Нормирование энергопотребления
Коммерческий и технический (внутризаводской) учет электроэнергии, автоматизированные системы ее контроля и учета. Нормирование и лимитирование электропотребления, сущность энергетических балансов. Направления энергосбережения для действующей технологии.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 25.11.2012 |
Размер файла | 20,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования Республики Беларусь
УО «Белорусский государственный экономический университет»
Кафедра технологии важнейших отраслей промышленности
Реферат
На тему: «Нормирование энергопотребления»
Выполнила:
Студентка МЭО, Ю.О. Сотник
2 курс, ДАИ-2
Проверила: Л.М. Судиловская
Минск 2012
СОДЕРЖАНИЕ
Введение
1 Коммерческий и технический (внутризаводской) учет электроэнергии
2 Автоматизированные системы контроля и учета электроэнергии (АСКУЭ)
3 Нормирование и лимитирование электропотребления
4 Нормы расхода электроэнергии
5 Энергетические балансы
6 Определение объема энергосбережения для действующей технологии
Заключение
Список литературы
ВВЕДЕНИЕ
Норма - это технически и экономически обоснованная плановая мера потребления ресурсов на единицу продукции (работы) для данных условий производства; она становится действующей с момента ввода объективного учета, контроля и стимулов по ее выполнению.
Нормы должны отвечать следующим требованиям:
- быть прогрессивными, т.е. отвечать современному уровню техники, технологии и организации производства;
- являться динамичными, т.е. меняться в зависимости от изменений техники, технологий, организации;
- быть обоснованными, т.е. разрабатываться на основе анализа производства и соответствующих расчетов.
Снижение норм расхода электроэнергии на единицу выпускаемой продукции характеризует эффективность ее использования. При этом необходимо, чтобы нормы были оптимальными, установленными на основе технико-экономических расчетов.
Под оптимальной нормой понимается объективно необходимый расход электроэнергии на производство единицы продукции или объема работы при данных условиях производства.
Нормы расхода электроэнергии разрабатываются расчетно-аналитическим, опытным или расчетно-статическим методами.
Расчетно-аналитический метод предусматривает установление норм расхода электрической энергии расчетным путем на базе прогрессивных показателей использования энергетических ресурсов в производстве по статьям расхода.
Опытный метод определения норм заключается в нахождении удельных затрат электроэнергии на основе данных эксперимента (испытаний). Этот метод применяется при разработке индивидуальных норм. Оборудование при этом должно находится в технически исправном состоянии, а технологический процесс осуществляется в рамках, предусмотренных технологическими регламентами и инструкциями.
Расчетно-статический метод нахождения норм расхода ресурсов основывается на анализе статических данных за ряд предшествующих лет о фактических удельных расходах электрической энергии и факторов, влияющих на их изменение.
Технически и экономически обоснованная норма свидетельствует о том, что ее выполнение обеспечивает рост экономической эффективности на промышленном предприятия.
1 КОММЕРЧЕСКИЙ И ТЕХНИЧЕСКИЙ (ВНУТРИЗАВОДСКОЙ) УЧЕТ ЭЛЕКТРОЭНЕРГИИ
Внедрение коммерческого и технического (внутризаводского) учета электроэнергии на предприятии является эффективным способом организации экономии энергоресурсов.
Коммерческий учет предусматривает взаимоотношения с энергосбытовой организацией, технический (внутризаводской) учет - с отдельными вторичными потребителями (арендаторами, хозрасчетными производственными единицами, энергоемкими производствами).
Коммерческий учет - процесс получения и отображения коммерческой информации о движении товарной продукции (оказании услуг) с целью проведения финансовых расчетов между субъектами рынка электроэнергии.
Выделяют следующие основные задачи коммерческого учета электроэнергии:
- потребление активной и реактивной энергии (включая обратный переток) за данные временные интервалы по отдельным счетчикам, заданным группам счетчиков и предприятию в целом с учетом многотарифности;
- средние (получасовые) значения активной мощности (нагрузки) и средний (получасовой) максимум активной мощности (нагрузки) в часы утреннего и вечернего максимумов нагрузки по отдельным счетчикам, заданным группам счетчиков и предприятию в целом;
- построение графиков получасовых и, при необходимости, трехминутных нагрузок, необходимых дня организаций рационального энергопотребления предприятия.
