Устройство электрических машин и применяемые для их изготовления материалы

Основные элементы конструкции вращающихся электрических машин, виды их исполнения. Особенности систем охлаждения и асинхронных двигателей. Характеристика конструктивных, активных и электроизоляционных материалов, применяемых в электромашиностроении.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.12.2012
Размер файла 466,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

15

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. УСТРОЙСТВО ЭЛЕКТРИЧЕСКИХ МАШИН

1.1 ВИДЫ ИСПОЛНЕНИЯ

2. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ В ЭЛЕКТРОМАШИНОСТРОЕНИИ

2.1 КОНСТРУКТИВНЫЕ И АКТИВНЫЕ МАТЕРИАЛЫ

2.2 ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Материалы, применяемые в электромашиностроительной промышленности, в значительной степени определяют технические показатели электрических машин. Использование высококачественной стали позволяет существенно уменьшить вес и габариты машин и увеличить их к. п. д. Свойства изолирующих материалов и лаков ограничивают допустимые электромагнитные нагрузки. Толщина и нагревостойкость изоляционных материалов определяют степень использования электрических машин. Обычно изоляция занимает в среднем 30% общего объема паза, в котором заложены проводники обмотки. Уменьшение толщины изоляции позволяет увеличить объем проводников в пазу, а следовательно, увеличить мощность машины при сохранении ее габаритов. Повышенная нагревостойкость изоляционных материалов также позволяет увеличить нагрузку машины.

1. УСТРОЙСТВО ЭЛЕКТРИЧЕСКИХ МАШИН

Вращающиеся электрические машины независимо от их исполнения имеют некоторые однотипные элементы конструкции. Каждая вращающаяся машина имеет две основные части: вращающийся ротор 1 и неподвижный статор 2 (рис. 1). В большинстве случаев ротор располагается внутри статора. Между ними всегда имеется воздушный зазор 3. Ротор крепится на валу 4, который опирается на подшипники 5. Один конец вала удлинен для сопряжения с другими рабочими механизмами. Подшипники обычно располагаются в подшипниковых щитах 6, прикрепленных болтами к корпусу (станине) 7. Статор также крепится к корпусу.

Рисунок 1 - Конструктивная схема электрической машины: 1 - ротор; 2 - статор; 3 - воздушный зазор; 4 - вал; 5 - подшипники; 6 - подшипниковые щиты; 7 - корпус

На рис. 2 и 3. дан общий вид асинхронных двигателей, а на рис. 4 представлен двигатель в разобранном виде.

Часть машины, где размещается рабочая обмотка, в которой индуктируется э. д. с, называется якорем. Якорем может быть ротор или статор.

Рисунок 2 - Асинхронный двигатель в защищенном исполнении:

1 - лапы для крепления машины; 2 - вентиляционное окно для входа охлаждающего воздуха; 3 - подшипник; 4 - вал; 5 - подшипниковые щиты; 6 - корпус; 7- вентиляционное окно для выхода воздуха

Системы охлаждения. Электрические машины выполняются с естественным и искусственным охлаждением. В качестве охлаждающей среды используется воздух, в некоторых случаях масло, водород или вода.

Естественное охлаждение происходит за счет теплопроводности, конвекции и лучеиспускания. Движение охлаждающей среды может создаваться в результате вращения частей машины, в которой не имеется специальных вентиляционных приспособлений. Микромашины обычно имеют естественное охлаждение.

Рисунок 3 - Асинхронный двигатель в закрытом исполнении:

1 - лапы для крепления машины; 2 - подшипниковый щит; 3 - подшипник; 4 - вал; 5 - корпус; 5 -кожух. Стрелки А и В показывают направление движения воздуха

Вращающиеся электрические машины мощностью более 0,6 кВт обычно выполняются с искусственным охлаждением, которое осуществляется при помощи специальных вентиляционных устройств. Применение вентиляции позволяет существенно повысить мощность и является экономически целесообразным. Машины с искусственным охлаждением имеют меньшие габариты, вес и расход активных материалов.

Электрические машины малых и средних мощностей обычно выполняются с самовентиляцией. В этом случае напор охлаждающегося воздуха создается вентилятором, который укрепляется на валу, или вентиляционными лопатками и приспособлениями (см. 8 на рис. 4), укрепленными на торцовой поверхности ротора.

Рисунок 4 - Асинхронный двигатель защищенного исполнения в разобранном виде:

1 - ротор; 2 - статор; 3 - лапы для крепления; 4 - вал; 5 - подшипники; 6 - подшипниковые щиты; 7 - корпус; 8 - вентиляционные лопатки

В машинах охлаждающий воздух может прогоняться в направлении оси вала (рис. 1.1, а). Такая система вентиляции называется осевой. Осевая вентиляция может быть вытяжной или нагнетательной. В первом случае вентилятор помещается на «выходе», во втором - на «входе» воздуха. Охлаждающий воздух может прогоняться и в радиальном направлении (рис. 1.1, б), проходя по радиальным каналам между пакетами стали и обдувая лобовые части обмоток, Такая система вентиляции называется радиальной.

