Судовая энергетическая установка

Принцип действия и устройство, выбор параметров и расчет мощности судовых энергетических установок. Характеристики судовых электроэнергетическихх комплексов. Значение и параметры потребителей тепловой энергии. Судовые средства защиты окружающей среды.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 13.12.2012
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, ГТД можно рассматривать как совокупность генератора газа и пропульсивной турбины.

Передача. Оптимальные условия работы гребного винта и пропульсивной турбины ГТД обеспечиваются обычно при различных частотах вращения. Для достижения приемлемых экономичности, масс и габаритов частота вращения ротора пропульсивной турбины должна быть значительно выше, чем гребного винта. Снижение частоты вращения осуществляется в передаче при обязательном требовании минимальных потерь мощности.

Передача может выполнять и другие функции, в частности «собирать» мощности нескольких двигателей на один движитель, «раздавать» мощность теплового двигателя на несколько движителей, разобщать двигатели от движителей, осуществлять реверс и т. д.

Различают передачи механические, гидравлические, электрические. Последняя может работать на переменном и постоянном токе. В первом случае потери энергии в передаче составляют 6-- 14%, во втором--11--19%. Для электропередач характерны большие массы и габариты: так, приходящаяся на 1 кВт масса электропередачи составляет 7--22 кг. Несомненны преимущества электропередач:

-- возможность использования нереверсивного главного двигателя;

-- удобство управления установкой;

-- уменьшение длины гребных валов;

-- отсутствие жесткой связи между главным двигателем и винтом и т. д.

Чисто гидравлическая передача имеет относительно малый КПД: 95--96 и 85--88 % -- соответственно гидромуфты и гидротрансформатора переднего хода, 70--75 % --гидротрансформатора заднего хода. По этой причине их предпочитают применять в сочетании с механической передачей. Механическая (обычно зубчатая) передача имеет высокий КПД (до 98--99 % ) и находит преимущественное применение на судах .

Общая компоновка ГТУ. На судах применяют ГТУ двух основных типов: с ГТД промышленного (тяжелого) типа; с ГТД авиационного (легкого) типа. Компоновочные схемы этих ГТУ могут существенно отличаться. Для ГТУ второго типа характерно выполнение ГТД в рамном или безрамном варианте, с трубчатым основанием, в звукоизолирующем кожухе.

Максимально возможная часть систем, обеспечивающих работу ГТД, смонтирована на нем или в его раме; основные вспомогательные механизмы (например, основные топливный и масляный насосы) навешены на ГТД и приводятся от блока его вращения, в наименьшей степени изменяющего частоту вращения при переходе ГТД с режима на режим.

На редукторе ГТУ также смонтированы обеспечивающие его работу системы и механизмы (например, навесные маслонасосы). Связь ГТД с редуктором осуществляется посредством рессор.

Системы ГТУ включают комплексы разнообразных технических средств, при помощи которых могут быть осуществлены все эксплуатационные режимы работы установки, а также ее техническое обслуживание. Условно их можно разделить на две группы. Первая группа--это комплексы технических средств, которые позволяют управлять установкой, т.е. задавать и поддерживать необходимые режимы се работы и изменять эти режимы при необходимости.

К ним относятся системы:

- управления, воздействующая на подачу топлива в КС, на системы пуска и реверса и другие системы, обеспечивающие поддержание и изменение режима работы;

- пуска, с помощью которой ГТУ вводится в действие;

- реверса, обеспечивающая изменение направления упора, создаваемого гребным винтом или другим движителем.

Ко второй группе относятся следующие системы, обеспечивающие оптимальные условия для работы ГТУ:

- топливная, состоящая из технических средств, размещенных на ГТД, а также вне двигателя;

-масляная с техническими средствами на ГТД, передаче (редукторе) и вне их;

-охлаждения забортной водой, размещенная обычно вне ГТУ и предназначенная для охлаждения масла ГТУ в маслоохладителях;

- сжатого воздуха, технические средства которой размещены как на ГТУ, так и вне установки;

- промывки проточной части;

- антиобледенительная (система обогрева входного устройства ГТД) и ряд других.

Кроме того, работа ГТД на судне обеспечивается воздухоприемным и газовыпускным устройствами, системой теплоизоляции ГТД.

Судовые ГТУ промышленного типа. Примером названных установок может служить ГТУ-20 судна «Парижская коммуна». Она состоит из двух одинаковых установок ГТУ-10, работающих через общий редуктор на один ВРШ. Особенностью ГТУ-20 является блокированная ТНД, что потребовало установки ВРШ.

Установки промышленного типа МS-1000, МS-3000, МS-5000, МS-7000 и их модификации фирмы «Дженерал электрик» конвертированы в судовые из стационарных ГТУ. Все они работают по открытому циклу с регенерацией теплоты уходящих газов для подогрева воздуха.

Особенностью ГТУ М5-3012К является привод генератора переменного тока от ТНД и постоянная частота их вращения. Главный электродвигатель (ГЭД) переменного тока с постоянной частотой вращения приводит в действие ВРШ. Установка М5-3012К со всеми обслуживающими механизмами и системами расположена на верхней палубе судна, а ГЭД -- в машинном отделении.

Судовые ГТУ легкого типа. На судах такие ГТУ нашли применение в следующем исполнении:

- с одним компрессором и одной турбиной (блокированная, рис. 1.6, а);

-с одним турбокомпрессором и свободной ТВ (рис. 1.6, б);

-- с двумя турбокомпрессорами и свободной ТВ (см. рис. 1.2). Были проведены большие работы по конвертированию авиационных ГТД для использования их на судах: в СССР -- ГТУ М-25.

В США были созданы ГТД типов: LМ-100, LМ-300, LМ-1500, LМ-2500, LМ-5000, FТ-4А, FТ-4А12, FТ-4С-2 и др.; в Англия - типов «Олимп», «Тайн», «Гном» и др. Некоторые данные о судовых ГТД авиационного типа приведены в табл. 1.4.

Судовые газотурбинные установки с теплоутилизирующим контуром (ТУК) ГТУ М-25 мощностью 25 000 кВт эксплуатируются на судах типа «Капитан Смирнов».

Головной газотурбоход «Капитан Смирнов» -- ролкер водоизмещением 35 000 т. Он предназначен для перевозки пакетированных грузов и контейнеров, имеет две ГТУ суммарной мощностью 36 800 кВт. Скорость судна 27 уз. На газотурбоходе высок уровень автоматизации. В машинном отделении нет постоянной вахты.

