Типы модуляции

Сущность и закономерности распространения электрической связи. Понятие и разновидности модуляции: амплитудная, частотная, импульсная, фазовая. Отличительные черты и свойства каждого типа модуляции, основные принципы и обоснование выбора каждого из них.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.12.2012
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Предмет «электрическая связь» очень обширен и сложен. Описать его полностью в одном реферате невозможно, так как электрическая связь является существенной частью большого числа электронных систем и находит свое применение во всех аспектах нашей жизни. Каждая глава реферата не вдается в детали, а сосредотачивает все внимание на понимании методов и средств связи, осуществляемой с помощью электромагнитных волн. Более того, будут рассмотрены только основные методы связи, стремясь показать их практическое использование.

В любом методе электромагнитной связи всегда можно выделить, во-первых, среду, которая будет переносить информацию, - несущую, во-вторых, саму информацию. Дальнейшее обсуждение будет сосредоточиваться на различных методах переноса информации, т.е. способах объединения информации (или слияния) с несущей, а именно на схемах модуляции.

Существуют три основные схемы модуляции: 1) амплитудная модуляция (AM); 2) угловая модуляция, подразделяющаяся на два очень похожих метода: частотную модуляцию (ЧМ) и фазовую модуляцию (ФМ); 3) импульсная модуляция (ИМ). Различные схемы модуляции совмещают два этих метода или более, образуя сложные системы связи. Телевидение, например, использует как AM, так и ЧМ для различных типов передаваемой информации. Импульсная модуляция совмещается с амплитудной, образуя импульсную амплитудную модуляцию (АИМ), и т.д. Не всегда возможно найти четко выраженные основания для использования того или иного метода модуляции. В некоторых случаях этот выбор предписывается законом (в США контроль осуществляет Федеральная комиссия по связи - ФКС). Необходимо строго придерживаться правил и инструкций независимо от того, какая схема модуляции используется.

Во всех методах модуляции несущей служат синусоидальные колебания угловой частоты н, которые выражаются в виде

еннsin(нt+н) (1а)

модуляция электрический амплитудный частотный

где Ан - амплитуда, а нt+н - мгновенная фаза (отметим, что нt, так же как и н, измеряется в градусах или радианах). Фазовый сдвиг н введен для придания уравнению (la) большей общности. Аналогично модулирующий сигнал может быть представлен как

еммsin(мt+м) (2a)

для AM, ЧМ и ФМ или в виде импульса в случае импульсной модуляции. Выражение м может быть использовано для обозначения скорее полосы частот, чем единичной частоты. Например, мы будем рассматривать AM в радиовещании, где модулирующий сигнал состоит из полосы звуковых частот (20-16 000 Гц).

1. Амплитудная модуляция (am)

С качественной стороны амплитудная модуляция (AM) может быть определена как изменение амплитуды несущей пропорционально амплитуде модулирующего сигнала (рис. 1, а). Для модулирующего сигнала болшой амплитуды

Рис. 1. Амплитудная модуляция (м<<н).

а - форма сигнала; б - спектр частот.

соответствующая амплитуда модулируемой несущей должна быть большой и для малых значений Ам. Эта схема модуляции может быть осуществлена умножением двух сигналов: енем. Как будет видно из дальнейшего, это является особым случаем более общего метода модуляции. Для упрощения последующих математических преобразований видоизменим уравнения (la) и (2а), опустив произвольные фазы н и м:

еннcos(нt) (н=/2) (1б)

еммcos(мt) (м=/2) (2б)

Произведением этих двух выражений является:

ен емнcos(нt) Амcos(мt) (3)

Уравнение (3) показывает, что амплитуда модулированной несущей будет изменяться от нуля (когда мt = 900, cos(мt)=0) до АнАм (когда мt = 00, cos(мt)=1). Член Амcos(мt) Ан является амплитудой модулированных колебаний и прямо зависит от мгновенного значения модулирующей синусоиды. Уравнение (3) может быть преобразовано к виду

(4а)

Это преобразование основано на тригонометрическом тождестве

(5)

Уравнение (4a) представляет собой сигнал, состоящий из двух колебаний с частотами 1=н+м и 2=н-м и амплитудами АнАм/2. Переписывая выражение для модулированного колебания (4a), получим

(4б)

1 и 2 называются боковыми полосами частот, так как м обычно является полосой частот, а не одиночной частотой. Следовательно, 1 и 2 представляют собой две полосы частот - выше и ниже несущей (рис. 1, б), т.е. верхнюю и нижнюю боковую полосу соответственно. Вся информация, которую необходимо передать, содержится в этих боковых полосах частот.