Расчеты по купле-продаже электроэнергии между участниками рынка должны производиться по показаниям тех приборов учета, которые указаны в действующих договорах. В договорах на оптовом рынке для каждого граничного сетевого элемента необходимо указать, какой измерительный комплекс средств коммерческого учета является основным, а какой - резервным, т.е. определить основную и резервные зоны учета субъекта рывка.
Приборы учета могут располагаться не строго в точках раздела балансовой (эксплуатационной) принадлежности вследствие того, что в реальных условиях схема расстановки измерительных комплексов зависит от возможности установки первичных датчиков (трансформаторов тока и напряжения).
Конкретные требования к аппаратуре распространяются на вновь устанавливаемые и модернизируемые средства коммерческого учета, входящие в состав автоматизированных систем контроля и учета электроэнергии (АСКУЭ). В АСКУЭ оптового рынка должны использоваться самые современные первичные датчики, отличающиеся малыми величинами и стабильностью основной и дополнительной погрешности в широком диапазоне влияющих величин. Необходимо стремиться к освоению датчиков с цифровым выходом. Сечения поставки и учета для субъектов рынка должны совпадать, а на каждую зону поставки необходимо предусматривать две зоны учета по обе стороны зоны поставки. Это означает, что смежные субъекты рынка (имеющие общие границы балансовой принадлежности) должны установить измерительные комплексы средств коммерческого учета на всех присоединениях граничных сетевых элементов к «своим» подстанциям. Общие технические требования к трансформаторам тока (ТТ) и трансформаторам напряжения (ТН), как к датчикам тока и напряжения в цепях коммерческого учета отражены в соответствующих ГОСТах. В АСКУЭ оптового рынка следует применять только трансформаторы тока, измерительные обмотки которых специально предназначены для подключения приборов коммерческого учета, и имеющие класс точности не ниже 0.2S, O.SS [4.8].
2 АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ КОНТРОЛЯ И УЧЕТА ЭЛЕКТРОЭНЕРГИИ (АСКУЭ)
В настоящее время в связи с проводимой реформой электроэнергетики, все более актуальна проблема внедрения автоматизированных систем контроля и учета электроэнергии и мощности (АСКУЭ) на объектах электроэнергетики, промышленных предприятиях, а также в бытовом секторе для решения задач контроля, учета и экономии энергоресурсов. Одним из условий выхода потребителей на рынок покупки электроэнергии у независимых сбытовых компаний является наличие системы коммерческого учета электроэнергии [4.9].
С середины 90-х годов в большинстве энергосистем проводились достаточно активно работы, по внедрению АСКУЭ. Объектами автоматизации на этом этапе были в основном крупные электростанции, межсистемные и граничные подстанции в региональных энергосистемах, а также крупные промышленные потребители. К концу 90-х годов эти работы в основном были завершены и в настоящее время стоит задача внедрения систем учета на средних промышленных предприятиях и в жилищно-бытовом секторе. При автоматизации таких объектов на современном этапе появляется ряд новых задач, которые необходимо учитывать при проектировании и внедрении АСКУЭ:
- построение систем автоматизации на средних предприятиях на основе контроллеров с большим количеством каналов учета в большинстве случаев является избыточным. Для таких объектов необходимо устройство с меньшим количеством каналов учета и более дешевое по цене, но сохраняющее функциональные возможности предыдущих моделей контроллеров и отвечающее современным требованиям;
- при питании нескольких предприятий с одной подстанции возникает необходимость создания отдельных систем коммерческого учета для каждого предприятия с возможностью получения сводной информации о балансе подстанции службами поставщика электроэнергии и подстанции;
- необходимость создания АСКУЭ на крупных промышленных предприятиях, где наряду с коммерческим учетом необходим внутризаводской (технический) учет. Как правило, такие предприятия занимают большую площадь и имеют несколько территориально распределенных объектов автоматизации (производств, цехов). Для создания таких АСКУЭ необходима система сбора данных с сетевой архитектурой. Отдельные объекты автоматизации имеют небольшое количество точек учета (до 12-16 каналов), но в связи с большими расстояниями между объектами прокладка линий связи от электросчетчиков к одному контроллеру является достаточно трудоемкой задачей.
