Физика в энергетике. Чёрные дыры
Взгляды современной астрофизики на возможность существования черных дыр, их свойства. Современные теории гравитации, отличие гравитационного и электромагнитного поля, модели образования и эволюции черных дыр, эффект квантового испарения, теорема Хокинга.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 04.12.2012 |
Размер файла | 136,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Национальный Исследовательский Томский Политехнический Университет
Физика в энергетике. Чёрные дыры
Выполнил: ст. группы 5а 21
Балаба С.С.
Преподаватель:
Лисичко Е.В.
Томск 2012
Содержание
1. Особенности сил тяготения
2. Что такое черная дыра?
3. Краткие сведения об общей теории относительности Эйнштейна
4. Энергетика черных дыр
5. Что внутри черной дыры?
Вместо заключения: проблемы и гипотезы
Список литературы
1. Особенности сил тяготения
Одним из наиболее удивительных предсказаний теории тяготения Эйнштейна является возможность существования черных дыр - компактных массивных объектов, обладающих столь сильным гравитационным полем, что никакие физические тела, никакие сигналы не могут вырваться из них наружу. И хотя черные дыры с полной достоверностью пока еще не открыты, имеется немало причин, по которым они привлекают к себе в последние годы пристальное внимание ученых. По-видимому, наиболее важной из них является то, что обнаружение черных дыр имело бы значение, далеко выходящее за рамки астрофизики, поскольку речь идет не об открытии еще одного, быть может, довольно удивительного астрофизического объекта, а о проверке правильности наших представлений о свойствах пространства и времени в сильных гравитационных полях.
Гравитационные силы - дальнодействующие. Свойство дальнодействия означает, что сила, действующая на пробную частицу со стороны тела, создающего поле, медленно, по степенному закону, уменьшается с расстоянием. Благодаря этому свойству пробная частица испытывает тяготение со стороны всех частей массивного тела, в том числе и достаточно от нее удаленных. Этим свойством наряду с тяготением обладает Электромагнитное взаимодействие, в то время как сильное и слабое взаимодействия являются короткодействующими и имеют малые радиусы действия. Физическая причина такого различия состоит в том, что кванты, переносчики сильного и слабого взаимодействия, обладают ненулевой массой покоя, что приводит к экспоненциально быстрому убыванию силы на расстояниях, превышающих комптоновскую длину волны этих квантов.
? = -h/тс
Радиусы действия сильного и слабого взаимодействий ~ 10-13 и 10-17 см соответственно. Кванты электромагнитного поля, фотоны, и кванты гравитационного поля, гравитоны, - частицы безмассовые, и сила взаимодействия между парой электрических зарядов или массивных тел убывает по известному степенному закону: сила обратно пропорциональна квадрату расстояния.
Гравитационные силы имеют один знак. Между электромагнитным и гравитационным взаимодействиями имеется, однако, существенное отличие. В природе существуют электрические заряды двух видов: положительные и отрицательные, причем одноименные заряды отталкиваются. Это приводит к тому, что в макроскопических телах электрический заряд обычно практически скомпенсирован, в противном случае они были бы разорваны на части мощными силами электростатического отталкивания. Более того, при отсутствии, сторонних сил процессы в системах с заряженными телами протекают таким образом, чтобы уменьшить потенциальную энергию, при этом заряды противоположных знаков будут компенсироваться. Все это приводит к тому, что в естественных условиях электрический заряд макроскопических тел оказывается пренебрежимо малым,
Напротив, "заряды тяготения" - массы - всегда имеют один и тот же знак, причем они не отталкиваются, а притягиваются друг к другу. При этом, чем тело массивнее, тем оно более устойчиво относительно "развала". Для гравитационного взаимодействия характерен следующий, механизм самоусиления: массивное тело притягивает к себе вещество, падающее вещество увеличивает массу тела и, следовательно, его способность. Притягивать. Силы тяготения, ничтожно малые для отдельных элементарных частиц, суммируясь при составлении из них макроскопического тела, могут достигать огромной величины, вырастая в космическом масштабе, в могучий, нередко определяющий фактор. При этом малость константы гравитационного взаимодействия компенсируется большой величиной гравитационного заряда. Описанный выше механизм самоусиления приводит к тому, что в тех масштабах, в которых тяготение доминирует над другими взаимодействиями, однородное распределение вещества оказывается неустойчивым и рост случайных неоднородностей вызывает развитие, в частности, таких наблюдаемых структур, как планеты, звезды, галактики и скопления галактик.
Гравитационное взаимодействие обладает еще одним, крайне важным, отличительным свойством - оно универсально. Для каждого из остальных, перечисленных выше взаимодействий существуют нейтральные частицы, тогда как все объекты, существующие в природе (включая и поля), порождают гравитационное поле. В роли гравитационного заряда выступает полная масса т системы, которая, как учит специальная теория относительности, связана с полной энергией системы Е соотношением
т=Е/с2
Именно поэтому все объекты природы, обладая энергией, непременно участвуют в гравитационном взаимодействии. "Весит", в частности, и само гравитационное поле, что приводит к существенной нелинейности уравнений Эйнштейна, описывающих тяготение.
2. Что такое черная дыра?
Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Пьер-Симон Лаплас, исследуя распространение света в поле тяготения, пришел к выводу, что в природе могут встречаться тела, абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не вы пускает наружу лучей света. На языке космонавтики это означает, что вторая космическая скорость была бы больше скорости света с.
Теория Эйнштейна - ключ к проблеме черных дыр. Вывод Лапласа, строго говоря, является ошибочным, поскольку он основан на классической механике и теории тяготения Ньютона. В действительности, однако, нельзя пользоваться ни той, ни другой: распространение света подчиняется законам релятивистской механики, а сильное поле тяготения, т. е. поле, гравитационный потенциал которого phi = GM/R в единицах с 2 порядка единицы: phi/с 2~1, описывается общей теорией относительности. Тем не менее, как это иногда случается в истории науки, обе "ошибки" Лапласа точно скомпенсировали друг друга и вывод о невозможности выхода световых сигналов из-под гравитационного радиуса оказался совершенно правильным. Более того, связанный со специальной теорией относительности и справедливый в общей теории относительности запрет на существование в природе сигналов, переносящих информацию со скоростью, большей скорости света, придал утверждению о невозможности получения какой-либо информации о событиях, происходящих под гравитационным радиусом, еще более категорический смысл.
Подобное тело, сжатое до размера своего гравитационного радиуса, получило название черной дыры, а границу черной дыры, т. е. поверхность, ограничивающую область, откуда невозможен выход сигналов, стали называть горизонтом событий. Хотя вывод Лапласа о возможности существования черных дыр сохраняется и в общей теории относительности Эйнштейна, само описание этого объекта имеет существенные отличия. Прежде чем перейти к точному определению черных дыр и к рассказу об их удивительных свойствах, необходимо хотя бы несколько слов сказать об эйнштейновской теории гравитации.
3. Краткие сведения об общей теории относительности Эйнштейна
Принцип эквивалентности. Общая теория относительности, в окончательной форме сформулированная Эйнштейном в 1915 г., возникла в результате попытки построения релятивистского обобщения теории тяготения Ньютона, т. е. приведения теории Ньютона в соответствие с принципом конечности скорости распространения взаимодействия и с законами специальной теории относительности. Исходным пунктом для построения общей теории относительности явился принцип эквивалентности инертной и гравитационной масс. Согласно этому принципу отношение гравитационной массы mгр, определяющей силу F, действующую на тело в гравитационном поле напряженности T:
F = mгрТ,
к инертной массе mин, связывающей силу F и величину вызываемого ею ускорения a:
F = mинa,
не зависит от свойств и состава тела. Поэтому ускорение пробного тела в травирационном поле определяется только напряжённостью поля в точке, где тело находится. Иными словами, в гравитационном поле зависимость от времени положения пробного точечного тела, его мировая линия, однозначно определяется начальным положением тела и его скоростью. Тем самым задача изучения движения частиц в гравитационном поле сводится к изучению геометрии мировых линий. В отсутствие поле тяготения мировые линии движения свободных частиц являются прямыми, т. е. кратчайшими, линиями между произвольной парой точек, лежащих на них.
Если гравитационное поле неоднородно, то исключить его путем перехода к падающей системе отсчета сразу во всем пространстве или в конечной, но не очень малой области не удается. Действительно, рассмотрим, например, относительное движение в гравитационном поле Земли двух частиц, расположенных на расстоянии l друг от друга и падающих по радиусу к ее центру (рис. 1).
При этом движении частицы 1 к 2 сближаются, ускорение их относительного сближения равно GMl/R3. Частицы 3 и 4 удаляются друг от друга с относительным ускорением 2GMl/R3. Это означает, что при движении протяженного тела в неоднородном гравитационном поле в нем возникают так называемые приливные силы, стремящиеся его деформировать.
Относительное приливное ускорение пары точек тела пропорционально расстоянию между этими точками и зависит от их взаимного расположения. Тензорный коэффициент пропорциональности характеризует степень неоднородности гравитационного поля и носит название тензора кривизны пространства-времени.
Поскольку гравитационное взаимодействие универсально к не существует "нейтральных" по отношению к нему тел, то оказывается невозможным в чисто гравитационных экспериментах измерить "напряженность" гравитационного поля.
Подобные эксперименты позволяют определить только относительные ускорения, т. е. кривизну пространства-времени. Пространство-время является плоским, если его кривизна всюду обращается в ноль. В случае если кривизна не равна нулю, метрика не может быть плоской, однако в окрестности любой точки ее можно привести к виду:
gмюню (x)=etaмюню + (кривизна пространства-t)*(х-x0)2 +(поправки порядка (х--х 0)3)
Согласно Эйнштейну, кривизна пространства-времени пропорциональна плотности энергии-импульса вещества, порождающего гравитационное поле. Соответствующие уравнения, позволяющие определить метрику по заданному распределению вещества и тем самым восстановить геометрию пространства-времени, носят название уравнений Эйнштейна. В пределе, когда гравитационное поле слабое, т. е. гравитационный потенциал phi (ф) много меньше с 2 и движение источника нерелятивистское, уравнения Эйнштейна сводятся к обычному уравнению для гравитационного потенциала в теории Ньютона. Тем самым предсказания теории Эйнштейна для слабых гравитационных полей носят характер малых поправок ~ф/с 2 к известным результатам теории Ньютона. Именно эти поправки подвергаются экспериментальной проверке. Результаты всех наблюдений и экспериментов по проверке общей теории относительности, включая такие, как измерение красного смещения и запаздывания световых сигналов в гравитационном поле, измерение сдвига перигелия Меркурия и отклонение лучей света Солнцем, подтверждают эту теорию в области слабого поля, допуская отклонение от нее не более нескольких процентов.
Наиболее радикально отличаются предсказания теории Эйнштейна от ньютоновской теории гравитации в случае, когда гравитационное поле нельзя считать слабым. Качественно новым в этом случае является предсказание теорией Эйнштейна возможности нетривиальных глобальных свойств пространства-времени. Это касается, прежде всего, космологии, когда рассматриваются, области пространства и интервалы времени порядка-радиуса кривизны пространства-времени. В частности наше пространство может обладать нетривиальной топологией и походить не на плоскость, а на расширяющуюся сферу, являясь замкнутым, имея конечный объем, но не обладая никакими границами.
Возможность существования черных дыр - другое предсказание теории Эйнштейна - связана с появлением нетривиальной причинной структурой, которая проявляется в наличии в пространстве-времени областей, откуда невозможно получение никакой информации наблюдателями, расположенными вне этой области.
Отсутствие экспериментальной проверки теории Эйнштейна в области сильного поля, именно там, где предсказания этой теории носят весьма специальный характер, оставляет в принципе открытой возможность для развития других, отличных от теории Эйнштейна теорий гравитации. За время, прошедшее с момента создания общей теории относительности, такие попытки предпринимались неоднократно. Практически все рассматриваемые в настоящее время модификации теории гравитации принимают принцип эквивалентности и являются метрическими, т. е. описывают действие гравитационного поля на вещество в терминах искривленного пространства-времени. Основные расхождения касаются формы уравнений самого гравитационного поля.
Новая теория гравитации получает право на жизнь лишь после того, как подтверждается ее пригодность для описания результатов экспериментов в слабом гравитационном поле. Общим для большинства из развитых вариантов оказалось предсказание возможности существования отрицательных энергий, так что при гравитационном излучении в двойной системе в таких теориях предсказывается увеличение (а не уменьшение!) расстояния между телами. Такие варианты, на наш взгляд, не следует считать разумными. И хотя до сих пор теория Эйнштейна является непревзойденной по красоте, строгости и экономности предпосылок, лежащих в основании, и большинство физиков считают ее справедливой, в роли окончательного судьи в этом вопросе должен выступить опыт. Именно поэтому обсуждение свойств черных дыр и возможности наблюдения их с целью проверки предсказаний теории Эйнштейна в сильных гравитационных полях приобретают такое важное значение. Ниже, рассказывая о черных дырах, мы опираемся на результаты, полученные в рамках общей теории относительности.
4. Энергетика черных дыр
Черная дыра как генератор энергии. Обсудим теперь более подробно вопрос о черных дырах как источниках энергии. Рассмотрим сначала следующий мысленный эксперимент с не вращающейся черной дырой. Будем на эту дыру медленно опускать груз на прочной невесомой нити. Если масса груза т, то его полная энергия Е будет отличаться от mс2 на величину, равную работе гравитационного поля, так что на расстоянии R энергия Е равняется
E = mc2sqrt[1-2GM/c2R ]
На горизонте работа, совершенная гравитационным полем над грузом, в точности равна первоначальной внутренней энергии груза, и полная энергия обращается в нуль. Поэтому рассмотренный механизм позволяет освободить полную внутреннюю энергию, заключенную в теле, и превратить ее в работу. Энергия, заключенная в черной дыре, при этом не расходуется, и ее параметры, такие, как масса и размер, не изменяются. Если подобный эксперимент про: вести, не отбирая энергию от тела, например, дав ему возможность свободно падать, то в результате этого энергия черной дыры возрастет на величину, равную энергии, привнесенной в нее упавшим телом. Площадь поверхности черной дыры при этом возрастет в полном соответствии с теоремой Хокинга.
Массу вращающейся черной дыры можно уменьшить, не нарушая теоремы Хокинга только в том случае, если при этом одновременно уменьшается и величина ее углового момента. Действительно, площадь незаряженной черной дыры пропорциональна М (М + sqrt[ М 2-- (Jc/GM)2]). При уменьшении массы М эта величина может остаться постоянной только в том случае, когда J соответствующим образом уменьшается. Процессы с участием черных дыр, в которых площадь их поверхности не изменяется, называют обратимыми. Оказывается, что с помощью обратимых процессов можно извлечь из черной дыры всю энергию, связанную с ее вращением. В 1969 г. английский физик Р. Пенроуз рассмотрел следующий мысленный эксперимент.
Бросим на вращающуюся черную дыру тела таким образом, чтобы оно влетело в эргосферу и, взорвавшись, распалось там на две части. Параметры взрыва можно выбрать так, чтобы одна из частей приобретала угловой момент, направленный против вращения черной дыры, и полная энергия ее будет отрицательной, а вторая часть вылетает из эргосферы наружу. Полная энергия вылетающей части будет больше, чем энергия падающего тела. Закон сохранения углового момента приводит к тому, что вылетающее из черной дыры тело унесет и часть ее углового момента. Максимальный выигрыш энергии в таком процессе достигается при распаде падающей частицы около самого горизонта событий. В этом случае процесс извлечения энергии оказывается обратимым. Теорема Хокинга позволяет просто оценить максимальное количество энергии, которое можно извлечь из вращающейся черной дыры с массой М и угловым моментом. Эта энергия Евр определяется как разность (М-Mi)c2, где m1 - масса невращающейся черной дыры, получаемой в результате обратимого процесса. Вычисления дают
Евр = Mc2 [ 1 -sqrt(1/2 (1 + sqrt(1-(Jc/GM2)2))]
Максимальное значение энергии вращения равно
Eвр.макс = Mс2(1-2-1/2) ~- 0,3 Мс2.
Анализ реалистических моделей образования и эволюции черных дыр показал, что при разумных предположениях черная дыра должна вращаться с некоторой конкретной угловой скоростью, при которой параметр отношения Jc/GM2 ~- 0,998. Это очень быстрое вращение, и связанная с ним доля энергии составляет почти 30% полной энергии черной дыры.
Если аккреция вещества на черную дыру сопровождается появлением некоторого регулярного магнитного поля, то вращающаяся черная дыра приобретает электрический заряд и возможны электродинамические явления, связанные с выбросом частиц. В рамках подобных моделей можно связать некоторые известные в астрофизике явления выброса вещества с освобождением энергии вращения черных дыр.
5. Что внутри черной дыры?
Область пространства-времени внутри черной дыры недоступна для изучения отдаленному наблюдателю. Однако падающий вместе с коллапсирующим телом наблюдатель может "увидеть" происходящие там события. Таким образом, предсказания теории, касающиеся внутренности черной дыры, в принципе допускают проверку. Своеобразие этой проверки состоит в том, что результаты ее не могут быть сообщены наружу и использованы для сравнения с теорией физиками, находящимися вне черной дыры.
Учет квантовых эффектов и открытие хокинговского излучения, по-видимому, несколько изменяют эту ситуацию. При уменьшении размера черной дыры в результате квантового испарения ее радиус становится все меньше и меньше, и свойства гравитационного поля в областях, находившихся до начала испарения под гравитационным радиусом, могут повлиять на сам характер ис парения. При сферическом коллапсе все тела, попавшие под гравитационный радиус, достигают за время порядка RR/c физически особой точки r = 0, в которой кривизна пространства-времени формально обращается в бесконечность. В 1965 г. английский физик Р. Пенроуз доказал теорему, утверждающую, что и в самом общем случае, если только выполняются уравнения Эйнштейна, плотность энергии положительна и начальные данные полностью определяют решение в будущем, внутри черной дыры обязательно имеются особые точки, в которых обрываются мировые линии. Эта и другие подобные теоремы, доказанные Р. Пенроузом и С. Хокингом в конце 60-х гг., указывают на то, что в рамках классических уравнений Эйнштейна появление сингулярности внутри черной дыры в процессе коллапса является неизбежным.
Внутренность заряженной и вращающейся черной дыры. Хотя при внесении малого заряда или малого углового момента свойства черной дыры изменяются незначительно, глобальные свойства точных решений уравнений Эйнштейна, как показывает их анализ, претерпевают качественное изменение. При коллапсе заряда Q возрастающие дальнодействующие силы отталкивания способны остановить сжатие и заряд начнет расширяться 9. Если справедлив принцип причинности, а у физиков есть все основания считать, что это так, то при расширении заряд обязан выйти в какую-то другую область пространства-времени, сигналы из которой не достигают наблюдателя, расположенного вне черной дыры. Соответствующее точное решение уравнений Эйнштейна показывает, что это пространство находится в абсолютном будущем. Более того, формально возможен процесс коллапса и расширения заряда без развития сингулярности. Нарушения теоремы Пенроуза о сингулярностях не происходит, поскольку оказывается нарушенным одно из условий теоремы, а именно, дальнейшая эволюция заряда оказывается непредсказуемой. Эта эволюция зависит не только от начальных данных, но и от задаваемых произвольно свойств того мира, куда заряд выходит. Аналогичная ситуация имеет место в случае если система вращается. астрофизика гравитация электромагнитный квант
В 1979 г. советские физики И.Д. Новиков и А.А. Старобинский обратили внимание на то, что учет квантового рождения частиц в электрическом поле может Качественно изменить ситуацию. Дело в том, что прежде чем произойдет остановка коллапса заряженного тела, его электрическое поле настолько возрастает, что рождающиеся электрон-позитронные пары будут оказывать существенное влияние на метрику. Анализ этого влияния приводит к выводу, что выход в новое пространств, По-видимому, невозможен, а ситуация в целом близка к той, которая имеет место при сферическом коллапсе незаряженного вещества.
Вместо заключения: проблемы и гипотезы
Что же остается после взрыва черной дыры? Результаты, полученные С. Хокингом, не дают ответа на этот вопрос, поскольку они непосредственно применимы лишь до тех пор, пока масса испаряющейся черной дыры гораздо больше планковской массы
mпл =sqrt[hc/G] ~ - 10-5 г
В 1979г. Г. А. Вилковыский и В.П. Фролов показали, что учет эффектов квантовой гравитации приводит к тому, что черные дыры с массой, меньше планковской, не образуются. Поэтому если только отсутствует сингулярность внутри черной дыры (при наличии сингулярности возможно в результате распада чёрной дыры ее превращение в "голую" сингулярность), то имеются следующие две возможности: черная дыра распадается полностью иди в результате распада остается элементарная черная дыра с массой порядка планковской.
Гипотеза о возможности существования в природе подобных элементарных черных дыр (получивших название максимонов) была выдвинута в 1965 г. советским физиком М.А. Марковым. Максимоны (если только они действительно существуют в природе) могли бы играть роль максимально тяжелых элементарных частиц. Обладая сравнительно большой (почти макроскопической) массой, максимон имеет крайне малый размер: 1пл ~ 10-33 сантиметра. Чрезвычайно малое сечение взаимодействия максимонов с веществом (сигма mпл~10-66 см2) приводит к тому, что звезды и планеты практически полностью для них прозрачны (длина свободного пробега максимона в веществе ядерной плотности сравнима с размером видимой части Вселенной). Поэтому даже если бы в настоящее время максимонов во Вселенной было много, то крайне трудно было бы обнаружить их теми методами, которыми регистрируют другие элементарные частицы.
Исходя из оценок средней плотности вещества во Вселенной, можно заключить, что если бы максимоны были распределены равномерно, то на 1 млрд. км3 пространства приходилось бы не более одного максимона. Если справедлива стандартная модель горячей Вселенной, то даже при средней плотности максимонов в настоящее время порядка критической (~10-29 г/см3), на ранних этапах эволюции Вселенной доля вещества в максимонной составляющей была пренебрежимо мала. В настоящее время вопрос о существовании максимонов и их роли в эволюции Вселенной остается открытым. Завершая рассказ о черных дырах, хотелось бы обратить внимание на следующее. Еще 20 лет назад мало кто верил в саму возможность существования черных дыр. Гипотеза о черных дырах привлекла к себе пристальное внимание после открытия нейтронных звезд. И удивительное дело - черные дыры сразу "пришлись ко двору" в астрофизике. Им нашлось место не только в виде остатков при вспышках сверхновых, но и в ядpax шаровых скоплений, галактик и квазаров.
После открытия С. Хокингом явления квантового испарения черных дыр особое значение приобрел вопрос о (космологической роли малых черных дыр. Гипотеза об элементарных черных дырах (максимонах) не только интересна своими возможными космологическими следствиями, - но и существенна для физики элементарных частиц. Виртуальные черные дыры явятся, возможно, важным элементом будущей квантовой теории гравитации. Исследование свойств черных дыр привело к обнаружению глубоких связей между гравитацией и термодинамикой. Этот простой перечень говорит о том, что за последние 16-15 дет, по сути дела, возникла, новая область науки - физика черных дыр со своим объектом исследования и своими проблемами. Проблемы эти, зачастую носят столь фундаментальный характер, а объект настолько удивителен, что эта область привлекает внимание многочисленных исследователей.
Список литературы
1. Гинзбург В.Л. О теории относительности. М., Наука, 1979.
2. Зельдович Я.Б., Новиков И.Д. Теория тяготения и эволюция звезд. М., Наука, 1971.
3. Зельдович Я.Б., Новиков И.Д. Черные дыры во Вселенной. - Природа, 1972, N 4, с. 28.
4. Зельдович Я.Б., Новиков И.Д., Староби'н-ский А.А. Черные и белые дыры. - Природа, 1976, № 1, с. 34.
5. Кауфман У. Космические рубежи теории относительности. М., Мир, 1981.
6. Киржниц Д.А., Фролов В.П. намика, информация. - Природа, 1981, N 11. с. 2.
7. Лайтман А.П., Сюняев Р.А., Шакура Н.И., Шапиро С.Д., Эрдли Д.М. Современное состояние данных о Лебеде Х-1. - Успехи физических наук, 1978, т. 126, с. 515.
8. Новиков И.Д. Черные дыры во Вселенной. М., Знание, 1977.
9. Новиков И.Д., Пол на рев А.Г. Первичные черные дыры. - Природа, 1980, Л" 7, с. 12.
10. Фролов В.П. Черные дыры и" квантовые процессы в них. - Уепехи физических наук, 1976, т. 118, с. 473.
Размещено на Allbest.ru
...Подобные документы
Сущность гравитации - универсального фундаментального взаимодействия между материальными телами. Сходство между гравитационными и электромагнитными силами. Интересные факты о гравитации. Чёрные дыры в центрах галактик. Экспериментальная антигравитация.
реферат [28,3 K], добавлен 25.11.2014Описание свойств электромагнитных полей математическими средствами. Дефект традиционной классической электродинамики. Базовые физические представления современной теории электромагнитного поля, концепция корпускулярно-полевого дуализма микрочастицы.
статья [225,0 K], добавлен 29.11.2011Концептуальное развитие основных физических воззрений на структуру и свойства электромагнитного поля в классической электродинамике. Системы полевых уравнений. Волновой пакет плоской линейно поляризованной электрической волны. Электромагнитные поля.
статья [148,1 K], добавлен 24.11.2008Макроскопическое электромагнитное поле в сплошных неподвижных средах. Уравнения Максвелла в дифференциальной форме. Энергия электромагнитного поля и теорема Пойнтинга. Применение метода комплексных амплитуд. Волновой характер электромагнитного поля.
реферат [272,7 K], добавлен 19.01.2011Понятие гравитационного поля как особого вида материи и его основные свойства. Сущность теории вихревых полей. Определение радиуса действия гравитационного поля. Расчет размеров гравитационных полей планет, их сравнение с расстоянием между ними.
реферат [97,9 K], добавлен 12.03.2014Анализ квантовой теории полей. Способ получения уравнения Клейна-Гордона-Фока для электромагнитного поля и его классическое решение, учитывающее соответствующие особенности. Процедура квантования (переход к частичной интерпретации электромагнитного поля).
доклад [318,7 K], добавлен 06.12.2012Основные параметры электромагнитного поля и механизмы его воздействия на человека. Методы измерения параметров электромагнитного поля. Индукция магнитного поля. Разработка технических требований к прибору. Датчик напряженности электромагнитного поля.
курсовая работа [780,2 K], добавлен 15.12.2011Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.
контрольная работа [1,7 M], добавлен 31.01.2013Приборы для измерения электромагнитного поля. Измерительные приемники и измерители напряженности поля. Требования к проведению контроля уровней ЭМП, создаваемых подвижными станциями сухопутной радиосвязи, включая абонентские терминалы спутниковой связи.
дипломная работа [613,2 K], добавлен 19.01.2015История открытия сверхпроводников, отличие их от идеальных проводников. Эффект Мейснера. Применение макроскопического квантового явления. Свойства и применение магнитов. Использование в медицине медико-диагностической процедуры как электронной томографии.
презентация [7,4 M], добавлен 18.04.2016История создания общей теории относительности Эйнштейна. Принцип эквивалентности и геометризация тяготения. Черные дыры. Гравитационные линзы и коричневые карлики. Релятивистская и калибровочная теории гравитации. Модифицированная ньютоновская динамика.
реферат [188,4 K], добавлен 10.12.2013Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.
шпаргалка [619,6 K], добавлен 04.05.2015Появление вихревого электрического поля - следствие переменного магнитного поля. Магнитное поле как следствие переменного электрического поля. Природа электромагнитного поля, способ его существования и конкретные проявления - радиоволны, свет, гамма-лучи.
презентация [779,8 K], добавлен 25.07.2015Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.
реферат [578,5 K], добавлен 10.07.2011Анализ физико-математических принципов аксиоматического построения первичных уравнений электромагнитного поля, физическое содержание которых представляет собой концептуально новый уровень развития полевой теории классического электромагнетизма.
статья [164,4 K], добавлен 22.11.2009Гравитационное взаимодействие как первое взаимодействие, описанное математическлй теорией. Небесная механика и некоторые её задачи. Сильные гравитационные поля. Гравитационное излучение. Тонкие эффекты гравитации. Классические теории гравитации.
презентация [1,8 M], добавлен 05.09.2011Краткие сведения о жизненном пути и деятельности Максвелла Джеймса Клерка - британского физика и математика. Кинетическая теория газов и теоретические выводы Максвелла о существовании электромагнитного поля. Основные достижения и изобретения физика.
презентация [141,6 K], добавлен 01.02.2013Исследование гравитационного линзированных систем - один из приоритетных направлений современной астрофизики. Остаточная среднеквадратичная погрешность волнового фронта. Описание телескопа АЗТ-22 для получения изображений с высоким угловым разрешением.
статья [91,4 K], добавлен 22.06.2015Вопрос о среде. Масса. Строение вещества. Химические связи. Некоторые следствия. Электропроводность. Захват, излучение фотона. Эффект антигравитации. Красное смещение, постоянная Хаббла. Нейтронные звёзды, чёрные дыры. Тёмная материя. Время, Вселенная.
статья [368,0 K], добавлен 21.09.2008Основные виды взаимодействия в классической физике. Характеристика элементарных частиц, специфика их перемещения в пространстве и главные свойства. Анализ гравитационного притяжения электрона и протона. Осмысление равнозначности законов Ньютона и Кулона.
статья [40,9 K], добавлен 06.10.2017