Электрические токи в атмосфере и грозы

История развития науки об атмосферном электричестве. Исследование электрического поля атмосферы, оценка его энергопроводимости. "Генераторы" энергии атмосферы. Объяснение явления грозы и описание механизма её образования. Молнии и полярное сияние.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 25.11.2012
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«Российский государственный профессионально-педагогический университет»

Институт социологии и права

Кафедра права

КУРСОВАЯ РАБОТА

по дисциплине: «Физика»

на тему: «Электрические токи в атмосфере и грозы»

Выполнил:

Студентка гр. КЧ - 11 СД ПВД

Анастасия Мелехова

Екатеринбург 2011

Содержание

Введение

1. Атмосферное электричество, история развития науки об атмосферном электричестве

2. Электрическое поле атмосферы

3. Электрическая проводимость атмосферы

4. Электрический ток в атмосфере

5. «Генераторы» атмосферного

электричества

6. Гроза. Объяснение явления и механизм образования. Погодные явления под грозами

7. Молния и ее образование

8.Полярное сияние

Список литературы

Введение

Тема моего реферата «Электрические токи в атмосфере и грозы». Данную тему я выбрала потому, что эти явления интересны мне и я бы хотела подробнее узнать и изучит их.

В своей работе я расскажу о таких явлениях как атмосферное электричество. А о таких явлениях как гроза и молния и полярное сияние расскажу подробнее, с использованием иллюстраций.

1. Атмосферное электричество, история развития науки об атмосферном электричестве

Атмосферное электричество -- совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическая проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином, экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым -- автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60--100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.

Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, -- поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

В приземном слое атмосферы небольшая часть молекул подвергается ионизации под воздействием космических лучей, излучения радиоактивных горных пород и продуктов распада радия (в основном радона) в самом воздухе. В процессе ионизации атом теряет электрон и приобретает положительный заряд. Свободный электрон быстро соединяется с другим атомом, образуя отрицательно заряженный ион. Такие парные положительные и отрицательные ионы имеют молекулярные размеры. Молекулы в атмосфере стремятся группироваться вокруг этих ионов. Несколько молекул, объединившихся с ионом, образуют комплекс, называемый обычно «легким ионом».

В атмосфере присутствуют также комплексы молекул, известные в метеорологии под названием ядер конденсации, вокруг которых при насыщении воздуха влагой начинается процесс конденсации. Эти ядра представляют собой частички соли и пыли, а также загрязняющих веществ, поступающих в воздух от промышленных и других источников. Легкие ионы часто присоединяются к таким ядрам, образуя «тяжелые ионы».

Под воздействием электрического поля легкие и тяжелые ионы перемещаются из одних областей атмосферы в другие, перенося электрические заряды. Хотя обычно атмосфера не считается электропроводной средой, она все же обладает небольшой проводимостью. Поэтому оставленное на воздухе заряженное тело медленно утрачивает свой заряд. Проводимость атмосферы возрастает с высотой из-за увеличения интенсивности космического излучения, уменьшения потерь ионов в условиях более низкого давления (и, следовательно, при большем среднем свободном пробеге), а также из-за меньшего количества тяжелых ядер. Проводимость атмосферы достигает максимальной величины на высоте ок. 50 км, т.н. «уровне компенсации». Известно, что между поверхностью Земли и «уровнем компенсации» постоянно существует разность потенциалов в несколько сотен киловольт, т.е. постоянное электрическое поле. Выяснилось, что разность потенциалов между некоторой точкой, находящейся в воздухе на высоте нескольких метров, и поверхностью Земли очень велика - более 100 В. Атмосфера имеет положительный заряд, а земная поверхность заряжена отрицательно. Поскольку электрическое поле - область, в каждой точке которой имеется некоторое значение потенциала, можно говорить о градиенте потенциала. В ясную погоду в пределах нижних нескольких метров напряженность электрического поля атмосферы почти постоянна.