Исходя из вышеперечисленных тенденций, ведущие фирмы- производители электронного оборудования для систем контроля и управления разработали и начали выпуск контроллеров для АСКУЭ.
Основные характеристики контроллера СИКОН СЮ:
- контроллер позволяет вести единые группы учета и синхронизацию времени контроллеров в сети Profibus;
- количество каналов для подключения счётчиков с импульсным выходом к одному контроллеру - до 16-и, обеспечивает подключение в сеть Profibus до 32 контроллеров, при этом общее число каналов системы учета может достигать 512-и; количество тарифных зон в сутки - до 12-и; - количество групп учёта в каждом контроллере - до 8-и, при этом общее число групп системы учета из 32 контроллеров может достигать 256-и;
- контроль данных об энергии и усредненной мощности за фиксированные подинтервалы (1, 3 или 5 минут) и интервалы времени (15, 30 или 60 минут), за сутки, месяц, квартал;
- контроль текущих значений энергии и показаний счетчиков;
- ведение графиков мощности;
- контроль данных о превышении лимитов мощности;
- контроллер ведет календарь рабочих, праздничных и нерабочих дней;
- совместим с основными типами счётчиков (индукционными, электронными, многофункциональными) разных заводов-изготовителей;
- наличие в базовой модификации встроенного буквенно-цифрового пульта оператора;
- наличие упрощенной модификации (без встроенного пульта оператора), работающей в режиме удаленного контроллера;
- широкий температурный диапазон условий эксплуатации: от -10° С до +50° С (по спец. заказу от -40° С до +70° С).
Современные системы АСКУЭ и счетчики электроэнергии отечественных производителей адаптированы к требованиям отечественных стандартов и норм, отличаются использованием современной элементной базы, хорошо продуманными алгоритмами работы, современным программным обеспечением, отвечают всем требованиям международных стандартов, адаптированы к последующему наращиванию и модернизации.
3 НОРМИРОВАНИЕ И ЛИМИТИРОВАНИЕ ЭЛЕКТРОПОТРЕБЛЕНИЯ
Нормирование и лимитирование электропотребления - составная часть технического нормирования расхода всех используемых в производстве ресурсов.
Научно обоснованное нормирование предусматривает решение двух основных задач:
- планирование электропотребления;
- выявление и реализация резервов экономии электроэнергии.
В практике энергетического планирования находят применение два разных способа установления норм: непосредственное определение их прямым расчетом для планируемых условий производства и расчет от фактически достигнутого уровня. Опыт нормирования «от факта» иногда дает менее объективные результаты по сравнению с прямым расчетом норм на планируемый период. Однако это не означает, что при установлении норм расхода электроэнергии можно не учитывать достигнутый уровень фактических удельных расходов. Такой подход в нормировании означал бы отрыв планируемых показателей от реальной действительности. Поэтому обязательный учет в нормах фактически достигнутых расходов ресурсов следует считать одним из методологических принципов нормирования.
Структура норм должна соответствовать технологии и организации производства и охватывать все статьи расхода электроэнергии на нормированный вид продукции или работ. Нормы должны учитывать также планируемые к осуществлению мероприятия по экономии электроэнергии. Нормы подлежат своевременной корректировке при изменении условий производства [4.5].
Процедуре лимитирования должен предшествовать энергоаудит, который должен выявить величину фактического потребления предприятием электроэнергии, а также реальный потенциал энергосбережения. Организация лимитирования бюджетным организациям предусматривает, что устанавливаемые государством лимиты электропотребления в натуральном и стоимостном выражении должны быть обеспечены бюджетным финансированием.
При проведении различных по глубине видов энергоаудита (экспресс-аудит, инструментальный, выборочный, комплексный, целевой и т.д.) существенное значение наряду с техническим обследованием должен занимать и финансовый аудит, поскольку результатом обследования должны быть рекомендации как технического, так и финансово-экономического характера.