Уравнение (4б) было получено для особого случая, когда модулированный сигнал был результатом прямого перемножения ен на ем. В результате уравнение (4б) не содержит компонента на частоте несущей, т.е. частота несущей полностью подавлена. Такой тип модуляции с подавленной несущей иногда преднамеренно проектируется в системах связи, так как это ведет к снижению излучаемой мощности. В большинстве таких систем излучается некоторая часть мощности на частоте несущей, позволяя тем самым приемному устройству настраиваться на эту частоту. Можно также передавать лишь одну боковую полосу, так как она содержит всю существенную информацию о модулирующем сигнале. Приемное устройство затем восстанавливает ем по модуляции одной боковой полосы.

Полное выражение, представляющее амплитудно-модулированное колебание в общем виде, имеет вид

ен емнcos(нt)+ Амcos(нt) cos(мt) (6а)

Это выражение описывает как неподавленную несущую (первый член в правой части уравнения), так и произведение, т.е. модуляцию (второй член справа). Уравнение (6a) можно переписать в виде

ен ем=[Ан+ Амcos(мt)] cos(нt)= Анмcos(нt) (6б)

Последнее выражение показывает, как амплитуда несущей изменяется в соответствии с мгновенными значениями модулирующего колебания. Амплитуда модулированного сигнала Анм состоит из двух частей: Ан - амплитуды немодулированной несущей и Амcos(мt) - мгновенных значений модулирующего колебания:

Анмн+ Амcos(мt) (7)

Отношение Ам к Ан определяет степень модуляции. Для Амн значение Анм достигает нуля при cos(мt)=-1 (мt=180°) и Анм=2Ан при cos(мt)=1 (мt= 0°). Амплитуда модулированной волны изменяется от нуля до удвоенного значения амплитуды несущей. Отношение

m= Амн (8)

определяет коэффициент модуляции. Для предотвращения искажений передаваемой информации - модулированного сигнала - значение m должно быть в пределах от нуля до единицы: 0m1. Это соответствует АмАн. (Для m=0 Ам= 0, т.е. нет модулирующего сигнала.) Уравнение (6a) может быть переписано с введением m:

ен емнcos(нt) [1+mcos(мt)] (6в)

На рис. 2, а показана форма модулированных колебаний и коэффициент модуляции m выражен через максимальное и минимальное значения ее амплитуды (пикового и узлового значений). Рис. 2, б дает представление о спектре модулированных колебаний, который может быть выражен преобразованием уравнения (6):

(6г)

несущая верхняя боковая полоса нижняя боковая полоса

На рис. 2, в показан результат модуляции с коэффициентом m, превышающим 100%: m>1.

В таблице на рис. 3 приведены амплитуда и мощность для каждой из трех частотных компонент модулированного колебания.

Угловая частота

Амплитуда

Относительная амплитуда

Относительная мощность

Несущая

н

Ан

1

1

Верхняя боковая полоса

н+м

Ам/2

m/2

(m/2)2

Нижняя боковая полоса

н-м

Ам/2

m/2

(m/2)2

Для 100%-ной модуляции (m=1) и мощности несущей 1 кВт полная мощность модулированных колебаний составляет 1 кВт+(1/2)2 кВт+(1/2)2 кВт=1,5 кВт. Отметим, что при m=1 мощность, заключенная в обеих боковых полосах, составляет половину мощности несущей. Аналогично при m=0,5 мощность в обеих боковых полосах составляет 1/8 мощности несущей. Указанное выше имеет место лишь для синусоидальной формы AM. Амплитудная модуляция может быть использована в передаче импульсных значений.

