Возбужение генератора
Описание процесса создания рабочего магнитного потока в генераторе постоянного тока. Техническая характеристика различают: независимого, параллельного, последовательного и смешанного возбуждения генератора, в зависимости от способа подключения обмоток.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 20.12.2012 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Учреждение образования
«Брестский Государственный Профессионально-Технический
Колледж Приборостроения»
РЕФЕРАТ
на тему: «Возбужение генератора»
Выполнил:
учащийся 1 курса,
группы 87
Шульгин Андрей
Руководитель:
Гусев А.В.
Брест, 2012
Способы возбуждения генераторов постоянного тока
Возбуждением генератора называют создание рабочего магнитного потока, благодаря которому во вращающемся якоре создается ЭДС. Генераторы постоянного тока в зависимости от способа подключения обмоток возбуждения различают: независимого, параллельного, последовательного и смешанного возбуждения.
Генератор независимого возбуждения имеет обмотку возбуждения ОВ, подключаемую к постороннему источнику тока через регулировочный реостат (Рис.6-10, а). Напряжение на зажимах такого генератора (кривая I на Рис.6-11) с увеличением тока нагрузки несколько уменьшается в результате падения напряжения на внутреннем сопротивлении якоря, причем напряжения получаются всегда устойчивыми. Это свойство оказывается весьма ценным в электрохимии (питание электролитических ванн).
Генератор параллельного возбуждения является генератором с самовозбуждением: обмотку возбуждения ОВ подключают через регулировочный реостат к зажимам того же генератора (Рис.6-10, б). Такое включение приводит к тому, что при увеличении тока нагрузки I, напряжение на зажимах генератора U" уменьшается из-за падения напряжения на обмотке якоря. Это, в свою очередь, вызывает уменьшение тока возбуждения и ЭДС в якоре. Поэтому напряжение на зажимах генератора UB уменьшается несколько быстрее (кривая 2 на Рис.6-11), чем у генератора независимого возбуждения.
Дальнейшее увеличение нагрузки приводит к настолько сильному уменьшению тока возбуждения, что при коротком замыкании цепи нагрузки напряжение падает до нуля (небольшой ток короткого замыкания обусловлен лишь остаточной индукцией в машине). Поэтому считают, что генератор параллельного возбуждения не боится короткого замыкания.
Генератор последовательного возбуждения имеет обмотку возбуждения ОВ, включаемую последовательно с якорем (Рис.6-10, в). При отсутствии нагрузки (=0) в якоре все же возбуждается небольшая ЭДС за счет остаточной индукции в машине (кривая 3 на Рис.6-11). С ростом нагрузки напряжение на зажимах генератора сначала растет, а после достижения магнитного насыщения магнитной системы машины оно начинает быстро уменьшаться из-за падения напряжения на сопротивлении якоря и из-за размагничивающего действия реакции якоря.
Из-за большого непостоянства напряжения с изменением нагрузки генераторы с последовательным возбуждением в настоящее время не применяют.
Генератор смешанного возбуждения имеет две обмотки: 0ВУ - включаемую параллельно якорю, ОВ2 (дополнительную) - последовательно (Рис.6-10, г). Обмотки включают так, чтобы они создавали магнитные потоки одного направления, а число витков в обмотках выбирают таким, чтобы падение напряжения на внутреннем сопротивлении генератора и ЭДС реакции якоря были бы скомпенсированы ЭДС от потока параллельной обмотки.
Обратимость машин постоянного тока. Двигатели
Электрические машины постоянного тока, как и машины переменного тока, обратимы, т.е. они могут работать как генераторы и как двигатели. Переход генератора в режим работы двигателя можно пояснить следующим образом. Если генератор включить в сеть постоянного тока, то в обмотках якоря и электромагнитов установится ток, при этом электромагниты создадут постоянное магнитное поле, и на каждый проводник обмотки якоря с током начнет действовать сила, стремящаяся повернуть якорь в сторону действия силы (Рис.6-12, и). Таким образом, взаимодействие магнитного поля якоря с полем обмотки возбуждения приводит якорь во вращение.