Предприятия, где вследствие банкротства введено внешнее управление, при утверждении мероприятий по выводу предприятия из кризиса должны иметь заключение Госэнергонадзора об эффективности использования электроэнергии.
При разработке отраслевых программ электропотребяения реализуемый потенциал экономии определяется на каждый год. Его величина должна быть учтена при определении лимитов энергопотребления соответствующими министерствами и ведомствами.
4 НОРМЫ РАСХОДА ЭЛЕКТРОЭНЕРГИИ
Норма расхода электроэнергии может использоваться для агрегата, цеха, предприятия, т.е. там, где имеется возможность контроля нормы техническими средствами измерения.
Нормы расхода электроэнергии устанавливаются в зависимости от типа производства. Так, в единичном и мелкосерийном производстве в условиях разнообразной номенклатуры выпускаемой продукции целесообразно устанавливать нормы расхода на 1 ч работы энергоприемных устройств, в серийном и массовом производстве - нормы расхода потребляемой энергии на деталеоперацию, деталь, технологический процесс и в целом на изделие. Помимо норм расхода электроэнергии, связанного непосредственно с выпуском продукции, устанавливаются нормы расхода на вспомогательные и обслуживающие процессы, нормы потерь в сетях в процессе и т.д.
Производственное потребление энергии определяют суммированием расхода энергии по всем технологическим установкам и объектам вспомогательного хозяйства. Полную потребность в энергии, а также по отдельному параметру рассчитывают с учетом потерь при передаче энергии по заводским коммуникациям.
При планировании составляют сметы затрат по каждому цеху, устанавливают максимальную нагрузку электроэнергии - размер присоединенной мощности.
При определении общецеховых электрозатрат для изготовления заданного количества продукции и исполнения услуг за определённый период требуется включать:
- технологические процессы (основной и вспомогательные);
- отопление;
- освещение;
- вентиляцию (с улавливанием выбросов);
- кондиционирование;
- транспортирование готовой продукции;
- транспортирование, хранение отходов;
- поддержание противопожарной системы;
- перекачку сточных вод;
- хранение готовой продукции.
Затраты на электроэнергию складываются из суммы оплаты поставщику электроэнергии по двухставочному тарифу (за максимальную нагрузку и за потребленную энергию) и расходов предприятия.
Расход электроэнергии учитывается с помощью графиков электрической нагрузки. При планировании необходимо определить плановую максимальную нагрузку и плановые средние нагрузки. Для небольших предприятий не обязательно рассчитывать все параметры режимов потребления, достаточно вычислить максимум нагрузки.
Годовые плановые графики строят исходя из суммарных средних суточных графиков нагрузки. Расчеты ведутся по потреблению брутто, т.е. с учетом всех потерь. Учитываются намечаемые мероприятия по регулированию графиков нагрузки.
Показатели экономичности электропотребления индивидуальны для различных видов изделий. Они характеризуют совершенство конструкции данного вида изделия и качество его изготовления. В качестве показателей экономичности электропотребления, как правило, следует выбирать удельные показатели.
Организация систем контроля электропотребления является актуальной задачей для любого предприятия. Внедрение данных систем позволяет получить реальную картину использования ресурсов и уменьшить их оплату, т.к. прекращается оплата потерь на магистралях поставщика.
Организация систем учета электропотребления на предприятиях, имеющих большое количество электросчетчиков, позволяет осуществлять дистанционный контроль работы оборудования и текущих расходов электроэнергии по всем счетчикам и объектам учета, а также обеспечивает хранение данных и возможность предоставления информации за различные периоды.
нормирование электропотребление энергетический баланс
5 ЭНЕРГЕТИЧЕСКИЕ БАЛАНСЫ
Энергетический баланс выражает полное количественное соответствие (равенство) за определенный интервал времени между расходом и приходом энергии в энергетическом хозяйстве. Энергетический баланс является статической характеристикой динамической системы энергетического хозяйства за определенный интервал времени.
Оптимальная структура энергетического баланса является результатом оптимизационного развития энергетического хозяйства. Энергетический баланс может составляться:
- по энергетическим объектам (электростанции, котельные), отдельным предприятиям, цехам, участкам, энергоустановкам, агрегатам и т.д.;
- по назначению (силовые процессы, тепловые, электрохимические, освещение, кондиционирование, средства связи и управления и т.д.);
- по уровню использования (с выделением полезной энергии и потерь);
- в территориальном разрезе и по отраслям народного хозяйства.
Основой расчета потребности электроэнергии являются балансы расхода и прихода. Отчетные балансы электроэнергии строятся на основе первичного учета по счетчикам. В приходной части должны быть даны все источники поступления энергии на предприятие, в расходной - все направления ее расходования.
Баланс электроэнергии подразделяется на балансы электроэнергии постоянного и переменного тока.
Сводный энергобаланс показывает направление развития энергоснабжения предприятия в количественном и качественном отношениях. Энергобалансы разрабатываются на основе производственной программы предприятия и удельных норм расхода энергии на единицу продукции.
Расходная часть энергобаланса включает потребность предприятия в энергоресурсах на производственные, хозяйственно-бытовые и непроизводственные нужды.
Приходная часть энергобаланса состоит из объемов покрытия потребности предприятия в энергоресурсах за счет как собственных, так и привлекаемых со стороны источников. Энергобаланс должен обеспечивать равенство между расходной к приходной частями.
Если потребность в электроэнергии больше, чем возможности источников их покрытия, то предприятию необходимо пересмотреть расходную часть энергобаланса и разработать мероприятия по снижению потребности и экономному расходованию электроэнергии или искать дополнительные источники покрытия потребности.
В случае превышения приходной части энергобаланса над расходной, необходимо разработать мероприятия по реализации излишней энергии или разработать мероприятия по оптимизации мощностей собственных подразделений, входящих в состав энергетического хозяйства предприятия.
Потребность в электроэнергии устанавливается на основе норм расхода и соответствующих объемных показателей.
Производственная потребность предприятия в электроэнергии включает потребность в двигательной энергии, в энергии на технологические нужды, на хозяйственно-бытовые нужды.
Потребность электроэнергии для освещения рассчитывается исходя из освещаемой площади, нормы освещения и количества часов освещения. Во многих случаях потребность в электроэнергии для освещения определяется по количеству установленных светильников, их мощности и планируемому количеству часов освещения.
6 ОПРЕДЕЛЕНИЕ ОБЪЕМА ЭНЕРГОСБЕРЕЖЕНИЯ ДЛЯ ДЕЙСТВУЮЩЕЙ ТЕХНОЛОГИИ
Высокая себестоимость выпускаемой продукции в значительной степени обусловлена затратами на электроэнергию. Рыночные условия заставляют предприятия переходить к энергосбережению и нормированию электропотребления. Под энергосбережением в промышленности понимается применение технологии с рациональным расходованием электроэнергии и снижением потерь. Если предприятие не знает реальных графиков нагрузки своих подразделений, не может достоверно оценить, кто, когда, сколько и на что расходует электроэнергию, оно вынуждено завышать заявленное значение максимума нагрузки, что приводит к значительной переплате за установленную мощность.
Энергетические потери разделяются на потери неустранимые (или потери, устранение которых экономически неоправданно) и потери, устранение которых в данных технических условиях возможно и экономически целесообразно.
Потери электроэнергии, устранение которых возможно и экономически целесообразно, можно разделить на:
- потери, вызванные неудовлетворительной эксплуатацией оборудования и инженерных сетей;
- потери, вызванные конструктивными недостатками оборудования, не правильным выбором технологического режима работы, отставанием развития инженерных сетей и т.д.
Для каждого агрегата или технологической линии, электропотребление которых фиксируется по счетчикам, удельные расходы на единицу продукции могут быть рассчитаны за каждые сутки (или технологическую операцию) и за год (месяц, квартал). Эти показатели имеют гауссово распределение, которое характеризуется средним значением и областью определенного разброса, называемой областью технологически нормальной работы. Выход параметра из области технологически нормальной работы должен фиксироваться, технологу следует проанализировать причины отклонения и найти пути его устранения. Чем лучше работает агрегат, тем меньше среднее значение удельного расхода, однако его снижение имеет предел, обусловленный возможностями технологии.
Одинаковые удельные расходы для различного оборудования не могут быть жестко заданы даже на одном предприятии, поскольку работа агрегата зависит от многих факторов. Тем более не может быть одинаковых удельных расходов у однотипных технологических линий и агрегатов, но работающих на разных предприятиях, т.е. в различных сложившихся техноценозах. Под термином техноценоз подразумевается сложная техническая система - современное промышленное предприятие. Исследование ценозов как целостности предполагает их системное описание иерархической системой показателей. Структуру ценоза как сообщества элементов-особей отражает описание его элементов по повторяемости. Анализ показателей с целью их применения для практических расчетов опирается на теорию и математический аппарат Н-распределения - гиперболического распределения. В каждом техноценозе агрегат работает в разных условиях по технологии, сырью, обслуживанию, воздействию окружающей среды. Результаты энергосбережения можно оценивать, только имея в виду индивидуальность каждого производства. Ценологическое влияние - это влияние конкурирующих между собой предприятий за ограниченный ресурс электроэнергии.
Таким образом, невозможно пронормировать расходы электроэнергии для всех режимов и всех видов продукции, нельзя считать их постоянными, на несколько лет вперед. Поэтому нереально опираться на них при определении экономии электроэнергии по цехам и прогнозировании параметров электропотребления предприятия в целом. Здесь необходим более обобщенный показатель, связывающий потребление электроэнергии с выпуском продукции. Таким показателем может являться электроемкость продукции.
Электроемкость базового вида продукции рассчитывается как отношение годового электропотребления предприятия к объему ее выпуска. Размерность данного показателя - кВт-ч / т или кВт-ч на единицу продукции, что совпадает с размерностью удельного расхода, но эти величины имеют разный физический смысл.
Удельный расход - это количество электроэнергии, затраченное на производство единицы данного технологического продукта. Например, для металлургического предприятия за единицу продукции может быть принята I т проката. Электроемкость же проката учитывает расход электроэнергии не только непосредственно на производство проката, но и во всех предыдущих переделах данного предприятия (сталь, чугун, железорудное сырье, как используемые затем для получения проката, так и продаваемые другим предприятиям), а также затраты электроэнергии на производство изделий дальнейшего передела, выработку кислорода, сжатого воздуха, тепла, водоснабжение и т.д. Поэтому значение электроемкости в несколько раз превышает значение удельного расхода электроэнергии на соответствующий вид продукции.
Годовое электропотребление многономенклатурных производств существенно зависит от изменений объемов вьшускаемой продукции, которые в свою очередь отражают состояние конъюнктуры рынка на данный момент времени.
Если для каждого вида продукции многономенклатурного производства рассчитать электроемкость как отношение годового электропотребления к объему выпуска этого вида, то в целом по предприятию эти величины подчиняются ранговому распределению. Полученные параметры рангового распределения по годам имеют достаточно стабильную тенденцию к увеличению. Возрастание рангового коэффициента показывает, что на предприятии с годами увеличиваются разнообразие выпускаемой продукции и разница в расходах электроэнергии на выпуск различных видов.
Совокупность кривых рангового распределения представляет собой поверхность. Анализ структурно-топологической динамики (траектории движения особи по кривой рангового распределения) на этой поверхности дает временной ряд электроемкости каждого исследуемого вида продукции, что представляет интерес с точки зрения возможности прогноза параметров электропотребления. Можно сделать вывод о наличии жесткой корреляционной связи между годовым электропотреблением многономенклатурного производства, структурой выпускаемых изделий и видовым разнообразием выпускаемой продукции.
ЗАКЛЮЧЕНИЕ
Снижение максимумов (пиков) нагрузки в часы максимума энергосистемы позволяет снизить потери электроэнергии. Регулирование суточных графиков нагрузки может осуществляться несколькими способами. В первую очередь необходимо выравнивать график за счет перевода наиболее энергоемкого оборудования, работающего периодически, с часов максимума на другие часы суток. Таким оборудованием могут считаться, например, отдельные виды крупных станков, сварочные машины, компрессоры, насосы артезианских скважин, испытательные и зарядные станции, холодильные установки, мельницы, установки токов высокой частоты, отдельные виды элекротермического оборудования, пилорамы и др. С этой же целью целесообразно в часы максимумов нагрузок энергосистемы провести на предприятиях текущие и профилактические ремонты технологического и энергетического оборудования, упорядочить работу вспомогательных цехов для снижения их электрических нагрузок в указанные часы, установить твердый график работы вентиляционных установок и т.д. При выполнении мероприятий по отключению в часы максимумов соответствующего оборудования следует учитывать влияние выключения данного оборудования на другие производственные процессы и на работу предприятия в целом.
Снижение нагрузки может достигаться путем рассредоточения по времени пусков крупных электроприемников, создания запасов полуфабриката за счет интенсификации их производства вне часов максимума.
Чтобы определить максимальную (пиковую) технологическую нагрузку, строят плановый график потребления, учитывая данные отчетного года, планируемый режим работы оборудования, сменности и возможности сокращения расхода энергии.
Расчет энергии на двигательные цели производится отдельно для крупных и мелких электродвигателей, которые объединяют в группы по принципу одинакового режима работы.
Одним го путей снижения пиков нагрузки является использование на промышленных предприятиях потребителей-регуляторов, т. е. такого электротехнологического оборудования, которое может работать в режиме регулирования в соответствии с потребностями энергосистемы. При этом получаемая в энергосистеме экономия средств может превышать дополнительные затраты потребителя-регулятора.
СПИСОК ЛИТЕРАТУРЫ
1. Ахметов P.P., Кабанов Н.Д., Сатов В.Д. Сетевой контроллер СИКОН // Приборы и системы управления. - 1995 - №5.
2. М.Г. Баширов, Э.М. Баширова, Н.К. Буланкин Экономика электропотребления в промышленности, Уфа 2004 г.
3. Андриевский А.А. Энергосбережение и энергетический менеджмент: учебное пособие. - Минск: Высшая школа, 2005.
4. Кравченя Э.М. Охрана труда и основы энергосбережения. - Минск, 2005.
5. Самойлов М.В. Основы энергосбережения. Учебное пособие. - Минск: БГЭУ, 2002.
6. Свидерская О.В. Основы энергосбережения. - Минск: ТетраСистемс, 2008.
Размещено на Allbest.ru
...Подобные документы
Цель учета электрической энергии и контроль его достоверности. Коммерческий учет потребления энергии предприятием для денежного расчета за нее. Требования к АСКУЭ. Расчет системы АСКУЭ для части промышленного предприятия. Хранение данных энергоучета.
курсовая работа [299,7 K], добавлен 15.10.2011Краткий обзор наиболее распространенных видов приборов учета и различных способов автоматизированного контроля и учета электроэнергии. Состав и содержание основных стадий проектирования системы автоматизированной системы контроля и учета электроэнергии.
отчет по практике [35,5 K], добавлен 24.06.2015Автоматизированная информационно-измерительная система "Телеучет". Автоматизированный коммерческий учет электроэнергии субъектов оптового рынка электроэнергии. Состав технических средств. Розничный рынок электроэнергии. Тарифы на электрическую энергию.
курсовая работа [676,6 K], добавлен 31.05.2013Энергосбережение как энергетический ресурс; понятие, цели, принципы и задачи энергосбережения и повышения энергоэффективности. Проблемы, пути решения и современное состояние развития энергосбережения в России, направления эффективного энергопотребления.
реферат [1,7 M], добавлен 27.07.2010Показатели освещения. Описание осветительных систем административных зданий и применяемого оборудования. Нормирование освещения и методика проведения аудита системы освещения. Расчет экономии электроэнергии в действующих осветительных установках.
дипломная работа [4,1 M], добавлен 14.06.2010Проблемы, состав и принцип работы АСКУЭ бытовых потребителей. Особенности организации коммерческого учета электроэнергии в распределительных устройствах. Преимущество использования оборудования PLC II. АСКУЭ бытовых потребителей в России и за рубежом.
реферат [223,1 K], добавлен 19.12.2011Организация энергосбережения в системах водоснабжения и водоотведения. Учет тепло- и водоподачи, затрат на энергоснабжение и сокращение их потерь. Нормирование требований к качеству отопления (температура в помещениях), горячей и холодной воды (напор).
реферат [31,3 K], добавлен 27.11.2012Изучение необходимости и сущности энергосбережения. Характеристика основных направлений эффективного энергопотребления: энергосбережение на предприятии, сокращение тепловых потерь в зданиях разного назначения. Современные технологии энергосбережения.
реферат [14,6 K], добавлен 27.04.2010- Анализ потенциала энергосбережения на примере эффективности Нижне-Свирская ГЭС каскада Ладожских ГЭС
Выработка электроэнергии Нижне-Свирской ГЭС. Основное электротехническое оборудование. Анализ системы производства, преобразования, распределения электроэнергии. Расчет потерь, оценка эффективности использования электроэнергии, составление электробаланса.
дипломная работа [2,4 M], добавлен 28.08.2014 Задачи нормативно-правовой базы энергосбережения. Критерии энергетической эффективности. Действующие законы и акты. Функции контроля и надзора за эффективным использованием топливно-энергетических ресурсов в России. Взаимодействие экономики и энергетики.
реферат [36,7 K], добавлен 18.09.2016Структура электрических сетей, их режимные характеристики. Методика расчета потерь электроэнергии. Общая характеристика мероприятий по снижению потерь электроэнергии и определение их эффективности. Зависимость потерь электроэнергии от напряжения.
дипломная работа [2,0 M], добавлен 18.04.2012Структура потерь электроэнергии в электрических сетях. Технические потери электроэнергии. Методы расчета потерь электроэнергии для сетей. Программы расчета потерь электроэнергии в распределительных электрических сетях. Нормирование потерь электроэнергии.
дипломная работа [130,1 K], добавлен 05.04.2010Общие сведения по коллективным (общедомовым) приборам учета электроэнергии, их наладка и эксплуатация. Инструкционно-техническая карта на монтаж приборов учета электроэнергии. Охрана труда при работе с счетчиками на электростанциях и подстанциях.
курсовая работа [26,7 K], добавлен 09.12.2014Причины возникновения погрешностей и способы устранения недоучета электропотребления в автоматизированных системах контроля и учета электроэнергии. Предельные значения токовой и угловой погрешностей трансформаторов тока. Оценка экономического эффекта.
статья [56,9 K], добавлен 28.05.2010Схемы электроснабжения и состав оборудования. Структура и эффективность использования электроэнергии с учетом нормативов. Компенсация реактивной мощности, колебания напряжения и фильтрация высших гармоник. Моделирование режимов электропотребления.
дипломная работа [1,9 M], добавлен 15.02.2015Государственная политика Республики Беларусь в сфере энергосбережения. Основные технические приоритеты деятельности и источники финансирования мероприятий в данной области. Расчет экономии электроэнергии за счет использования энергосберегающей лампы.
реферат [700,7 K], добавлен 02.02.2012Методы экономии электроэнергии и проблемы энергосбережения. Энергетический мониторинг квартиры и гимназии, оценка эффективности внедрения энергосберегающих мероприятий. Измерение электроэнергии и график потребления энергии в квартире и в гимназии.
творческая работа [648,5 K], добавлен 18.01.2011Значение и основные задачи энергетического хозяйства на предприятии, специфические черты и структура. Характеристика энергетических цехов предприятия. Порядок планирования производства и потребления энергоносителей. Нормирование и учет энергоресурсов.
контрольная работа [45,7 K], добавлен 02.10.2009Главная цель строительства электростанции. Газопоршневые технологии с утилизацией сбросной теплоты ГПУ. Основные технические характеристики энергоустановки, когенерационной электростанции. Оборудование мини-ТЭЦ, направления в области энергосбережения.
реферат [17,1 K], добавлен 16.09.2010Характеристика основных методов решения задач нелинейного программирования. Особенности оптимизации текущего режима электропотребления по реактивной мощности. Расчет сети, а также анализ оптимальных режимов электропотребления для ОАО "ММК им. Ильича".
магистерская работа [1,2 M], добавлен 03.09.2010