При обычной модуляции с двумя боковыми полосами, используемой в радиовещании, информация передается исключительно в боковых полосах. Для того чтобы получить, например, хорошее качество звука, необходимо работать в полосе частот шириной 2М, где М - ширина полосы высококачественного воспроизведения звука (20-20 000 Гц). Это означает, что стандартное АМ-радиовещание, к примеру, с частотами до 20 кГц должно иметь ширину полосы ±20 кГц (всего 40 кГц), учитывая верхнюю и нижнюю боковые полосы. Однако на практике ширина полосы частот по правилам ФКС ограничивается величиной 10 кГц (5 кГц), которая предусматривает для радиопередачи звука ширину полосы всего лишь 5 кГц, что далеко от условий высококачественного воспроизведения. Радиовещание с частотной модуляцией, как это будет показано ниже, имеет более широкую полосу частот.

Федеральная комиссия связи также устанавливает допуски частоты всех распределений частот в США. Все АМ-радиовещание (535-1605 кГц) имеет допустимые отклонения в 20 Гц, или около 0,002%. Эта точность и стабильность частоты может быть достигнута путем использования кварцевых генераторов.

Детектирование или демодуляция АМ-колебаний требует выпрямления модулированного сигнала, сопровождаемого исключением несущей частоты с помощью соответствующей фильтрации. Эти две стадии воспроизведения модулирующего сигнала могут быть продемонстрированы па примере колебания, изображенного на рис. 2, а. После выпрямления остается лишь половина колебания, а после фильтрации присутствует лишь его огибающая, которая является воспроизведенным сигналом.

На рис. 4 приведены функциональные схемы передающей и приемной систем с амплитудной модуляцией.

АМ-система.

а-функциональная схема передатчика; б-функциональная схема приемника.

Передатчик содержит два источника: сигнала модуляции - от микрофона, проигрывателя и т.д. и несущей - от генератора с кварцевой стабилизацией. Модулирующий сигнал и несущая вводятся в модулятор, который вырабатывает модулированный сигнал, который затем передается через антенну. В большинстве передатчиков большой мощности модуляция осуществляется в последнем каскаде системы для того, чтобы избежать необходимости усиливать модулированный сигнал. Усиление несущей и модулирующего сигнала происходит раздельно. Степень модуляции контролируется изменением амплитуды модуляции и поддержанием постоянной амплитуды несущей. С тех пор как передаваемая мощность стала лимитироваться ФКС, большинство радиовещательных станций имеет автоматическое управление и контроль мощности, как это показано штриховыми линиями на рис. 4, а.

Приемник (рис. 4, б) содержит высокочастотный усилитель, который усиливает сигнал, принятый антенной. ВЧ-усилитель настраивается; его частота настройки может быть изменена (в диапазоне радиовещания для АМ-приемников) для выбора нужной станции. Термин «избирательность», примененный к приемнику, относится к способности приемника выбирать отдельную станцию (частоту), не принимая при этом сигналов от примыкающих к ней станций. Например, если приемник имеет плохую избирательность, то при настройке на станцию WQXP (1560 кГц) может быть также принята другая, смежная станция WWRL (1600 кГц). Ясно, что приемник с такой плохой избирательностью является непригодным. Нужно также помнить, что ВЧ-усилитель должен иметь ширину полосы 5 кГц для звуковых сигналов (две боковые полосы требуют ширину полосы 5 кГц вокруг частоты несущей). Таким образом, требуется полоса частот 10 кГц совместно с высокой избирательностью, которая означает очень крутые спады частотной характеристики перестраиваемого контура, обеспечивающие существенное ослабление сигналов вблизи выбранной частоты, но находящихся вне полосы частот ±5 кГц.

Приемник, показанный на рис. 4, б, является приемником или прямого усиления (сплошные линии), или гетеродинного типа (штриховые линии). В последнем принятый ВЧ-сигнал н смешивается с колебаниями от местного генератора-гетеродина г. В результате возникают два сигнала - с частотами г-н и г+н. Сигнал с разностной частотой г-н усиливается усилителем промежуточной частоты (УПЧ) и затем подводится к детектору. На рис. 4, б штриховыми линиями вместо сплошных линий между ВЧ-усилителем и детектором представлена функциональная схема гетеродинного приемника. Такой метод приема позволяет настраиваться на любую станцию, в то время как промежуточная частота остается равной 455 кГц и легко усиливается усилителями с фиксированной частотой настройки. Отметим, что для того, чтобы настроиться на станцию, нужно изменять г и н одновременно, и, таким образом, разность г-н остается неизменной. Приемник гетеродинного типа имеет лучшую избирательность и гораздо большую чувствительность. Минимально различимый им сигнал составляет 10 мкВ на антенне. Когда мы говорим «различимый», то подразумеваем превышающий уровень шумов приемника.