Во многих случаях применяется комбинированная радиально-осевая система вентиляции.

1.1 ВИДЫ ИСПОЛНЕНИЯ

У электрических микромашин объем активных частей, в которых выделяется тепло, небольшой по отношению к поверхности охлаждения. Поэтому потери, приходящиеся на единицу поверхности охлаждения, небольшие, и микромашины сравнительно хорошо охлаждаются естественным путем. К тому же в микромашинах не остается места для размещения вентилятора, поэтому они (микромашины) обычно выполняются закрытыми и имеют внешнее естественное охлаждение.

Рисунок 5. - Система вентиляции: а - осевая; б - радиальная

Основным исполнением электрических машин мощностью свыше 0,6 кВт является защищенное и закрытое обдуваемое. Машины в защищенном исполнении предохранены от случайного прикосновения к вращающимся и токоведущим частям, а также от попадания внутрь посторонних предметов. Машина, имеющая приспособления, защищающие от попадания в нее капель, падающих под углом к вертикали, называется брызгозащищенной. Доступ к вращающимся и токоведущим частям защищенной машины затруднен (рис. 5 и 6), так как вентиляционные окна, предназначенные для входа и выхода охлаждающего воздуха, расположены снизу таким образом, что брызги не могут попадать внутрь машины.

В машинах закрытого исполнения отсутствует интенсивное сообщение между ее внутренним пространством и окружающей средой. Для лучшего охлаждения нагретых частей внутри машины создается циркуляция воздуха, которая в некоторых случаях осуществляется внутренним вентилятором. Для лучшего охлаждения корпуса такой машины часто выполняется ребристым и обдувается внешним вентилятором, который прогоняет воздух, засасываемый из внешней среды, между корпусом и направляющим кожухом. В торцовой части кожуха имеются отверстия. Направление, в котором воздух засасывается в отверстие, показано стрелкой А. Стрелка В показывает направление движения воздуха, охлаждающего корпус.

Рис. 6 - Защищенный асинхронный двигатель с вертикальным расположением вала и фланцевым исполнением:

1 - окно, предназначенное для входа охлаждающего воздуха; 2 - окно, предназначенное для выхода охлаждающего воздуха; 3 - фланец

Закрытые машины могут быть герметическими, имеющими газонепроницаемое, водонепроницаемое и взрывобезопасное исполнения. Мощность закрытых невентилируемых двигателей средних и больших мощностей при одинаковом нагреве обмоток должна быть уменьшена почти в два раза по сравнению с обдуваемыми машинами.

Электрические машины обычно выполняются для работы при горизонтальном или вертикальном положении вала. Крепление машины, как правило, осуществляется при помощи лап, расположенных на ее корпусе (см. рис. 2, 3 и 4). Некоторые машины вместо лап имеют для крепления на подшипниковом щите фланец (см. рис. 1.2).

Применяемые в электропромышленности материалы делятся на три группы: конструктивные, активные и электроизоляционные.

2. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ В ЭЛЕКТРОМАШИНОСТРОЕНИИ

2.1 КОНСТРУКТИВНЫЕ И АКТИВНЫЕ МАТЕРИАЛЫ

электрический машина охлаждение конструктивный

Из конструктивных материалов изготовляются части машины, несущие механическую нагрузку. В электромашиностроении применяются в основном те же конструктивные материалы, что и в общем машиностроении. К ним относятся сталь, чугун, цветные металлы и пластмассы.

Активные материалы служат для проведения магнитного потока машины и электрического тока и делятся на токопроводящие и магнитопроводящие.

В качестве основного токопроводящего материала до последнего времени использовалась медь, которая сравнительно недорога, имеет малое электрическое сопротивление, хорошо сваривается и обладает хорошими антикоррозийными свойствами. Однако медь дефицитна, поэтому в последние годы в качестве проводникового материала начали применять более дешевый и широко распространенный алюминий. Его достоинствами являются низкий удельный вес, более высокая проводимость на единицу веса, легкость механической обработки и хорошие антикоррозийные свойства. Недостатком алюминия является повышенное удельное электрическое сопротивление и плохая свариваемость. Вследствие повышенного удельного электрического сопротивления машины с алюминиевыми обмотками имеют большие габариты. В электромашиностроении широко применяют различные медные сплавы, например латунь, фосфористую бронзу и т. д.