обмотка магнитный поток возбуждение генератор
Применяя правило левой руки, можно легко заметить, что при изменении направления тока только в якоре (Рис.6-12, б) или только в обмотке возбуждения (Рис.6-12, б) направление вращения якоря изменяется на противоположное, а одновременное изменение направления тока в обеих обмотках не изменяет направления вращения якоря (Рис.6-12, г)
Электродвигатели конструктивно не отличаются от генераторов постоянного тока, т.е. они имеют точно такое же устройство (за исключением немногих типов двигателей специального назначения).
Рассмотрим некоторые особенности двигателей. Если двигатель постоянного тока с сопротивлением обмотки якоря включить в сеть с напряжением U, то в момент пуска в якоре установится ток , значение которого может быть определено по закону Ома:
. (17)
Так как сопротивление обмотки якоря мощных двигателей составляет лишь десятые и сотые доли ома, а рабочее напряжение - порядка сотен вольт, то пусковой ток может составить сотни и тысячи ампер, превышая номинальное значение тока для данного двигателя в 10-30 раз. Такой ток не только не желателен, но и опасен для двигателя, так как может разрушиться коллектор и сгореть обмотка двигателя. Очевидно, что ограничение пускового тока можно осуществить включением пускового реостата в цепь якоря. Тогда пусковой ток уменьшится и будет равен:
. (18)
Сопротивление пускового реостата выбирают таким, чтобы пусковой ток не превышал номинальный более чем в 1,1 - 1,5 раза.
В результате взаимодействия якоря с полем полюсов якорь придет во вращение, обмотка его будет вращаться в магнитном поле и в ней индуцируется ЭДС самоиндукции , полярность которой противоположна полярности напряжения сети. Эта ЭДС вызывает ослабление тока в якоре, а ее значение пропорционально скорости вращения якоря, т.е. по мере разгона двигателя ток будет уменьшаться и пусковой реостат можно выводить.
Иначе говоря, у нормально вращающегося двигателя основная часть подводимого напряжения уравновешивается ЭДС самоиндукции. Ток в якоре при выведенном пусковом реостате можно выразить уравнением:
. (19)
Для выяснения роли ЭДС самоиндукции в преобразовании электрической энергии в механическую в двигателе постоянного тока уравнение (19) представим в следующем виде:
. (20)
Получили уравнение электрического равновесия, согласно которому приложенное к зажимам двигателя напряжение сети U уравновешивается суммой ЭДС самоиндукции и падением напряжения на сопротивлении якоря
Умножив обе части уравнения (20) наIя, получим:
. (21)
В этом новом уравнении (21) левая частьIяU представляет собой не что иное, как электрическую мощность, потребляемую двигателем из сети, а последний член правой части - мощность, поглощаемую сопротивлением якоря (электрические потери в якоре). Очевидно, что член представляет собой электрическую мощность, преобразуемую в другой вид энергии. Следовательно, и есть та часть потребляемой из сети электрической мощности,, которая преобразуется в механическую (включая механические потери).
Таким образом, ЭДС самоиндукции в двигателе постоянного тока влияет на преобразование потребляемой из сети электрической энергии в механическую. При неподвижном якоре = 0 преобразование (полезное) отсутствует ( = 0), хотя потребляемая из сети мощность максимальна. Наоборот, при номинальном режиме работы двигателя (0) потребляемая из сети мощность () уменьшается, а преобразованная мощность становится отличной от нуля (0).
Для получения формулы скорости двигателя подставим в уравнение (19) значение ЭДС из соотношения (7). После преобразования получим:
. (22)
Учитывая, что падение напряжения на сопротивлении якоря значительно меньше напряжения сети U, можно считать, что скорость вращения двигателя практически прямо пропорциональна подводимому напряжению U и обратно пропорциональна магнитному потоку Ф. Отсюда следует, что регулирование скорости вращения двигателя можно осуществлять изменением сопротивления цепи якоря (при постоянном напряжении сети) либо изменением магнитного потока. На первый взгляд может показаться странным, что увеличение магнитного потока двигателя снижает скорость его вращения (и наоборот).
Действительно, если при установившемся токе в якоре и скорости вращения уменьшить магнитный поток, то ЭДС самоиндукции уменьшится и электрическое равновесие (20) нарушится. Для восстановления этого равновесия при меньшем магнитном потоке якорь будет вращаться, быстрее, так как ЭДС самоиндукции пропорциональна его скорости вращения. Значение вращающего момента двигателя может быть выражено той же формулой, что и для генератора (13).
Потребляя электрическую энергию из сети, двигатель постоянного тока развивает вращающий момент, который при установившемся режиме всегда уравновешен тормозным моментом, создаваемым нагрузкой, поэтому при увеличении механической нагрузки на валу двигателя вращающий момент оказывается меньше тормозного. Двигатель уменьшает скорость вращения, а это приводит к уменьшению ЭДС самоиндукции и увеличению потребляемого тока. При неизменном магнитном потоке ток нагрузки увеличивается до тех пор, пока не восстановится равенство вращающего и тормозного моментов.
В зависимости от способа подключения обмотки возбуждения к якорю двигатели, как и генераторы постоянного тока, различают независимого, параллельного, последовательного и смешанного возбуждения.
Двигатель параллельного и независимого возбуждения
Схема включения двигателя постоянного, тока параллельного возбуждения через пусковой реостат ПР изображена на рисунке 6-13. Если обмотку возбуждения такого двигателя включить через регулировочный реостат РВ на напряжение другого источника, то получится двигатель независимого возбуждения.
Скоростная характеристика n=f (Iя) таких двигателей при U =const и Iв = const приведена на рисунке 6-14, для объяснения которой обратимся к формуле скорости двигателя (22):
.
Изменение скорости вращения может происходить за счет изменения нагрузки и магнитного потока. Но изменение тока нагрузки лишь незначительно изменяет внутреннее падение напряжения благодаря малости сопротивления цепи якоря, которое тем меньше, чем мощнее двигатель. Ток нагрузки в конечном счете лишь незначительно уменьшает скорость вращения двигателя. Что касается магнитного потока Ф, то вследствие реакции якоря при увеличении тока нагрузки он несколько уменьшается, что приводит к незначительному увеличению скорости вращения. Таким образом, скорость вращения двигателя параллельного возбуждения очень мало изменяется.
Скорость вращения двигателя независимого возбуждения можно регулировать изменением сопротивления цепи якоря либо изменением магнитного потока. Чрезмерное уменьшение тока возбуждения и особенно случайный обрыв этой цепи являются очень опасными для двигателей параллельного и независимого возбуждения, так как ток в якоре возрастает до недопустимо большого значения. В случае незначительной нагрузки (или на холостом ходу) скорость настолько возрастает, что становится опасной для целости двигателя (наступает аварийный режим - "разнос" двигателя).
Двигатели независимого возбуждения нашли широкое применение в качестве исполнительных двигателей в схемах автоматики, а иногда в качестве так называемого электромагнитного тормоза. Когда необходим большой пусковой момент или кратковременные перегрузки; исключена возможность их полной разгрузки. Они оказались незаменимыми как тяговые двигатели на электротранспорте (электровоз, метрополитен, трамвай, троллейбус), в подъемнотранспортных установках (краны и т.д.) и для пуска двигателей внутреннего сгорания (стартеры) в автомобилях и авиации.
Экономичное регулирование скорости вращения в широких пределах осуществляется в случае одновременной работы нескольких двигателей путем различных комбинаций включения двигателей и реостатов. Например, на малых скоростях они включаются последовательно, а на больших - параллельно. Необходимые переключения осуществляются оператором (водителем) поворотом ручки переключателя.
Двигатели последовательного возбуждения
Схема двигателя постоянного тока последовательного возбуждения. Обмотка возбуждения двигателя включена последовательно с якорем, поэтому магнитный поток двигателя изменяется вместе с изменением нагрузки. Так как ток нагрузки велик, то обмотка возбуждения имеет небольшое число витков, это позволяет несколько упростить конструкцию пускового реостата по сравнению с реостатом для двигателя параллельного возбуждения.
Скоростную характеристику можно получить на основании уравнения скорости, которая для двигателя последовательного возбуждения имеет вид:
n=,
где - сопротивление обмотки возбуждения.
Из рассмотрения характеристики видно, что скорость двигателя сильно зависит от нагрузки. При увеличении нагрузки увеличивается падение напряжение на сопротивлении обмоток при одновременном увеличении магнитного потока, что приводит к значительному уменьшению скорости вращения. Это характерная особенность двигателя последовательного возбуждения.
Значительное уменьшение нагрузки приведёт к опасному для двигателя увеличению скорости вращения. При нагрузках менее 25% номинальной (и особенно на холостом ходу), когда ток нагрузки и магнитный поток из-за небольшого числа витков в обмотке возбуждения оказывается настолько слабым, что скорость вращения быстро возрастает до недопустимо больших значений (двигатель может "разнести"). По этой причине эти двигатели применяют лишь в тех случаях, когда их соединяют с приводимыми во вращение механизмами непосредственно или через зубчатую передачу. Применение ременной передачи недопустимо, так как ремень может оборваться, либо соскочить, двигатель при этом полностью разгрузится.
Регулирование скорости вращения двигателя последовательного возбуждения может осуществляться изменением магнитного потока или изменением питающего напряжения.
Зависимость вращающего момента от тока нагрузки (механическую характеристику) двигателя последовательного возбуждения можно получить, если в формуле вращающего момента магнитный поток выразить через ток нагрузки. В отсутствие магнитного насыщения поток пропорционален току возбуждения, а последний для данного двигателя является током нагрузки, т.е.
M=
На графике эта характеристика имеет форму параболы. Квадратичная зависимость вращающего момента от тока нагрузки является второй характерной особенностью двигателя последовательного возбуждения, благодаря которой эти двигатели легко переносят большие кратковременные перегрузки и развивают большой пусковой момент.
Рабочие характеристики двигателя приведены на рисунке 6-17.
Из рассмотрения всех характеристик следует, что двигатели последовательного возбуждения можно принять в тех случаях, когда необходим большой пусковой момент или кратковременные перегрузки; исключена возможность их полной разгрузки. Они оказались незаменимыми как тяговые двигатели на электротранспорте (электровоз, метрополитен, трамвай, троллейбус), в подъемнотранспортных установках (краны и т.д.) и для пуска двигателей внутреннего сгорания (стартеры) в автомобилях и авиации.
Экономичное регулирование скорости вращения в широких пределах осуществляется в случае одновременной работы нескольких двигателей путем различных комбинаций включения двигателей и реостатов. Например, на малых скоростях они включаются последовательно, а на больших - параллельно. Необходимые переключения осуществляются оператором (водителем) поворотом ручки переключателя.
Двигатель смешанного возбуждения
Схема включения двигателя постоянного тока смешанного возбуждения изображена на рисунке 6-18. На каждом полюсе такого двигателя имеются обмотки - параллельная и последовательная. Их можно включить так, чтобы магнитные потоки складывались (согласное включение) или вычитались (встречное включение).
Уравнения скорости вращения и вращающего момента для них выражаются так:
и М = с1я (Фпр ± Фпс),
где знак плюс относится к согласному включению обмоток возбуждения, минус - к встречному. В зависимости от соотношения магнитных потоков обеих обмоток по свойствам двигатель приближается к двигателям параллельного либо последовательного возбуждения. Как правило, у двигателей смешанного возбуждения последовательная обмотка является главной (рабочей), а параллельная - вспомогательной. Благодаря магнитному потоку параллельной обмотки скорость вращения такого двигателя не может возрастать беспредельно при малых нагрузках (или на холостом ходу), т.е. двигатель не будет "разносить".
Двигатели с согласным включением нашли широкое применение в тех случаях, когда необходим большой пусковой момент и изменение скорости при переменных нагрузках (включая малые нагрузки и холостой ход). Двигатели же со встречным включением применяют для получения постоянной скорости при изменяющейся нагрузке.
На рисунке 6-19 приведены для сравнения нагрузочные характеристики двигателей с различными способами возбуждения.
Коллекторные двигатели переменного тока
Одновременное изменение тока в якоре и обмотке возбуждения двигателя постоянного тока не изменяет его направления вращения. Это свойство используется в коллекторных двигателях переменного тока, где ток с частотой сети одновременно изменяет свое направление в обеих обмотках.
Конструкция коллекторных двигателей переменного тока значительно сложнее конструкции двигателей постоянного тока. Всю магнитную систему набирают из отдельных изолированных друг от друга листов электротехнической стали, чтобы избежать ее сильного нагревания от столь частого перемагничивания. Для уменьшения реактивного сопротивления двигателя, ухудшающего cos сети, станину снабжают компенсационной обмоткой, расположенной равномерно по окружности статора и соединенной последовательно с якорем. Для улучшения компенсации ЭДС самоиндукции в секциях якоря статор делают неявнополюсным. Для получения удовлетворительной коммутации, при которой короткозамкнутая секция оказывается подобной короткозамкнутой обмотке трансформатора, число витков в секциях уменьшают, увеличивая число секций, и ограничивают ток включением между секциями и коллектором специальных резисторов. Наличие большого числа секций и пластин коллектора сильно увеличивает размеры коллектора, что является внешним отличительным признаком коллекторных двигателей переменного тока от двигателей постоянного.
Почти все коллекторные двигатели переменного тока имеют последовательное возбуждение. Двигатели параллельного возбуждения из-за большой индуктивности обмотки возбуждения (большого сдвига фаз между током в якоре и потоком) имеют весьма незначительный вращающий момент, поэтому на практике такие двигатели не применяют.
Иногда встречаются маломощные так называемые универсальные двигатели, которые работают как от постоянного, так и от переменного тока. В этих двигателях обмотка рассчитана на работу постоянного тока, а часть ее (отвод) - на работу переменного тока, так как сопротивление одной и той же обмотки меньше для постоянного, чем для переменного тока.
Из-за сложности конструкции и дороговизны коллекторные двигатели большой мощности применяют в редких случаях, где это экономически оправдывает себя, например для привода одного механизма с широкими пределами регулирования скорости. Иногда встречаются трехфазные коллекторные двигатели с питанием со стороны ротора, в которых перемещение щеток по коллектору дает регулирование скорости в широких пределах, но этот двигатель очень дорог.
Широкое распространение получили маломощные (до 200 Вт) универсальные коллекторные двигатели последовательного возбуждения. Их применяют для нужд бытового электропривода (швейных машин, пылесосов, для мелких электродрелей, вентиляторов и т.д.)
Размещено на Allbest.ru
...Подобные документы
Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.
реферат [3,6 M], добавлен 17.12.2009Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.
презентация [4,1 M], добавлен 03.12.2015Расчет и построение естественных и искусственных механических характеристик двигателя постоянного тока смешанного возбуждения. Расчет регулирующего элемента генератора параллельного возбуждения. График вебер-амперной характеристики электродвигателя.
контрольная работа [198,0 K], добавлен 09.12.2014Общие сведения о тяговых электродвигателях постоянного тока последовательного, параллельного и смешанного возбуждения. Универсальные характеристики различных тяговых двигателей. Тяговая характеристика и ограничения, накладываемые на эту характеристику.
презентация [339,1 K], добавлен 27.09.2013Роль и значение машин постоянного тока. Принцип работы машин постоянного тока. Конструкция машин постоянного тока. Характеристики генератора смешанного возбуждения.
реферат [641,0 K], добавлен 03.03.2002Расчет механических характеристик двигателей постоянного тока независимого и последовательного возбуждения. Ток якоря в номинальном режиме. Построения естественной и искусственной механической характеристики двигателя. Сопротивление обмоток в цепи якоря.
контрольная работа [167,2 K], добавлен 29.02.2012Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Электромагнитная мощность генератора постоянного тока, выбор числа пар полюсов и коэффициента полюсной дуги. Расчет обмотки якоря и магнитной цепи, построение характеристики холостого хода. Определение магнитодвижущей силы возбуждения при нагрузке.
курсовая работа [2,6 M], добавлен 27.10.2011Генераторы и электродвигатели постоянного тока, якоря которых снабжены коллекторами и содержат совокупность обмоток, связанных с коллекторами. Действие заявляемого бесколлекторного генератора постоянного тока. Движения вихревого электрического поля.
доклад [14,9 K], добавлен 25.10.2013Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.
презентация [4,9 M], добавлен 09.11.2013Статическая характеристика двигателя. Получение естественной электромеханической характеристики. Исследование статических и динамических характеристик в одномассовой электромеханической системе с двигателем постоянного тока независимого возбуждения.
контрольная работа [674,0 K], добавлен 12.05.2009Исследование генератора постоянного тока с независимым возбуждением: конструкция генератора, схема привода, аппаратура управления и измерения. Определение КПД трехфазного двухобмоточного трансформатора по методу холостого хода и работы под нагрузкой.
лабораторная работа [803,4 K], добавлен 19.02.2012Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.
лабораторная работа [904,2 K], добавлен 09.02.2014Общая характеристика и техническое описание стенда, его устройство и элементы. Механизм проверки законов Кирхгофа. Сущность и содержание принципа наложения и теоремы об эквивалентном генераторе. Абсолютная погрешность метода эквивалентного генератора.
лабораторная работа [91,8 K], добавлен 11.04.2015Расчет машины постоянного тока. Размеры и конфигурация магнитной цепи двигателя. Тип и шаги обмотки якоря. Характеристика намагничивания машины, расчет магнитного потока. Размещение обмоток главных и добавочных полюсов. Тепловой и вентиляционный расчеты.
курсовая работа [790,3 K], добавлен 11.02.2015Назначение, технические данные и условия эксплуатации стенда для изучения двигателя постоянного тока. Описание структурной и электрической схем. Технология проверки приборов, монтажных и наладочных работ. Организация рабочего места слесаря-сборщика.
курсовая работа [73,2 K], добавлен 15.06.2013Свойства и характеристики синхронного генератора. Потеря энергии при преобразовании в синхронном генераторе механической энергии в электрическую. Устойчивость и увеличение перегрузочной способности генератора. Особенности параллельной работы генератора.
реферат [206,4 K], добавлен 14.10.2010Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.
реферат [206,2 K], добавлен 27.07.2013Однофазные цепи синусоидального тока. Двигатели постоянного тока параллельного возбуждения. Расчет линейной цепи постоянного тока методом двух законов Кирхгофа. Расчет характеристик асинхронного трехфазного двигателя с короткозамкнутым ротором.
методичка [1,4 M], добавлен 03.10.2012Устройство и назначение генератора постоянного тока. Основные характеристики и принципиальная электрическая схема генераторной установки. Материалы, применяемые при изготовлении, техническом обслуживании и ремонте. Безопасность организации труда.
курсовая работа [1,0 M], добавлен 25.06.2015