2. Частотная модуляция, фазовая модуляция

В методе частотной модуляции (ЧМ) амплитуда модулирующего сигнала управляет мгновенной частотой несущей. Идеальная ЧМ не вносит изменений в амплитуду несущей. Следовательно, форма напряжения модулированной несущей может быть выражена в виде

ечмнcos[нt+sin(мt)] (9)

где н и м - соответственно несущая частота и частота модуляции, а - индекс модуляции. Частоты модулированного колебания могут быть получены из выражения cos[нt+sin(мt)] с использованием тригонометрических формул и специальных таблиц (функции Бесселя).

Индекс модуляции определяется как н/м=fн/fм - отношение максимальной девиации частоты (за один период модулирующего сигнала) к частоте модуляции. Детальный анализ частотной модуляции сложен. Рассмотрим на примерах основные черты этого метода. Будем предполагать наличие одиночной частоты модуляции мммsin(мt)).

Девиация частоты н прямо пропорциональна мгновенному значению модулирующего сигнала еммsin(мt). Таким образом, н можно выразить через ем:

н=kfАмsin(нt) (10)

где kf - коэффициент пропорциональности, аналогичный по своему характеру чувствительности; он дает девиацию частоты на 1 В (/В). Следовательно, при нt=90° (sin(нt)=1) н=kfАм - максимальная девиация частоты синусоидального модулирующего сигнала. Например, если sin(нt)=0,5, kf=21000 (рад/с)/В=1000 Гц/В и Ам=10В, то мы получаем н=21000100,5=25000 рад/с, т.е. девиацию частоты несущей 5 кГц. Максимальное значение fн при этих условиях (sin(нt)=1) будет составлять 10 кГц. Отметим, что, так как sin(нt) может быть равным +1 или -1, то fн макс=10 кГц. Если задано значение fм, то можно вычислить индекс модуляции . Для fм=2000=10000/2000 (fн/fм); таким образом, =5. Индекс модуляции должен быть всегда возможно большим, чтобы получить свободное от шумов верное воспроизведение модулирующего сигнала. Девиация частоты fн в ЧМ-радиовещании ограничена величиной до +75 кГц. Это приводит к значению =75/15=5 для звукового модулирующего сигнала с максимальной частотой 15 кГц.

Исследуя изменения частоты несущей с ЧМ, есть соблазн прийти к выводу о том, что ширина полосы, необходимой для ЧМ-передачи, составляет ±н, или 2н, так как несущая меняется по частоте в пределах ±н, т.е. чмн±н. Этот вывод, однако, полностью ошибочен. Может быть показано, что ЧМ-колебания состоят из несущей и боковых полос аналогично AM с одним лишь существенным различием: при ЧМ существует множество боковых полос (рис. 5). Амплитуды боковых полос связаны весьма сложным образом с индексом модуляции. Отметим, что частоты боковых полос связаны лишь с частотой модулирующего сигнала м, а не с девиацией частоты н. Для предыдущего примера, когда =5 и м=15 кГц (максимум), мы получаем семь пар полос (н±м, н±2м, н±3м, и т.д.) с изменяющимися амплитудами, но превышающими значение 0,04Ан. Все другие пары за пределами н±7м имеют амплитуды ниже уровня 0,02Ан.

Первая пара боковых полос может быть описана как 0,33А[sin(н+м) t+sin(н-м) t] имеет амплитуду 0,33 Ан; вторая пара - н2м - имеет амплитуду 0,047Ан. Отметим, что амплитуды различных боковых полос не являются монотонно убывающими по мере того, как их частоты все более и более удаляются от н. Фактически в приведенном примере с =5 наибольшей пo амплитуде (0,4 Ан) является четвертая пара боковых полос. Амплитуды различных боковых полос получены из специальных таблиц, описывающих эти полосы для различных значений . Очевидно, что ширина полосы, необходимая для передачи семи пар боковых полос, составляет ±715 кГц, или 1415 кГц= 210 кГц (для fм=15 кГц). На этом же основании ширина полосы, необходимая для =10 (н/м=10), равна 26fм; 13 боковых полос в этом случае составят 2615=390 кГц. Таким образом, частотная модуляция требует значительной ширины полосы частот и, как следствие, используется только при несущих с частотами 100 МГц и выше.