К токопроводящим элементам следует отнести также щетки, при помощи которых осуществляется съем тока с вращающихся обмоток через контактные кольца или коллектор. Щетки обычно изготовляются на основе графита, угля или меди. Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5% кремния. Присадка кремния уменьшает потери на гистерезис. Вследствие увеличения удельного электрического сопротивления стали уменьшаются потери на вихревые токи. Сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали. Толщина стального листа от 0,5 до 0,15 мм.

Для проведения постоянного магнитного потока широко используется стальное литье и чугун.

2.2 ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

Электроизоляционные материалы применяются для электрической изоляции токоведущих частей машины. Изоляция обмоточных проводников машины в значительной мере определяет ее технико-экономические показатели и эксплуатационные качества. От толщины изоляции существенно зависят габариты и вес машины. Применяемые изоляционные материалы должны иметь высокую электрическую прочность, быть нагрево-, влаго- и химически стойкими. Изоляция должна также обладать высокими удельными сопротивлениями и малыми диэлектрическими потерями. От твердых материалов требуется достаточная механическая прочность.

По условию нагревостойкости твердые электроизоляционные материалы делятся на семь классов. Наибольшее распространение до последнего времени имели материалы класса А, к которому относятся пропитанные бумага, картон, дерево, хлопчатобумажные и шелковые ткани и ленты. Материалы пропитываются с целью улучшения электрической прочности и теплопроводности, а также для уменьшения гигроскопичности. Пропитывающими веществами могут служить трансформаторное масло, масляные лаки и битумные составы. Допустимая температура нагрева для материалов этого класса составляет 105° С. При отсутствии пропитки эти изоляционные материалы принадлежат к классу У, их допустимая температура нагрева 90° С.

В последнее время начинают широко применять синтетические изоляционные материалы, которые имеют малую толщину и высокие электрические и механические показатели. Синтетические органические пленки типа лавсан, пластмассы с органическим наполнителем и слоистые пластики принадлежат к электроизоляционным материалам класса Е, допустимая температура нагрева которых 120° С.

К материалам класса В принадлежат изделия из слюды, асбеста и стеклянного волокна, содержащие для их связывания и пропитки органические лаки и смолы повышенной нагревостойкости, а также изделия из пластмассы с неорганическим наполнителем. К этому классу относятся такие высококачественные материалы, как микалента и микафолий, изготовляемые из пластинок слюды, склеенных между собой и наклеенных на бумагу. Они хорошо удовлетворяют всем требованиям, предъявляемым к изоляционным материалам, но относительно дороги. Предельно допустимая температура нагрева для материалов класса В 130° С.

В последнее время получает широкое распространение синтетическая изоляция типа термопластик, изготовленная на слюдяной основе с применением термоактивного полиэфиростирольного компаунда. Электроизоляционные и механические свойства термопластика выше, чем микаленты, но он имеет более сложную технологию изготовления. Изделия из слюды, асбеста и стеклянного волокна, на основе синтетических пропитывающих составов, принадлежат к электроизоляционным материалам класса F, их допустимая температура нагрева 155° С. Те же материалы, применяемые в сочетании с кремнийорганическими связывающими и пропитывающими веществами, принадлежат к классу Н, допустимая температура нагрева которого 180° С. Кремнийорганическая изоляция является особенно перспективной, хотя она в настоящее время относительно дорога.

К материалам класса С относятся изделия из слюды, стекла, стекловолокна, фарфора и других неорганических материалов без примеси органических связывающих веществ. Допустимая температура для материалов этого класса не ограничивается.

ЗАКЛЮЧЕНИЕ

Технические показатели электрических машин и их надежность в значительной мере зависят не только от правильной конструкции и расчета, но и от правильного выбора магнитных и изолирующих материалов, их свойств и качеств, а также от материалов конструктивных элементов, обеспечивающих требуемую механическую прочность.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Кулик Ю.А. Электрические машины. М.: Высш. школа. 1966. 327с.

2. Брускин Д.Э., Зорохович А.Е., Хвостов В.С. Электрические машины. Часть 1. М.: Высш. школа. 1979. 156 с.

Размещено на Allbest.ru

...

Подобные документы

  • Общие понятия и определение электрических машин. Основные типы и классификация электрических машин. Общая характеристика синхронного электрического двигателя и его назначение. Особенности испытаний синхронных двигателей. Ремонт синхронных двигателей.

    дипломная работа [602,2 K], добавлен 03.12.2008

  • Режимы работы и области применения асинхронных машин. Конструкции и обмотки асинхронных машин. Применение всыпных обмоток с мягкими катушками и обмотки с жесткими катушками. Отличительные черты короткозамкнутых и фазных обмоток роторов асинхронных машин.