Контролирует работу оборудования с центрального поста управления энергетической установкой один механик. Главным двигателем управляет с мостика вахтенный штурман. Оттуда же осуществляется управление мощными подруливающими устройствами, расположенными в носу и корме. Благодаря им при швартовных операциях можно обходиться без помощи портовых буксиров.

Установка ГТУ М-25 состоит из газотурбинного двигателя, редуктора и теплоутилизирующего контура, который в свою очередь включает в себя паровой котел с сепаратором пара я арматурой дистанционного управления, паровую турбину с конденсатором и вспомогательное оборудование.

Тепловая схема ГТУ дана на рис. 5.2 Атмосферный воздух засасывается КНД 6 и последовательно сжимается в КНД и КВД 5. Затем в камере сгорания 4 при постоянном давлении происходит сжигание топлива, и образовавшийся при этом газ расширяется последовательно в ТВД 3, ТНД 2 и турбине винта (ТВ) 1. Отсюда газ поступает утилизационный котел 7, где отдает теплоту питательной воде. Пар из котла направляется в силовую паровую турбину 21, совместно с ТВ вращающую через упругие муфты и редуктор 24 гребной винт. Вся мощность ТВД и ТНД полностью потребляется соответственно КВД и КНД.

Утилизационный котел (расположен над газоотводом ГТД) -- водотрубный с многократной принудительной циркуляцией, в сечении имеет прямоугольную форму. Котел состоит из экономайзера, испарителя и пароперегревателя, между которыми предусмотрены пазухи для размещения опорных балок крепления трубных пакетов, осмотра и ремонта поверхности горения. Котел включает в себя также сепаратор пара, служащий для отделения пара от пароводяной смеси, поступающей из испарителя котла.

Паровая турбина состоит из регулировочной ступени в виде двухвенечного колеса и семи ступеней давления. Ее сварнолитой корпус изготавливается с корпусами (стульями) подшипников. На верхней крышке крепится паровпускной быстрозапорный клапан, а на выпускном патрубке -- дроссельно-увлажнительная установка.

Ротор паровой турбины составной -- с насадными дисками. Упорный гребень выполнен заодно с валом. Турбина имеет два опорных и один упорный подшипники. Опорные подшипники имеют стальные вкладыши, залитые баббитом. Упорный подшипник двусторонний с самоустанавливающими упорными сегментами Конденсатор двухпроточный, он одновременно является рамой, на которой располагаются турбина и вспомогательное оборудование. Редуктор позволяет подключить и отключить паровую турбину при работающем и остановленном ГТД, обеспечивает проворачивание валопровода при неработающих ГТД и паровой турбине и стопорение валопровода.

В правой части рисунока 5.2 представлен теплоутилизирующий контур одного борта установки. Питательная вода из теплого ящика 15 электропитательным насосом 14 подается через двухимпульсный регулятор 12 питания в сепаратор 11 питания. Из него насос 13 многократной циркуляции подает воду в экономайзер 8. Из него вода по опускным трубам идет в испаритель 9. Затем пароводяная смесь поступает в сепаратор. Из него влажный пар направляется в пароперегреватель 10 и далее (уже перегретый пар) через главный стопорный клапан 19 - к быстрозапорному клапану 20 паровой турбины. Схемой ТУК предусматривается отбор 6000 кг/ч перегретого пара из главного паропровода на турбогенератор мощностью 1000 кВт и 2000 кг/ч насыщенного пара из сепаратора на общесудовые нужды.

Рисунок 5.2 Тепловая схема ГТУ с ТУК газотурбохода «Капитан Смирнов» (одного борта)

Главный стопорный клапан открывается автоматически при давлении пара 0,4 МПа. При достижении давления в конденсаторе 5--6 КПа открывается быстрозапорный клапан в положение холостого хода, и паровая турбина начинает набирать частоту вращения.

Как только паровая турбина сравняется по частоте вращения с турбиной винта, происходят синхронизация и подключение паровой турбины к редуктору. Избыток пара при этом стравливается через редукционное охладительное устройство 22 и дроссельно-увлажнительное устройство 23 в выпускной патрубок турбины на конденсатор 18. Оттуда электроконденсатный насос 17 возвращает конденсат в теплый ящик через регулятор уровня конденсата 16. После прогрева паровой турбины на режиме холостого хода в течение 12--15 мин БЗК открывается полностью, и паровая турбина начинает работать в режиме полной мощности.

Газотурбинная установка может устойчиво эксплуатироваться как при работе с ТУК, так и без него. Включение ТУК происходит при подаче питательной воды в котел и может производиться при любом режиме работы ГТД (горячий пуск) и при неработающем ГТД (холодный пуск). Пуск ТУК и управление им осуществляются с центрального поста управления. Отбор пара на турбогенератор производится вручную.

В установке предусмотрена возможность работы перекрестным путем. В этом случае работает газовая турбина с ТУК одного борта, пар подается на паровую турбину другого борта. При этом газовая турбина этого борта не работает (снимают рессору от ТВ к редуктору), при такой работе подача топлива уменьшается почти в 2 раза (при скорости судна примерно 20 уз).

Ресурс всего агрегата составляет 100000 ч (примерно 25 лет). В то же время ресурс ГТД до заводского ремонта составляет 25000 ч. После заводского ремонта ресурс ГТД восстанавливается. Технический ресурс ГТД (до замены) равен 50000 ч (приблизительно 12,5 года).

При наличии запасного ГТД на судне (или обменного фонда ГТД| его замена может быть проведена силами судового экипажа в течение двух суток, т.е. во время погрузочно-разгрузочных работ в порту. Любой из навешенных на ГТД агрегатов может быть заменен в течение 1-2 ч.

Газотурбинный двигатель (рисунок 5.3) изготавливается в морском (корабельном) исполнении.

Он состоит из осевых расположенных последовательно компрессоров -- семиступенчатого КНД 1 и девятиступенчатого КВД 2 трубчато-кольцевой камеры сгорания 3, в корпусе: которой находятся десять жаровых труб 4 с форсунками и из распо-ложенных последовательно двухступенчатых ТВД 5 и ТНД 6 и четырехступенчатой ТВ 7.

Размещено на http://www.allbest.ru/

Материалы предоставлены интернет - проектом www.globalteka.ru®

Авторское выполнение научных работ любой сложности - грамотно и в срок

Рисунок 5.3 ГТУ М-25 со схематическим разрезом ГТД

Корпуса компрессоров, камеры сгорания и трубки соединяются между собой последовательно вертикальными фланцами и образуют единый корпус.

Вопросы для самопроверки

Устройство газотурбинного двигателя.

Устройство газотурбинной установки

Принцип работы ГТУ и ГТД.

Лекция 6. Судовые атомные энергетические установки. Принцип действия и устройство энергетических реакторов с водой под давлением

Атомные энергетические установки (АЭУ). В настоящее время вопрос о широком применении ядерного горючего в судовых энергетических установках становится все более актуальным. Интерес к судам с АЭУ особенно возрос в 1973-- 1974 гг., когда вследствие мирового энергетического кризиса резко повысились цены на органическое топливо. Основным преимуществом судов с АЭУ является практически неограниченная дальность плавания, что очень важно для ледоколов, судов арктического плавания, научно-исследовательских, гидрографических н пр.

Суточный расход ядерного горючего не превышает нескольких десятков граммов, а тепловыделяющие элементы в реакторе можно менять один раз в два--четыре года. АЭУ на транспортных судах, особенно на тех, которые совершают дальние рейсы с большой скоростью, позволяет значительно повысить грузоподъемность судна за счет практически полного отсутствия запаса топлива (это дает больший выигрыш, чем потери из-за значительной массы АЭУ). Кроме того, АЭУ может работать без доступа воздуха, что очень важно для подводных судов. Однако пока потребляемое АЭУ топливо еще очень дорого. Кроме того, на судах с АЭУ приходится предусматривать специальную биологическую защиту от радиоактивного излучения, которая утяжеляет установку. Надо полагать, что успехи в развитии атомной техники и в создании новых конструкций и материалов позволят постепенно устранить эти недостатки судовых АЭУ.

Все современные судовые АЭУ используют тепло, выделяющееся при делении ядерного горючего для образования пара, или нагрева газов, поступающих затем в паровую или газовую турбины. Основное звено атомной паропроизводящей установки АППУ реактор, в котором происходит ядерная реакция. В качестве ядерного горючего используют различные расщепляющиеся вещества, у которых процесс деления ядер сопровождается выделением большого количества энергии. К таким веществам относятся изотопы урана, плутония и тория.

Рисунок 6.1. Схема ядерного реактора

1-- активная зона; 2 --- урановые стержни; 3 -- замедлитель; 4 -отражатель; 5 -- теплоноситель; 6 -- биологическая защита; 7 - тепловой экран; 8 -- система регулирования

Наиболее важными элементами судовых реакторов являются (рис 6.2) активная зона, в которой размещены урановые стержни и замедлитель, необходимый для поглощения энергии выделяющихся при распаде ядер частиц нейтронов; отражатель нейтронов, возвращающий в активную зону часть вылетевших за ее пределы нейтронов; теплоноситель для отбора из активной зоны тепла, выделяющегося при делении урана, и передачи этого тепла другому рабочему телу в теплообменнике; экран биологической защиты, препятствующий распространению вредных излучений реактора; система управления и защиты, регулирующая течение реакции в реакторе и прекращающая ее в случае аварийного роста мощности.

Замедлителем в ядерных реакторах служит графит, тяжелая и обычная вода, а теплоносителем -- жидкие металлы с низкой температурой плавления (натрий, калий, висмут), газы (гелий, азот, углекислый газ, воздух) или вода.

В судовых АЭУ получили распространение реакторы, у которых и замедлителем и теплоносителем является дистиллированная вода, откуда и произошло их название водо-водяные реакторы. Эти реакторы проще по устройству, компактнее, надежнее в работе, чем другие типы, и дешевле. В зависимости от способа передачи тепловой энергии от реактора исполнительному механизму (турбине) различают одноконтурную, двухконтурную и трехконтурную схемы АЭУ.

По одноконтурной схеме (рисунок 6.2, а) рабочее вещество -- пар -- образуется в реакторе, откуда Поступает непосредственно в турбину и из нее через конденсатор с помощью циркуляционного насоса возвращается в реактор.

По двухконтурной схеме (рисунок 6.2, б) циркулирующий в реакторе теплоноситель отдает свое тепло в теплообменнике -- парогенераторе -- воде, образующей пар, который поступает в турбину. При этом теплоноситель пропускают через реактор и парогенератор циркуляционным насосом или воздуходувкой, а образующийся в конденсаторе турбины конденсат прокачивают конденсатным насосом через систему подогрева, фильтрации и подпитки и питательным насосом снова подают в парогенератор.

Трехконтурная схема (рисунок 6.2, в) представляет собой двухконтурную схему с включенным между первым и вторым контурами дополнительным промежуточным контуром.

Одноконтурная схема требует биологической защиты вокруг всего контура, включая и турбину, что усложняет обслуживание и управление и повышает опасность для экипажа. Безопаснее двухконтурная схема, так как здесь второй контур уже не опасен для экипажа. Поэтому на атомных судах почти всегда применяют двухконтурные схемы. Трехконтурные схемы используют в том случае, если теплоноситель в реакторе сильно активируется и его необходимо тщательно отделить от рабочего вещества, для чего и предназначен промежуточный контур.

Рисунок 6.2 Тепловые схемы ядерных энергетических установок:

а - одноконтурная; б - двухконтурная; в - трехконтурная.

1 - реактор; 2 - турбина; 3 - конденсатор; 4 - циркуляционный насос; 5 - парогенератор; 6 - конденсатный насос; 7 - система подогрева фильтрации и подпитки; 8 - питательный насос; 9 - теплообменник; 10 - биологическая защита.

Принцип действия и устройство энергетических реакторов. На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину.

В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.

Безопасность. Вокруг реактора приходится ставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения - бетон, свинец, вода, пластмассы и сталь.

Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.

Судовые ядерные реакторы. Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла.

Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий.

На всех военно-морских судах, на первом атомном ледоколе «Ленин», на первом грузо-пассажирском судне «Саванна» стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 2700С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре.

В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США «Си Вулф», где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико.

Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества - дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором - образование смолистых отложений.

Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.

Защита. Ее главная функция - обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах.

В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора.

Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом.

Основная функция вторичной защиты - снизить излучение радиоактивного изотопа азота 16N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен.

Экономичность судов с атомными энергетическими установками. Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.

Вопросы для самопроверки:

Что является источником энергии для АЭУ?

На какие категории делятся излучения АЭУ?

Что собой представляет двухоболочечный герметичный резервуар?

Лекция 7. Комбинированные СЭУ. Особенности комбинированных СЭУ и область их применения

Преимущества комбинированной установки. Комбинированная главная установка включает в свой состав разнотипные главные двигатели, которые могут быть термодинамически связанными друг с другом или термодинамически независимыми.

Преимущества КУ обычно определяются характером использования судна и его главной установки, а также особенностями главных двигателей различных типов.

Характер использования судов некоторых типов определяет их плавание преимущественно на скоростях, меньших полной. Так, китобойные и рыболовные траулеры, ледоколы, транспортные суда активного ледового плавания не все ходовое время эксплуатируются на полной скорости, чему препятствует ледовая обстановка или иные решаемые судном задачи.

В связи с примерно кубической зависимостью эффективной мощности установки от скорости водоизмещающего судна и ухудшением экономичности ГТУ при отклонении от расчетного режима желательно на скоростях, меньших полной, применять специальный двигатель, относительно маломощный с высокими экономичностью и долговечностью.

Таким требованиям в наибольшей степени отвечает ДВС, не исключено применение и других типов двигателей. Полный ход можно быстро развить с помощью двигателя (установки), который кроме высокой маневренности должен быть весьма мощным с относительно малой долговечностью (что позволяет выполнить его легким и малогабаритным). Такому требованию наиболее полно отвечает ГТУ, которая к тому же относительно проста в обслуживании.

Вопросы для самопроверки:

Особенности комбинированных СЭУ и область их применения.

Модуль 2. Распределение энергии на судне

Лекция 8. Тема Судовые электроэнергетические комплексы. Потребители электроэнергии на судах

Электрические станции на судне тепловые, т.е. источниками механической энергии служат тепловые двигатели - двигатели внутреннего сгорания и паровые (газовые) турбины.

На судах для привода в действие электрических генераторов используются почти исключительно двигатели внутреннего сгорания как вспомогательные, так и главные. Во втором случае отбор мощности от главных ДВС осуществляется непосредственно от его коленчатого вала либо от главной передачи, реже от валопровода.

По составу СЭС можно подразделить на автономные, смешанные и с едиными источниками механической и электрической энергии.

Автономные СЭС имеют только дизель- или турбогенераторы, как правиле, одного типа и одинаковой мощности.

Смешанные СЭС включают в себя агрегаты с различными источниками, например, дизель-генераторы и валогенераторы или дизель-генераторы и теплофикационные турбогенераторы. Смешанные СЭС, состоящие из дизель-генераторов и валогенераторов, широко распространены на средне- и крупнотоннажных траулерах. Смешанные СЭС, включающие дизель- и турбогенераторы с регулируемым отбором пара, применяются на рыбообрабатывающих судах.

В качестве примера СЭС с едиными источниками механической и электрической энергии могут служить электростанции судов, на которых валогенераторы - основной источник электроэнергии (траулеры „Пулковский меридиан", „Антарктика", „Моонзунд" и др.).

Главные ДВС представляют собой единые источники механической энергии для нужд движения судна и для привода в действие валогенераторов. К рассматриваемому типу СЭС относятся и электростанции промысловых судов с главными электрическими передачами. На таких судах главные дизель-генераторы обеспечивают питание электроэнергией гребных электродвигателей и общесудовых потребителей электроэнергии.

Род электрического тока. СЭС следует различать и по роду тока. Все современные суда оборудованы СЭС переменного тока. Электростанции, имеющие в своем составе источники как переменного, так и постоянного тока, встречаются сравнительно редко, только на судах с главными электрическими передачами постоянного тока и общесудовой сетью переменного тока. К разновидностям СЭС подобного типа следует отнести электростанции с двумя типами дизель-генераторов: постоянного тока для питания гребных двигателей и переменного тока для питания общесудовой электросети.

Частота и напряжение переменного тока в СЭС. В СЭС отечественного промыслового флота применяется стандартная частота генерируемого тока - 50 Гц. На судах зарубежной постройки можно встретить СЭС с частотой 60 Гц.

Стандартная частота 50 Гц определяет и стандартную частоту вращения электрогенераторов. В зависимости от числа пар полюсов электрогенераторов синхронная частота их вращения составляет:

Число пар полюсов 2 3 4 5 6

Частота вращения, мин"1:

при 50Нz 1500 1000 750 600 500

при 60 Hz 1800 1200 900 720 600

Наибольшее распространение на судах получили агрегаты с частотой вращения пг = 500 и пг = 750 мин"1, а высокооборотные агрегаты пг = 1000 ... 1500 мин"1 встречаются значительно реже и, как правило, на относительно небольших промысловых судах.

Напряжение тока в силовых электрических сетях 380 В и значительно реже 220 В, в осветительных 220 или 127 В. На судах с главными электрическими передачами переменного тока используют и более высокое напряжение. Например, на траулере „Наталья Ковшова" напряжение на зажимах главных генераторов U = 2000 В. Такое напряжение подводится и к ГЭД. Для других потребителей силовой сети напряжение тока трансформируется до U= 380 В, для освещения до U=220 В.

Применение более высокого напряжения при той же потребляемой мощности обусловливает снижение силы тока и позволяет уменьшить сечение кабелей, а следовательно, их массу и массу распределительных устройств.

По функциональному назначению потребители электрической энергии на судах могут быть разделены на три группы: общесудовые потребители, потребители СЭУ и потребители промыслово-производственного назначения.

В судовых электростанциях постоянного тока напряжение ограничивается 220В. Исключение составляют СЭС судов, оборудованных главными электрическими передачами постоянного тока, где напряжение может быть в несколько раз выше.

По функциональному назначению потребители электрической энергии на судах могут быть разделены на три группы:

К первой группе относятся электродвигатели палубных механизмов, насосов и вентиляторов судовых систем, потребители хозяйственно-бытового назначения, навигационное оборудование и связь;

Вторая группа потребителей включает в себя электродвигатели насосов, компрессоров, вентиляторов, обслуживающих системы СЭУ, потребители систем автоматики, управления и контроля за работой СЭУ;

В состав третьей группы входят: электродвигатели промысловых механизмов, рефрижераторных установок: электродвигатели и средства автоматики машин;

Время включения, продолжительность непрерывной работы, величина потребляемого тока и характер нагружения каждого потребителя определяются многими случайными факторами. Поэтому электрическая нагрузка СЭС в каждый конкретный момент представляют собой случайную величину, а ее изменения с течением времени - случайный процесс нагружения электростанции. К сожалению, информация о случайных процессах нагружения на основных режимах работы даже для наиболее распространенных судов весьма ограничена.

Валогенераторы общесудового назначения возникли в результате дальнейшего развития идеи использования резерва мощности главных ДВС для производства электрической энергии. При работе с донным тралом, кошельковым неводом, дрифтерными сетями, ярусным порядком главные ДВС имеют значительный резерв мощности в течение продолжительного времени.

Использование естественного резерва мощности главных ДВС при вращении валогенераторов позволяет сохранить часть ресурса вспомогательных ДВС, увеличить нагрузку на главные двигатели и за счет более высокой экономичности, чем у дизель-генераторов, сэкономить некоторое количество топлива или, по крайней мере, снизить эксплуатационные расходы по статье „топливо" за счет работы главных ДВС на тяжелом топливе.

Относительно высокая продолжительность режимов, казалось бы, позволяет рассчитывать на весьма ощутимый эффект от применения валогенераторов общесудового назначения. К сожалению, в реальных условиях эксплуатации судов он в значительной мере утрачивается из-за случайного характера спектров нагружения главных ДВС, а следовательно, и резерва их мощности, и потребления электроэнергии на судне.

Эффективность схемы СЭУ с отбором мощности зависит не только от величины резерва мощности главного ДВС, но и от уровня потребления электроэнергии в тот же момент. При случайном характере распределения резерва очевидны ситуации, когда резерв мощности главного ДВС Np то больше, то меньше уровня потребления электроэнергии . Равенство можно рассматривать лишь как случайное событие.

Оставляя в стороне вопрос о способе распределения нагрузок между валогенератором и автономными агрегатами СЭС, можно оценить предельное количество электроэнергии, которое в условиях промысловой работы траулера можно получить от валогенератора и его долю в энергетическом балансе СЭС.

При использовании валогенераторов в качестве основного источника электроэнергии на судах необходимо соблюдать ряд требований Регистра:

- при выходе из строя любого источника электроэнергии оставшиеся должны обеспечить питание ответственных потребителей в любых условиях плавания;

- при выходе и строя любого основного источника электроэнергии с независимым приводом должна быть предусмотрена возможность приведения СЭУ в действие.

Электрооборудование судна состоит из судовой электроэнергетической системы (СЭЭС) и потребителей (приемников) вырабатываемой ею электроэнергии. В состав СЭЭС входит судовая электростанция (источники электроэнергии и главный распределительный щит) и судовая электрическая сеть, включающая линии электропередач с распределительными щитами.

До второй мировой войны на судах в основном применяли постоянный ток, и в настоящее время благодаря успехам в развитии судовой электротехники и созданию надежного электрооборудования на переменном токе появилась возможность использовать в качестве основного переменный ток напряжением 220--380 В с частотой 50 Гц.

Хотя электродвигатели постоянного тока имеют ряд преимуществ (более простое и плавное регулирование в широком диапазоне частоты вращения, быстрое изменение направления вращения, допустимость больших перегрузок), на судах выгоднее устанавливать машины переменного тока, так как они меньше по габаритам и массе, имеют более высокий КПД, проще по конструкции, надежнее и дешевле. Кроме того, масса кабелей судовой сети переменного тока меньше, чем постоянного; при переменном токе проще осуществить подачу питания с берега. Важным преимуществом является также меньшая пожара и взрывоопасность, поскольку у машин переменного тока нет коллектора, в котором обычно происходит искрение.

Особое значение имеет электрооборудование на судах с электродвижением, у которых гребной винт вращается электродвигателем, получающим ток от генератора, приводимого в движение турбиной (паровой или газовой) или дизелем. На этих судах, называемых турбоэлектроходами или дизель-электроходами, мощность гребных электроустановок достигает нескольких десятков тысяч киловатт. При изготовлении электрооборудования и его монтаже необходимо учитывать особенности его работы на судне -- в морских условиях -- вибрацию, качку, сотрясения корпуса от ударов волн, высокую влажность и соленость воздуха, наличие в машинных и некоторых других помещениях паров нефти и масла и т. п. Поэтому электрооборудование для судов изготовляют в морском исполнении, которое значительно отличается от обычного промышленного.

Основное судовое электрооборудование должно обладать высокой надежностью работы в судовых условиях, стойкостью к коррозии, вибрационной стойкостью и способностью функционировать при длительных крене до 15° и дифференте до 5°, при бортовой качке до 22,5° от вертикали с периодом качки 7--9 с (аварийное электрооборудование должно выдерживать длительный крен до 22,5° и дифферент до 10°). Оно должно надежно работать при относительной влажности до 98 % при температуре 23--27°С и выдерживать колебания температуры окружающего воздуха от --30° до +450С. Очень высокие требования предъявляют к изоляционным материалам: они должны быть водо- и маслостойкими, негигроскопичными и негорючими.

Судовые электромеханизмы и другое электрооборудование в зависимости от места расположения изготовляют в открытом незащищенном, закрытом защищенном, брызгозащищенном, водозащищенном, герметическом (в затопляемых помещениях) или взрывозащищенном исполнении. Особенно жесткие требования предъявляют к электрооборудованию судов, плавающих в тропиках, т.е. в условиях высокой температуры и повышенной влажности.

Судовое электрооборудование, как и любое другое оборудование на судах, должно быть легким и недорогим.

Судовая электростанция. На морских судах оборудуют электростанции, обеспечивающие электрическим током электродвигатели различных вспомогательных механизмов, механизмов систем и устройств, приборы управления и связи, осветительные и нагревательные приборы и пр. Различают судовые электростанции малой мощности (200-- 500 кВт), средней (500--2000 кВт) и большой мощности (свыше 2000 кВт). На океанских пассажирских лайнерах, больших научно-исследовательских судах и промысловых базах мощность электростанций достигает 6000 кВт и более.

В качестве источников электроэнергии на судах применяют генераторы, аккумуляторные батареи и преобразователи электроэнергии.

Основными источниками электроэнергии на судах служат электрические генераторы (переменного или постоянного тока), которые приводятся в движение смонтированными на одной с ними раме паровыми (или газовыми) турбинами (турбогенераторы или газотурбогенераторы), либо двигателями внутреннего сгорания (дизель-генераторы), либо от валопровода (валогенера-торы).

Турбогенераторы более надежны, чем дизель-генераторы, имеют большую массу, габариты и моторесурс, однако они связаны с работой котлов и запуск их занимает более продолжительное время. В этом отношении предпочтительнее дизель-генераторы, отличающиеся быстротой запуска и автономностью работы, но они имеют значительно меньший моторесурс. В качестве привода дизель-генераторов используют обычно дизели с частотой вращения 500--750 об/мии (для аварийных дизель-генераторов -- 1500 об/мин).

По назначению судовые электрогенераторы разделяют на основные, резервные, стояночные и аварийные. Основные электрогенераторы предназначены для питания судовых электропотребителей в ходовом и других напряженных режимах работы судна -- при стоянке во время грузовых операций, швартовке, снятии с якоря. Резервные электрогенераторы необходимы на случай выхода из строя основного генератора при плавании судна в опасной зоне -- при проходе каналов, узких мест или при швартовке. Небольшие по мощности стояночные электрогенераторы служат для питания судовых потребителей во время стоянки при неработающих грузовых и других механизмах, потребляющих много энергии.

На паротурбинных судах как основными, так и резервными генераторами являются турбогенераторы, на теплоходах -- дизель-генераторы. Иногда на теплоходах с котельной установкой, работающей на тепле отходящих газов (утилизационный котел), в дополнение к дизель-генераторам устанавливают ходовой турбогенератор. В качестве стояночных генераторов используют обычно дизель-генераторы.

Рисунок 8.1 Секционирование сборных шин распределительных устройств электростанции для параллельной и раздельной работы генераторов

Основные, резервные и стояночные генераторы образуют основную электростанцию судна, размещаемую на транспортных судах обычно в МКО и, реже, в отдельном отсеке. На судовых электростанциях применяют параллельную работу генераторов, но для большей надежности и маневренности предусматривают возможность секционирования, т.е. раздельной работы каждого судового генератора на определенную группу потребителей. К параллельной работе прибегают в наиболее ответственные моменты, например при проходе каналов, швартовке и т. п., когда даже кратковременные перерывы в питании электроэнергией недопустимы; к раздельной -- при неисправностях и профилактических ремонтах ГРЩ. Секционирование осуществляется разделением сборных шин распределительных устройств на секции с помощью специальных выключателей (рисунок 8.1).

Для определения мощности судовой электростанции составляют таблицу нагрузки. При этом количество и мощность генераторов выбирают таким образом, чтобы в каждом режиме обеспечивалась наиболее полная загрузка генераторов, а если необходимо, то и резерв. Количество генераторов всегда стремятся свести к минимуму, однако по Правилам Регистра СССР общее количество генераторов основной электростанции не может быть меньше двух (в том числе один резервный).

Аварийные электрогенераторы устанавливают на всех самоходных судах, за исключением судов, у которых основным источником электроэнергии являются аккумуляторные батареи, при условии, что по крайней мере одна из установленных батарей по емкости и расположению отвечает требованиям к аварийному источнику. Они необходимы для питания потребителей, работающих в аварийном режиме (аварийного освещения, радиостанции, прожекторов, системы аварийной сигнализации, противопожарных и водоотливных средств, рулевого электропривода и пр.), в том случае, если основная электростанция выйдет из строя. Поэтому аварийные генераторы, в качестве которых обычно используют дизель-генераторы, устанавливают в отдельном помещении с выходом на открытую палубу -- выше палубы переборок и вне шахты МКО. Мощность аварийного дизель-генератора обычно не превышает 100 кВт, а запас топлива согласно Правилам Регистра СССР должен быть достаточным для непрерывной работы генератора в течение 36 ч для пассажирских и приравненных к ним судов, неограниченного и ограниченного района плавания I и 18 ч -- на грузовых судах валовой вместимостью 300 рег. т и более этих же районов плавания. Для судов ограниченного района плавания II и III, а также для грузовых судов валовой вместимостью менее 300 рег. т этот период времени сокращается.

Запуск аварийного дизель-генератора и прием нагрузки производится автоматически (от аккумуляторной батареи) при исчезновении напряжения на шинах основной электростанции в течение не более 45 с. На некоторых судах аварийным источником тока служит аккумуляторная батарея, емкость которой должна быть достаточна для работы в течение указанного выше времени аварийного освещения и сигнально-отличительных фонарей, а также всех видов пожарной сигнализации в течение часа, трехкратного открывания клинкетных дверей и других назначенных Регистром потребителей. Включение ее в аварийную сеть также происходит автоматически.

Кроме аварийного дизель-генератора на всех морских судах предусматривают кратковременный аварийный источник электроэнергии -- аккумуляторную батарею небольшой емкости для питания в течение не менее 30 мин сети аварийного освещения, фонарей «Не могу управляться», авральной сигнализации, действующей в течение 10 мин, а также приводов клинкетных дверей для одноразового открывания на пассажирских и промысловых судах.

В качестве генераторов переменного тока на судовых электростанциях применяют синхронные генераторы с машинными возбудителями (типа МС) или с самовозбуждением (типа МСК, ГМС и др.) мощностью от 25 до 3000 кВт и напряжением 400 В. Обмотка возбуждения ротора у генераторов с самовозбуждением питается от цепи статора, а начальное возбуждение осуществляется небольшим генератором переменного тока с постоянными магнитами, вращающимися вместе с главным генератором. К преимуществам синхронных генераторов с самовозбуждением следует отнести их надежность (так как у них нет возбудителя -- машины постоянного тока), быстроту автоматического регулирования напряжения и устойчивость работы на переходных режимах. Поэтому генераторы с самовозбуждением получили на судах наибольшее распространение. В последнее время стали применять бесщеточные синхронные генераторы.

Заслуживают внимания, так называемые валогенераторы, широко используемые в последнее время на судах. Валогенераторы приводятся во вращение от валопровода с помощью зубчатой цепной или клиноременной передачи, Валогенераторы используют имеющийся на каждом судне 10--15 %-ный запас мощности главного двигателя, что позволяет обеспечить в ходовом режиме питание основных потребителей и сохранить тем самым моторесурс вспомогательных двигателей. Кроме того, они позволяют увеличить КПД главного двигателя и, следовательно, повысить экономичность всей установки.

Одним из главных условий устойчивой работы валогенератора является стабильность частоты вращения гребного вала, что обеспечивается только при применении ВРШ. В противном случае при уменьшении частоты вращения гребного вала (например, при маневрировании судна) будут уменьшаться напряжение и частота переменного тока, и для использования валогенератора при меняющейся частоте вращения гребного вала придется применять сложные регулирующие устройства. Для повышения экономичности энергетической установки на теплоходах часто применяют утилизационные турбогенераторы, работающие от пара, вырабатываемого утилизационными котлами за счет тепла отходящих газов главного двигателя.

Аккумуляторами на судах служат кислотные или щелочные аккумуляторные батареи. Щелочные аккумуляторы по размерам несколько больше кислотных, но они лучше переносят вибрацию, не выделяют вредных веществ, не требуют периодической подзарядки. К тому же они надежнее и их проще обслуживать. На судах используют в основном щелочные аккумуляторы (кадмиево-никелевые или железоникелевые с электролитом -- раствором едкого калия), а кислотные -- только в качестве стартерных. Аккумуляторы хранят на судне в специальных помещениях -- аккумуляторных, которые должны иметь хорошую вентиляцию и выход на открытую палубу. Щелочные и кислотные аккумуляторы хранят раздельно.

Преобразователи электроэнергии служат для питания током потребителей, которым не подходит род или напряжение тока, вырабатываемого основной электростанцией. Различают вращающиеся и статические преобразователи. К первым относятся двухмашинные (двигатель и генератор) и одномашинные или одноякорные преобразователи (машина постоянного тока с расположенными на валу контактными кольцами, к которым тянутся отводы от симметрично расположенных точек обмотки якоря). Двухмашинные преобразователи более громоздки и дороже, поэтому их применяют только для больших мощностей. К статическим преобразователям относятся полупроводниковые выпрямители -- селеновые, германиевые, кремниевые. Ртутные выпрямители на судах не применяются. Для изменения величины напряжения применяют трансформаторы.

Распределение электроэнергии. Электроэнергия, вырабатываемая судовой электростанцией, распределяется по судовым сетям между потребителями. Различают следующие судовые электросети: силовую -- для питания электроприводов судовых механизмов МКО, механизмов судовых устройств систем и пр.; осветительную -- для питания основного освещения помещений и открытых палуб, сигнально-отличительных фонарей, подсветки телеграфов, навигационных и других приборов; аварийного освещения -- для питания осветительных цепей, которые должны работать в аварийном режиме (питание сигнально-отличнтельных фонарей, освещение коридоров, проходов, постов управления, шлюпочных палуб и мест посадки в шлюпки); слабого тока -- для питания цепей телефонов, телеграфов, пожарной сигнализации и пр.; переносного освещения -- для питания через штепсельные соединения переносных ламп; электронавигационных приборов -- для питания гирокомпаса, эхолота, электромеханического лага и пр.

От источников электроэнергии -- генераторов -- ток поступает на главный распределительный щит (ГРЩ), который является центральным пунктом распределения электроэнергии между группами потребителей на судне.

ГРЩ (рисунок 8.2) представляет собой металлоконструкцию (каркас), на которой устанавливают коммутационную аппаратуру для замыкания и размыкания электрических цепей (рубильники, выключатели, переключатели, пусковые кнопки), пусковую и регулирующую аппаратуру (реостаты и регуляторы), защитную аппаратуру (предохранители, реле обратного тока и обратной мощности и пр.), сигнальные и контрольно-измерительные приборы. На судах оборудуют ГРЩ защищенного типа. На лицевой стороне размещают сигнальные и контрольно-измерительные приборы и рукоятки управления прочими приборами, которые вместе с токоведущими частями монтируют с тыльной стороны щита. Обычно ГРЩ устанавливают в помещении электростанции, оставляя вокруг него свободный проход шириной 0.6--1,0 м (в зависимости от длины ГРЩ и размеров судна), Вход на щит закрывают дверьми с устройством, позволяющим закреплять их в открытом положении.

Находящиеся на ГРЩ контрольно-измерительные приборы позволяют обеспечить постоянный надзор за эксплуатацией судовой электростанции. Наряду с ручным управлением работой электростанции с помощью приборов и аппаратов ГРЩ на судах предусматривают автоматическое и дистанционное управление-- из ЦПУ или с мостика.

От ГРЩ отходят питающие магистрали. Существуют магистральная, фидерная (радиальная) и смешанная (магистрально-фидерная) системы распределения электроэнергии.

Рисунок 8.2 Главный распределительный щит (ГРЩ)

РЩУ устанавливаемые в определенных частях судна -- в носу, в корме, в средней части, -- питают групповые распределительные щиты и распределительные щитки отдельных потребителей. При фидерной (радиальной) системе (рисунок 8.3, б) питание каждого распределительного щита, а также некоторых ответственных и мощных потребителей (Дх и Д2) осуществляется от ГРЩ по отдельным фидерам. Эта система более надежна, чем магистральная, так как при повреждении фидера отключается только один распределительный щит или один ответственный потребитель.

При магистральной системе (рисунок 8.3, а) питание (генераторы /\ и Г2) подается от ГРЩ к потребителям через магистральные коробки (МК) и распределительные щиты (РЩ), объединенные одной магистралью.

Рис. 8.3 Системы распределения энергии

а - магистральная, б - фидерная, в - смешанная

При повреждении магистрали в первой схеме прекращается питание всей группы распределительных щитов. Кроме того, при фидерной системе можно непосредственно на ГРЩ включать и выключать потребители. Правила Регистра СССР требуют, чтобы для некоторых потребителей было обеспечено только фидерное питание. К таким потребителям относят: электроприводы рулевой машины, якорного устройства, пожарных и осушительных насосов, компрессоров и насосов спринклерной системы; щиты питания радиостанции, гирокомпаса, навигационных приборов, сигнально-отличительных фонарей станции автоматической сигнализации обнаружения пожара, рефрижераторные установки грузовых трюмов; электроприводы механизмов, обеспечивающих работу главной энергетической установки; щиты электроприводов грузовых, шлюпочных, швартовных и других устройств, вентиляции и т.д. Особо ответственные потребители, такие как рулевой электропривод или сигнально-отличительные фонари, получают питание по двум фидерам, проложенным возможно дальше друг от друга.

Магистральная система проще и выгоднее, чем фидерная, Но она менее надежна, ее нельзя применять для всех потребителей. Поэтому на судах обычно используют смешанную систему (рисунок 8.3, в), отличающуюся тем, что в ней часть потребителей питается по фидерной, а часть менее ответственных потребителей -- по магистральной системе. Для передачи электроэнергии от источников к потребителям применяют системы, различающиеся количеством токоведущих проводов. При постоянном токе обычно применяют двухпроводную систему, при переменном трехфазном токе - трехпроводную.

Правила Регистра запрещают применение однопроводной системы с использованием корпуса судна в качестве обратного провода, так как это сопряжено с опасностью для жизни людей (такая система допускается только на судах при напряжении до 30 В). Специальные судовые кабели и провода могут работать в условиях повышенной влажности и солености воздуха при наличии паров и сильной вибрации.

...

Подобные документы

  • Характеристика дизельной установки. Выбор главного двигателя и предварительный расчет винта. Принципиальные схемы энергетических систем судовых установок. Расчет судовой электростанции и энергетических запасов. Подбор соответствующего оборудования.

    курсовая работа [2,9 M], добавлен 24.10.2011

  • Расчет буксировочного сопротивления судна "Михаил Стрекаловский". Комплектация тепловой схемы главного пропульсивного комплекса. Выбор утилизационного парового котла. Оценка эксплуатационной эффективности судовых энергетических установок и их элементов.

    курсовая работа [1,2 M], добавлен 09.09.2014

  • Построение рабочего процесса турбины и определение расхода пара, выбор типа регулирующей ступени. Расчет топливной системы ПТУ и изменения параметров рабочего процесса. Особенности эксплуатации систем СЭУ и порядок обслуживания турбинных установок.

    курсовая работа [1,8 M], добавлен 03.07.2012

  • Расчет паспортной диаграммы судна. Определение безразмерного коэффициента упора по кривым действия гребного винта. Расчет допустимого номинального крутящего момента. Определение часового расхода топлива. Коэффициент полезного действия двигателя.

    контрольная работа [159,6 K], добавлен 19.02.2014

  • Судовая холодильная установка. Системы холодильного агента. Основные характеристики воздухоохладителя. Автоматизация, сигнализация и контрольно-измерительные приборы. Правила технической эксплуатации холодильных установок. Расчет охлаждения конденсатора.

    контрольная работа [2,9 M], добавлен 23.01.2013

  • Выбор числа и мощности генераторов, преобразователей и аварийных источников электроэнергии. Разработка судовой электростанции рейдового буксирного теплохода, мощностью 800 л. Расчет судовых электрических сетей. Проверка генераторов по провалу напряжения.

    курсовая работа [170,8 K], добавлен 09.09.2012

  • Структура и состав ядерных энергетических установок (ЯЭУ). Схемы коммутации и распределения ЭГК в активных зонах. Виды и критерии отказов ЯЭУ и ее частей. Модель термоэмиссионного преобразования тепловой энергии в электрическую в реакторе-преобразователе.

    курсовая работа [1,1 M], добавлен 26.01.2013

  • Технические характеристики котла ДКВР, его устройство и принцип работы, циркуляционная схема и эксплуатационные параметры. Тепловой расчет котельного агрегата. Тепловой баланс теплогенератора. Оборудование котельной. Выбор, расчет схемы водоподготовки.

    курсовая работа [713,5 K], добавлен 08.01.2013

  • Работа энергетических установок. Термодинамический анализ циклов энергетических установок. Изохорный, изобарный, изотермический, адиабатный и политропный процессы. Проведение термодинамического исследования идеального цикла теплового двигателя.

    методичка [1,0 M], добавлен 24.11.2010

  • Тепловой насос как компактная отопительная установка, его назначение и принцип действия, сферы и особенности применения. Внутреннее устройство теплового насоса, оценка его главных преимуществ перед традиционными методами получения тепловой энергии.

    реферат [83,3 K], добавлен 22.11.2010

  • Схема и принцип действия газотурбинной установки. Выбор оптимальной степени повышения давления в компрессоре теплового двигателя из условия обеспечения максимального КПД. Расчет тепловой схемы ГТУ с регенерацией. Расчёт параметров турбины и компрессора.

    курсовая работа [478,8 K], добавлен 14.02.2013

  • Источники тепловой энергии. Котельные установки малой и средней мощности. Основные и вспомогательные элементы котельных установок. Паровые и водогрейные котлы. Схема циркуляции воды в водогрейном котле. Конструкция и компоновка котельных установок.

    контрольная работа [10,0 M], добавлен 17.01.2011

  • Роль судов в транспортном процессе. Технический уровень оборудования судовой энергетической установки, анализ мероприятий, направленных на повышение ее энергетической эффективности. Модернизация основной и вспомогательной энергетических установок.

    дипломная работа [3,7 M], добавлен 11.09.2011

  • Обоснование и выбор параметров газотурбинной энергетической установки. Расчёт на номинальной мощности и частичных нагрузках. Зависимость работы от степени повышения давления. Зависимость относительных расходов топлива установки от относительной мощности.

    контрольная работа [1,3 M], добавлен 25.11.2013

  • Выбор энергетической установки для ледокола. Тепловой расчёт турбины. Назначение и область применения муфты: передача крутящего момента от реверс-редукторной установки к валопроводу. Обоснование выбранной конструкции. Жесткостные характеристики муфты.

    дипломная работа [1,7 M], добавлен 16.07.2015

  • Тепловой расчет бензинового двигателя. Средний элементарный состав бензинового топлива. Параметры рабочего тела. Параметры окружающей среды и остаточные газы. Процесс впуска, сжатия, сгорания, расширения и выпуска. Индикаторные параметры рабочего цикла.

    контрольная работа [588,6 K], добавлен 24.03.2013

  • Выбор типа и количества турбин, энергетических котлов ГРЭС. Составление принципиальной тепловой схемы электростанции, её расчет на заданный режим. Выбор вспомогательного оборудования тепловой схемы станции. Выбор тягодутьевых установок и дымовой трубы.

    дипломная работа [1,2 M], добавлен 02.11.2010

  • Определение коэффициента полезного действия и расхода топлива для парового котла. Расчет параметров режимов гидравлической турбины, линии электропередачи. Потери активной мощности при различных напряжениях. Расчет элементов теплофикационной системы.

    контрольная работа [806,7 K], добавлен 17.03.2013

  • Характеристики потребителей электроэнергии. Расчет электрических нагрузок. Определение мощности компенсирующего устройства реактивной мощности. Выбор числа и мощности трансформаторов подстанции. Вычисление параметров и избрание распределительной сети.

    курсовая работа [884,2 K], добавлен 19.04.2021

  • Общая характеристика парогазовых установок (ПГУ). Выбор схемы ПГУ и ее описание. Термодинамический расчет цикла газотурбинной установки. Расчет цикла ПГУ. Расход натурального топлива и пара. Тепловой баланс котла-утилизатора. Процесс перегрева пара.

    курсовая работа [852,9 K], добавлен 24.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.