Боковые полосы ЧМ

н-несущая частота; м-частота модуляции

Частотно-модулированная связь гораздо менее чувствительна к помехам. Шумы, попадающие в ЧМ-сигнал, будь то атмосферные возмущения (статические), тепловые шумы в лампах и сопротивлениях или любые другие шумы, имеют меньшую возможность влиять на прием, чем в случае AM. Основной причиной этого является попросту тот факт, что большинство шумов амплитудно модулируют несущую. Делая приемник нечувствительным к изменениям амплитуды, практически устраняем эту нежелательную модуляцию. Восстановление информационного сигнала из ЧМ-волны связано лишь с частотным детектированием, при котором выходной сигнал зависит лишь от изменений частоты ЧМ-сигнала, а не от его амплитуды. Большинство приемников содержит усилитель-ограничитель, который поддерживает постоянную амплитуду ЧМ-колебаний, устраняя тем самым любой АМ-сигнал.

Существуют различные методы ЧМ-детектирования и селекции. В основе большинства методов лежит использование наклона частотной характеристики резонансного контура (рис. 6). Амплитуда отклика изменяется с частотой. Для н+н получаем амплитуду А1, для н-н - амплитуду А2, а для частот между н+н и н-н имеем все промежуточные амплитуды между А1 и А2. Выходной сигнал соответствует девиации частоты входного сигнала (хотя и не совсем линейно в простом резонансном контуре) и тем самым воспроизводит первоначальный модулирующий сигнал.

Принцип использования резонансного контура в качестве частотного детектора

Цепь фазовой автоподстройки (ФАП), вскоре стала одним из наиболее распространенных средств ЧМ-детектировапия, особенно применительно к импульсным модулирующим сигналам. Некоторые схемы ФАП снабжены логическими выходными схемами, согласованными с соответствующими входными сигналами импульсной формы.

Как отмечалось ранее, ЧМ - лишь один тип угловой модуляции. Другим является фазовая модуляция. Эта модуляция очень похожа на ЧМ. При фазовой модуляции мгновенная фаза несущей изменяется пропорционально мгновенной амплитуде модулирующего сигнала. Это приводит к изменению несущей частоты н, как видно из уравнения

фаз=н+kфмАмsin(мt) (11)

где kф, - коэффициент пропорциональности, измеряемый в единицах рад/В. Фазовая и частотная модуляция часто используются в одной системе модуляции, так как прием и детектирование обеих идентичны.

Функциональные схемы передатчика и приемника с ЧМ почти те же, что и для AM. Ширина полосы частот ЧМ существенно шире, а несущая частота значительно выше (100 МГц и более). Более широкая полоса частот приводит к более верному воспроизведению входных звуковых сигналов, так что звуки с частотами выше 5 кГц должны передаваться системами ЧМ. В приемниках с частотной модуляцией иногда используется двойное гетеродинирование с двумя промежуточными частотами - 5 МГц и 455 кГц.

3. Импульсная модуляция (ИМ)

Импульсная модуляция (ИМ) не является в действительности каким-то особым типом модуляции. Этот термин характеризует скорее вид модулирующего сигнала. Далее различают импульсную амплитудную и импульсную частотную модуляции. Здесь учитывают то, каким образом информация представлена - с помощью импульса или ряда импульсов. Можно рассматривать в качестве модулируемой величины амплитуду импульса, или его ширину, или его положение в последовательности импульсов и т.д. Следовательно, существует большое разнообразие методов импульсной модуляции. Все они используют в качестве формы передачи или AM, или ЧМ.

Последовательность импульсов, отображающих число 37 в двоично-десятичном коде (младший значащий разряд первый)

Импульсная модуляция может быть использована для передачи как цифровых, так и аналоговых форм сигнала. