эффективности их использования.
дипломная работа [706,1 K], добавлен 03.05.2012