    реферат [708,3 K], добавлен 19.09.2012

  • Понятие электрических машин, их виды и применение. Бытовая электрическая техника и оборудование предприятий. Устройство и принцип действия трёхфазного электрического двигателя, схемы соединения его обмоток. Формулы 3-х фазных ЭДС. Виды асинхронных машин.

    презентация [2,8 M], добавлен 02.02.2014

  • Разборка машин средней мощности. Ремонт статорных обмоток машин переменного тока. Обмотки многоскоростных асинхронных двигателей с короткозамкнутым ротором. Ремонт якорных и роторных обмоток. Ремонт обмоток возбуждения. Сушка и пропитка обмоток.

    учебное пособие [3,4 M], добавлен 30.03.2012

  • Описание устройства и работы асинхронного двигателя. Типы и характеристика электрических машин в зависимости от режима работы. Технические требования при выборе промышленных электродвигателей. Техника безопасности при монтаже электрических машин.

    реферат [16,5 K], добавлен 17.01.2011

  • Повышение мощности крупных электрических машин. Увеличение коэффициента полезного действия. Повышение уровня надежности. Модернизация узла токосъема (контактных колец-щеток), экскаваторного электропривода для тяжелых электрических карьерных экскаваторов.

    курсовая работа [247,7 K], добавлен 30.01.2016

  • Виды и характеристика испытаний электрических машин и трансформаторов. Регулировка контакторов и магнитных пускателей, реле и командоаппаратов. Испытания трансформаторов после капитального ремонта. Выдача заключения о пригодности к эксплуатации.

    реферат [29,3 K], добавлен 24.12.2013

  • Общие сведения об электрических машинах. Неисправности, разборка, ремонт токособирательной системы электрических машин. Коллекторы. Контактные кольца. Щеткодержатели. Ремонт сердечников, валов и вентиляторов электрических машин. Сердечники. Вентиляторы.

    реферат [104,0 K], добавлен 10.11.2008

  • Конструкция обмотки статора высоковольтных электрических машин. Дефекты в изоляции высоковольтных статорных обмоток, возникающие в процессе производства. Общие сведения об адгезии. Методы неравномерного отрыва. Характеристика ленты Элмикатерм 52409.

    дипломная работа [3,2 M], добавлен 18.10.2011

  • Конструкция, принцип работы силовых масляных трансформаторов, синхронных турбогенераторов, синхронных явнополюсных двигателей и асинхронных двигателей. Расчет установившейся работы в узле нагрузки и при пониженном напряжении, оценка работы оборудования.

    курсовая работа [3,0 M], добавлен 17.11.2009

  • Выбор электродвигателей и силового трансформатора. Основные технические характеристики. Определение структуры ЭРЦ по ремонту электрических машин. Составление графика ППР. Правила техники безопасности при ремонтах электрооборудования насосной станции.

    курсовая работа [528,0 K], добавлен 07.08.2013

  • Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.

    реферат [206,2 K], добавлен 27.07.2013

  • Назначение, виды и монтаж устройств защитного заземления. Ремонт обмоток электрических машин, бандажирование и балансировка роторов и якорей. Сборка и испытание электрических машин. Методы оценки увлажненности и сушки изоляции обмоток трансформатора.

    контрольная работа [623,8 K], добавлен 17.03.2015

  • Сравнение характеристик электрических машин различных типов. Понятие постоянных и переменных потерь энергии. Способы измерения частоты вращения асинхронного двигателя. Определение критического момента и номинальной мощности электрической машины.

    презентация [103,7 K], добавлен 21.10.2013

  • Пусковые свойства асинхронных двигателей. Расчёт намагничивающего тока. Параметры рабочего режима. Расчёт размеров зубцовой зоны. Масса активных материалов и показатели их использования. Расчёт рабочих характеристик двигателя. Расчёт обмотки статора.

    курсовая работа [1,9 M], добавлен 10.03.2014

  • Понятие и классификация тепловых машин, их устройство и компоненты, функциональные особенности и сферы практического применения. Отличительные признаки, условия использования двигателей внешнего и внутреннего сгорания, их преимущества и недостатки.

    контрольная работа [149,6 K], добавлен 31.03.2016

  • Анализ основных положений теории электрических цепей, основ промышленной электроники и электрических измерений. Описание устройства и рабочих свойств трансформаторов, электрических машин постоянного и переменного тока. Электрическая энергия и мощность.

    курс лекций [1,5 M], добавлен 12.11.2010

  • Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

    учебное пособие [7,3 M], добавлен 23.12.2009

  • Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа [1,6 M], добавлен 25.02.2010

  • Принцип действия электрических машин на основе гидрогенератора, сфера его применения в электроэнергетике. Основные законы электротехники на которых основаны процессы электрического и электромеханического преобразования энергии. Системы возбуждения.

    реферат [346,3 K], добавлен 21.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.