Из-за различий электропроводности воздуха в приземном слое градиент потенциала подвержен суточным колебаниям, ход которых существенно меняется от места к месту. При отсутствии локальных источников загрязнения воздуха - над океанами, высоко в горах или в полярных районах - суточный ход градиента потенциала в ясную погоду одинаков. Величина градиента зависит от всемирного, или среднего гринвичского, времени (UТ) и достигает максимума в 19 ч.

Э. Эплтон предположил, что этот максимум электропроводности, вероятно, совпадает с наибольшей грозовой активностью в планетарном масштабе. Разряды молний во время гроз переносят отрицательный заряд к поверхности Земли, поскольку основания наиболее активных кучево-дождевых грозовых облаков обладают значительным отрицательным зарядом. Верхние части грозовых облаков обладают положительным зарядом, который, по расчетам Хольцера и Саксона, во время гроз стекает с их вершин. Без постоянного пополнения заряд земной поверхности был бы нейтрализован за счет проводимости атмосферы. Предположение о том, что разность потенциалов между земной поверхностью и «уровнем компенсации» поддерживается благодаря грозам, подкрепляется статистическими данными. Например, максимальное число гроз отмечается в долине р. Амазонки. Чаще всего грозы бывают там, в конце дня, т.е. ок. 19 ч среднего гринвичского времени, когда градиент потенциала максимален в любой точке земного шара. Более того, сезонные вариации формы кривых суточного хода градиента потенциала тоже находятся в полном соответствии с данными о глобальном распределении гроз. Некоторые исследователи утверждают, что источник электрического поля Земли, возможно, имеет внешнее происхождение, поскольку электрические поля, как полагают, существуют в ионосфере и магнитосфере. Этим обстоятельством, вероятно, объясняется возникновение очень узких удлиненных форм полярных сияний, похожих на кулисы и арки.

Благодаря наличию градиента потенциала и проводимости атмосферы между «уровнем компенсации» и поверхностью Земли начинают двигаться заряженные частицы: положительно заряженные ионы - по направлению к земной поверхности, а отрицательно заряженные - вверх от нее. Сила этого тока составляет около 1800 А. Хотя эта величина кажется большой, необходимо помнить, что она распределяется по всей поверхности Земли. Сила тока в столбе воздуха с площадью основания 1 м2 составляет лишь 4ґ10-12 А. С другой стороны, сила тока при разряде молнии может достигать нескольких ампер, хотя, конечно, такой разряд имеет малую продолжительность - от долей секунды до целой секунды или немного больше при повторных разрядах. Электрическая проводимость атмосферы. Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2*сек-1*в-1.

Электрический ток -- упорядоченное некомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках -- электроны, в электролитах -- ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках -- электроны и дырки (электронно-дырочная проводимость).

2. Электрическое поле атмосферы

В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах «хорошей» погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью Е, в среднем равной около 130 в/м. Земля при этом имеет отрицательный заряд, равный около 3 105 к, а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения Е имеет в средних широтах, а к полюсам и экватору убывает. В зонах «хорошей» погоды Е с высотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300--3000 м, где скапливаются аэрозоли, Е может с высотой возрастать. Выше слоя перемешивания Е убывает с высотой по экспоненциальному закону и на высоте 10 км не превышает несколько в/м. Это убывание Е связано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой. Разность потенциалов между Землёй и ионосферой составляет 200--250 кв.

Напряжённость электрического поля Е меняется во времени. Наряду с локальными суточными и годовыми вариациями Е отмечаются синхронные для всех пунктов суточные и годовые вариации Е -- т.н. унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные -- с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.

3. Электрическая проводимость атмосферы

Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью l, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость l зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в l вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2 сек-1 в-1.

Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем l = (1 - 2)·10-18 ом-1 м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км l достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 1012 раз больше, чем в атмосфере вблизи земной поверхности.

Основные ионизаторы атмосферы:

1) космические лучи, действующие во всей толще атмосферы;

2) излучение радиоактивных веществ, находящихся в Земле и воздухе;

3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие которых заметно проявляется на высотах более 50--60 км.

Концентрация легких; ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растет с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха объясняет характер изменения l и Е с изменением высоты.

электричество атмосфера проводимость гроза молния

4. Электрический ток в атмосфере

Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = El, со средней плотностью, равной около (2--3)·10-12 а/м2. Т. о., в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е » 0,37 от своего первоначального значения, равно ~ 500 сек. Т. к. заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» Атмосферного электричества, заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.

5. «Генераторы» атмосферного электричества

«Генераторами» Атмосферного электричества в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний, всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов r » 3 10-12 к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12 а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около --(0,01--0,1) а, а ближе к экватору до --(0,5--1,0) а. Сила токов, текущих в самих этих облаках, в 10--100 раз больше силы токов, притекающих к Земле. Т. о., гроза в электрическом отношении подобна короткозамкнутому генератору.

При высоких значениях электрического поля у земной поверхности порядка 500--1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.

Таким образом, электрическое поле Земли и ток Земля -- атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз; суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли.

Электрический ток широко используется в энергетике для передачи энергии на расстоянии. В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии.

6. Гроза. Объяснение явления и механизм образования. Погодные явления под грозами

Грозам -- атмосферное явление, при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды -- молнии, сопровождаемые громом. Как правило, гроза образуется в мощных кучево-дождевых облаках и связана с ливневым дождём, градом и шквальным усилением ветра. Гроза относится к одним из самых опасных для человека природных явлений, по количеству зарегистрированных смертных случаев только наводнения приводят к большим людским потерям.

Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 46 молний в секунду. По поверхности планеты грозы распределяются неравномерно. Над океаном гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и субтропической зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78 % всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку. В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето (в средних широтах) и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер

Рис. Стадии развития грозового облака

Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки, запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть -- в ледяном. Конвекция, приводящая к развитию гроз, возникает в следующих случаях:

при неравномерном нагревании приземного слоя воздуха над различной подстилающей поверхностью. Например, над водной поверхностью и сушей из-за различий в температуре воды и почвы. Над крупными городами интенсивность конвекции значительно выше, чем в окрестностях города.

при подъёме или вытеснении тёплого воздуха холодным на атмосферных фронтах. Атмосферная конвекция на атмосферных фронтах значительно интенсивнее и чаще, чем при внутримассовой конвекции. Часто фронтальная конвекция развивается одновременно со слоисто-дождевыми облаками и обложными осадками, что маскирует образующиеся кучево-дождевые облака.

при подъёме воздуха в районах горных массивов. Даже небольшие возвышенности на местности приводят к усилению образования облаков (за счёт вынужденной конвекции). Высокие горы создают особенно сложные условия для развития конвекции и почти всегда увеличивают ее повторяемость и интенсивность.

Все грозовые облака, независимо от их типа, последовательно проходят стадии кучевого облака, стадию зрелого грозового облака и стадию распада.

Классификация грозовых облаков.

Одно время грозы классифицировались в соответствии с тем, где они наблюдались, -- например, локальные, фронтальные или орографические. В настоящее время более принято классифицировать грозы в соответствии с характеристиками самих гроз и эти характеристики в основном зависят от метеорологического окружения, в котором развивается гроза.

Основным необходимым условием для образования грозовых облаков является состояние неустойчивости атмосферы, формирующее восходящие потоки. В зависимости от величины и мощности таких потоков формируются грозовые облака различных типов.

Одноячейковое облако.

Одноячейковые кучево-дождевые (Cumulonimbus, Cb) облака развиваются в дни со слабым ветром в малоградиентном барическом поле. Их называют ещё внутримассовыми или локальными грозами. Они состоят из конвективной ячейки с восходящим потоком в центральной своей части. Они могут достигать грозовой и градовой интенсивности и быстро разрушаться с выпадением осадков. Размеры такого облака: поперечный 5-20 км, вертикальный -- 8-12 км, продолжительность жизни около 30 минут, иногда до 1 часа. Серьёзных изменений погоды после грозы не происходит.

Гроза начинается с возникновения кучевого облака хорошей погоды (Cumulus humilis). При благоприятных условиях возникшие кучевые облака быстро растут как в вертикальном, так и в горизонтальном направлении, при этом восходящие потоки находятся почти по всему объёму облака и увеличиваются от 5 м/с до 15-20 м/с. Нисходящие потоки очень слабы. Окружающий воздух активно проникает внутрь облака за счёт смешения на границе и вершине облака. Облако переходит в стадию Cumulus mediocris. Образующиеся в результате конденсации мельчайшие водяные капли в таком облаке сливаются в более крупные, которые уносятся мощными восходящими потоками вверх. Облако ещё однородное, состоит из капель воды, удерживаемых восходящим потоком - осадки не выпадают. В верхней части облака при попадании частиц воды в зону отрицательных температур капли постепенно начинают превращаться в кристаллы льда. Облако переходит в стадию мощно-кучевого облака (Cumulus congestus). Смешанный состав облака приводит к укрупнению облачных элементов и созданию условий для выпадения осадков. Такое облако называют кучево-дождевым (Cumulonimbus) или кучево-дождевым лысым (Cumulonimbus calvus). Вертикальные потоки в нем достигают 25 м/с, а уровень вершины достигает высоты 7-8 км

Испаряющиеся частицы осадков охлаждают окружающий воздух, что приводит к дальнейшему усилению нисходящих потоков. На стадии зрелости в облаке одновременно присутствуют и восходящие, и нисходящие воздушные потоки.

На стадии распада в облаке преобладают нисходящие потоки, которые постепенно охватывают все облако.

Рис. Цикл жизни одноячейкового облака

Многоячейковые кластерные грозы.

Рис. Схема многоячейковой грозовой структуры

Это наиболее распространённый тип гроз, связанный с мезомасштабными (имеющими масштаб от 10 до 1000 км) возмущениями. Многоячейковый кластер состоит из группы грозовых ячеек, двигающихся как единое целое, хотя каждая ячейка в кластере находится на разных стадиях развития грозового облака. Грозовые ячейки, находящиеся в стадии зрелости, обычно располагаются в центральной части кластера, а распадающиеся ячейки с подветренной стороны кластера. Они имеют поперечные размеры 20--40 км, их вершины нередко поднимаются до тропопаузы и проникают в стратосферу. Многоячейковые кластерные грозы могут давать град, ливневые дожди и относительно слабые шквальные порывы ветра. Каждая отдельная ячейка в многоячейковом кластере находится в зрелом состоянии около 20 минут; сам многоячейковый кластер может существовать в течение нескольких часов. Данный тип грозы обычно более интенсивен, чем одноячейковая гроза, но много слабее суперячейковой грозы.

Многоячейковые линейные грозы (линии шквалов).

Многоячейковые линейные грозы представляют собой линию гроз с продолжительным, хорошо развитым фронтом порывов ветра на передней линии фронта. Линия шквалов может быть сплошной или содержать бреши. Приближающаяся многоячейковая линия выглядит как тёмная стена облаков, обычно покрывающая горизонт с западной стороны (в северном полушарии). Большое число близко расположенных восходящих/нисходящих потоков воздуха позволяет квалифицировать данный комплекс гроз как многоячеечный, хотя его грозовая структура резко отличается от многоячейковой кластерной грозы. Линии шквалов могут давать крупный град и интенсивные ливни, но больше они известны как системы, создающие сильные нисходящие потоки. Линия шквалов близка по свойствам к холодному фронту, но является локальным результатом грозовой деятельности. Часто линия шквалов возникает впереди холодного фронта. На радарных снимках эта система напоминает изогнутый лук (bow echo). Данное явление характерно для Северной Америки, на территории Европы и Европейской территории России наблюдается реже.

Суперячейковые грозы.

Рис. Вертикальная и горизонтальная структура суперячейкового облака

Суперячейка -- наиболее высокоорганизованное грозовое облако. Суперячейковые облака относительно редки, но представляют наибольшую угрозу для здоровья и жизни человека и его имущества. Суперячейковое облако схоже с одноячейковым тем, что оба имеют одну зону восходящего потока. Различие состоит в том, что размер ячейки огромен: диаметр порядка 50 км, высота 10-15 км (нередко верхняя граница проникает в стратосферу) с единой полукруглой наковальней. Скорость восходящего потока в суперячейковом облаке значительно выше, чем в других типах грозовых облаков: до 40 -- 60 м/с. Основной особенностью, отличающей суперячейковое облако от облаков других типов является наличие вращения. Вращающийся восходящий поток в суперячейковом облаке (в радарной терминологии называемым мезоциклоном) создаёт экстремальные по силе погодные явления, такие, как гигантский град (более 5 см в диаметре), шквальный ветер до 40 м/с и сильные разрушительные смерчи. Окружающие условия являются основным фактором в образовании суперячейкового облака. Необходима очень сильная конвективная неустойчивость воздуха. Температура воздуха у земли (до грозы) должна быть +27…+30 и выше, необходим ветер переменного направления, вызывающий вращение. Однако главным условием для образования суперячейки является сдвиг ветра в средней тропосфере. Осадки, образующиеся в восходящем потоке, переносятся по верхнему уровню облака сильным потоком в зону нисходящего потока. Таким образом, зоны восходящего и нисходящего потоков оказываются разделёнными в пространстве, что обеспечивает жизнь облака в течение длительного периода времени. Обычно на передней кромке суперячейкового облака наблюдается слабый дождь. Ливневые осадки выпадают вблизи зоны восходящего потока, а наиболее сильные осадки и крупный град выпадают к северо-востоку от зоны основного восходящего потока. Наиболее опасные условия наблюдаются неподалёку от зоны основного восходящего потока (обычно смещённые к задней части грозы).

Погодные явления под грозами

Рис. Шкваловый фронт крупной грозы

Нисходящие потоки и шквальные фронты.

Нисходящие потоки в грозах возникают на высотах, где температура воздуха ниже, чем температура в окружающем пространстве и этот поток становится ещё холоднее, когда в нем начинают таять ледяные частицы осадков и испарятся облачные капли. Воздух в нисходящем потоке не только более плотный, чем окружающий воздух, но он несёт ещё и горизонтальный момент количества движения, отличающийся от окружающего воздуха. Если нисходящий поток возникает, например, на высоте 10 км, то он достигнет поверхности земли с горизонтальной скоростью заметно большей, чем скорость ветра у земли. У земли этот воздух выносится вперёд перед грозой со скоростью большей, чем скорость движения всего облака. Именно поэтому наблюдатель на земле ощутит приближение грозы по потоку холодного воздуха ещё до того как грозовое облако окажется у него над головой. Распространяющийся по земле нисходящий поток образует зону глубиной от 500 метров до 2 км с отчётливым различием между холодным воздухом потока и тёплым влажным воздухом, из которого формируется гроза. Прохождение такого шквального фронта легко определяется по усилению ветра и внезапному падению температуры. За пять минут температура воздуха может понизиться на 5 °C или больше. Шквал образует характерный шквальный ворот с горизонтальной осью, резким падением температуры и изменением направления ветра.

В экстремальных случаях фронт шквала, созданный нисходящим потоком, может достичь скорости, превышающей 50 м/с, и приносит разрушения домам и посевам. Более часто сильные шквалы возникают, когда организованная линия гроз развивается в условиях сильного ветра на средних высотах. При этом люди могут подумать, что эти разрушения вызваны смерчем. Если нет свидетелей, видевших характерное воронкообразное облако смерча, то причину разрушения можно определить по характеру разрушений, вызванных ветром. В смерчах разрушения имеют круговую картину, а грозовой шквал, вызванный нисходящим потоком, несёт разрушения преимущественно в одном направлении. Следом за холодным воздухом обычно начинается дождь. В некоторых случаях дождевые капли полностью испаряются во время падения, что приводит к сухой грозе. В противоположной ситуации, характерной для сильных многоячейковых и суперячейковых гроз, идёт проливной дождь с градом, вызывающий внезапные наводнения.

Смерчи

Смерч -- это сильный маломасштабный вихрь под грозовыми облаками с приблизительно вертикальной, но часто изогнутой осью. От периферии к центру смерча наблюдается перепад давления в 100--200 гПа. Скорость ветра в смерчах может превышать 100 м/с, теоретически может доходить до скорости звука. В России смерчи возникают сравнительно редко, но приносят колоссальный ущерб. Наибольшая повторяемость смерчей приходится на юг европейской части России.

Ливни

В небольших грозах пятиминутный пик интенсивных осадков может превосходить 120 мм/час, но весь остальной дождь имеет на порядок меньшую интенсивность. Средняя гроза даёт порядка 2,000 кубометров осадков, но крупная гроза может дать в десять раз больше. Большие организованные грозы, связанные с мезомасштабными конвективными системами, могут создать от 10 до 1000 миллионов кубометров осадков.

7. Молния и ее образование

Молния -- гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-100 тысяч ампер, напряжение -- 1 000 000 вольт (иногда достигает 50 000 000 вольт), тем не менее, погибает после удара молнией лишь 10,2 % людей.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км?. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках -- внутриоблачные молнии, а могут ударять в землю -- наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов -- стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью -- ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр -- несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой, поэтому принято считать что разряд молнии происходит от облака по направлению к земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию -- светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт -- особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

Взаимодействие молнии с поверхностью земли и расположенными на ней объектами.

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год.[7][8] 75 % этих молний ударяет между облаками или внутри облаков, а 25 % -- в землю.[9]

Люди и молния

Молнии -- серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 -- 2 суток после смерти). Они -- результат расширения капилляров в зоне контакта молнии с телом.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжёлых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 -- 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний.

В мифологии и литературе:

Асклепий, Эскулап -- сын Аполлона -- бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией.

Фаэтон -- сын бога Солнца Гелиоса -- однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями. Общий список см. Молния Зевса.

Исторические личности:

Казанский губернатор Сергей Голицын -- 1 (12) июля 1738 года погиб во время охоты от удара молнии.

Российский академик Г. В. Рихман -- в 1753 году погиб от удара молнии во время проведения научного эксперимента.

Народный депутат Украины, экс-губернатор Ровненской области В. Червоний 4 июля 2009 года погиб от удара молнии.

Интересные факты

Рой Салливан остался живым после семи ударов молнией.

Американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище.

У индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации.

Деревья и молния

Высокие деревья -- частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего -- в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования, таким как разрядниками, нелинейными ограничителями перенапряжения, длинно искровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению вод отёчности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.

8. Полярное сияние

Полярное сияние (лат. Aurora Borealis, Aurora Australis) -- свечение (люминесценции) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

Природа полярных сияний

Полярные сияния возникают вследствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса (авроральные овалы). Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.

В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низкоэнергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосфер планет: так, например, если для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне, то для Юпитера -- линии излучения водорода в ультрафиолете.

Поскольку ионизация заряженными частицами происходит наиболее эффективно в конце пути частицы и плотность атмосферы падает с высотой в соответствии с барометрической формулой, то высота появлений полярных сияний достаточно сильно зависит от параметров атмосферы планеты, так, для Земли с её достаточно сложным составом атмосферы красное свечение кислорода наблюдается на высотах 200--400 км, а совместное свечение азота и кислорода -- на высоте ~110 км. Кроме того, эти факторы обуславливают и форму полярных сияний -- размытая верхняя и достаточно резкая нижняя границы.

Полярные сияния Земли

Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли -- авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10--16°, на ночной -- 20--23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67--70°, однако во времена солнечной активности авроральный овал расширяется, и полярные сияния могут наблюдаться в более низких широтах -- на 20--25° южнее или севернее границ их обычного проявления.

В спектре полярных сияний Земли наиболее интенсивно излучение основных компонентов атмосферы - азота и кислорода, при этом наблюдаются их линии излучения, как в атомарном, так и молекулярном (нейтральные молекулы и молекулярные ионы) состоянии. Самыми интенсивными являются линии излучения атомарного кислорода и ионизированных молекул азота.

Свечение кислорода обусловлено излучением возбужденных атомов в метастабильных состояниях с длинами волн 557.7 нм (зеленая линия, время жизни 0.74 сек.) и дублетом 630 и 636.4 нм (красная область, время жизни 110 сек). Вследствие этого красный дублет излучается на высотах 150-400 км, где вследствие высокой разреженности атмосферы низка скорость гашения возбужденных состояний при столкновениях. Ионизированные молекулы азота излучают при 391.4 нм (ближний ультрафиолет) 427.8 нм (фиолетовый) и 522.8 нм (зеленый).

Спектр полярных сияний меняется с высотой и зависимости от преобладающих в спектре полярного сияния линий излучения полярные сияния делятся на два типа: высотные полярные сияния типа A с преобладанием атомарных линий и полярные сияния типа B на относительно небольших высотах (80-90 км) с преобладанием молекулярных линий в спектре вследствие столкновительного гашения атомарных возбужденных состояний в сравнительно плотной атмосфере на этих высотах.

Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии. Так за одно из зарегистрированных в 2007 году возмущений выделилось 5?1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.

При наблюдении с поверхности Земли полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.

Список литературы

1. А. Ф. Попов А. Ф. “Электричество в атмосфере. Шаровая молния”

2. Ивлиев А.Д. Физика: Классическая механика.

3. История исследования электричества (http://electr.nm.ru/index.html).

4. Энциклопедия физики и техники (http://femto.com.ua/articles/part_1/0217.html)

5. Вся ФИЗИКА. Физический энциклопедический словарь. (http://www.all-fizika.com)

Размещено на Allbest.ru

...

Подобные документы

  • Механизм развития грозы, физические характеристики грозовых облаков. Причины возникновения молнии, ее исследование с точки зрения физики. Схема образования града. Устройство заземляющего комплекса средств молниезащиты зданий, расчетные формулы и схемы.

    контрольная работа [2,7 M], добавлен 13.11.2009

  • Характеристика основных электрических явлений: грозы, шаровой молнии и огней Святого Эльма. Образование молнии при возникновении в облаках разности потенциалов и их разряда. Громовые раскаты - взрывная волна в результате расширения нагретого воздуха.

    презентация [518,7 K], добавлен 01.05.2011

  • Явления, связанные с преломлением, дисперсией и интерференцией света. Миражи дальнего видения. Дифракционная теория радуги. Образование гало. Эффект "бриллиантовая пыль". Явление "Брокенское видение". Наблюдение на небе паргелии, венцы, полярное сияние.

    презентация [2,5 M], добавлен 14.01.2014

  • Общие сведения о шаровой молнии. Условия образования шаровой молнии. Случаи внезапного появления шаровой молнии. Разновидности шаровых молний, их вес, скорость передвижения, размер, время жизни, поведение, температура. Физическая природа шаровой молнии.

    презентация [3,0 M], добавлен 04.05.2011

  • Физические свойства и процесс формирования молнии. Стадии процесса развития наземной и внутриоблачные молнии. Взаимодействие молнии с поверхностью земли и расположенными на ней объектами. Последствия поражения человека молнией. Интересные факты о молнии.

    доклад [22,9 K], добавлен 12.01.2011

  • Электродинамические явления в моделях климата: электрические заряды и электростатическое поле, механизмы их генерации и перераспределения в конвективном облаке. Возникновение грозовых разрядов как источника оксидов азота в атмосфере и пожароопасности.

    курсовая работа [915,5 K], добавлен 07.08.2013

  • Общая характеристика процесса возникновения шаровой молнии как физического явления, анализ перспектив ее использования в качестве источника электрической энергии. Описание технологий передачи энергии на расстояние путем использования шаровой молнии.

    реферат [306,9 K], добавлен 19.12.2010

  • Молнии, бьющие из грозовых облаков. Электрические разряды, переносящие отрицательный заряд величиной в несколько десятков кулон. Молния как вечный источник подзарядки электрического поля Земли. Как вызвать разряд молнии. Фульгурит или окаменевшая молния.

    презентация [664,4 K], добавлен 24.02.2011

  • Модели сплошной среды–идеальная и вязкая жидкости. Уравнение Навье-Стокса. Силы, действующие в атмосфере. Уравнение движения свободной атмосферы. Геострофический ветер. Градиентный ветер. Циркуляция атмосферы. Образование волновых движений в атмосфере.

    реферат [167,4 K], добавлен 28.12.2007

  • История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.

    реферат [699,1 K], добавлен 15.11.2009

  • Физика атмосферы. Спектральные исследования атмосферы Земли. Линии кислорода. Линии натрия. Линии водорода и гидроксила ОН. Атмосферный озон. Поляризационные исследования атмосферы Земли. Взаимодействии атмосферы Земли с излучением Солнца.

    реферат [44,6 K], добавлен 03.05.2007

  • Процентное соотношение газов в атмосфере Земли. Вес атмосферы по подсчетам Паскаля. Опыт, доказывающий существование атмосферного давления, и история открытия учёными этого явления. Нормальное атмосферное давление и его изменение в зависимости от высоты.

    презентация [323,6 K], добавлен 14.05.2014

  • Термодинамические процессы в сухом и влажном воздухе. Термодинамические процессы фазовых переходов. Уравнение Клаузиуса-Клапейрона. Уравнение переноса водяного пара в атмосфере. Физические процессы образования облаков. Динамические процессы а атмосфере.

    реферат [487,9 K], добавлен 28.12.2007

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

  • Расчет объемной плотности энергии электрического поля. Определение электродвижущей силы аккумуляторной батареи. Расчет напряженности и индукции магнитного поля в центре витка при заданном расположении проводника. Угловая скорость вращения проводника.

    контрольная работа [250,1 K], добавлен 28.01.2014

  • Характеристика вихрового электрического поля. Аналитическое объяснение опытных фактов. Законы электромагнитной индукции и Ома. Явления вращения плоскости поляризации света в магнитном поле. Способы получения индукционного тока. Применение правила Ленца.

    презентация [3,4 M], добавлен 19.05.2014

  • Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.

    реферат [37,4 K], добавлен 24.12.2011

  • История открытия электричества. Заряды как основа электрического поля, создание магнитного поля через их движение по проводнику. Характеристика величины электрического поля. Длина электромагнитной волны. Международная классификация электромагнитных волн.

    реферат [173,9 K], добавлен 30.08.2012

  • Электрические машины как такие, в которых преобразование энергии происходит в результате явления электромагнитной индукции, история и основные этапы разработки, достижения в этой области. Создание электродвигателя с возможностью практического применения.

    реферат [733,5 K], добавлен 21.06.2012

  • Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

    методичка [721,6 K], добавлен 16.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.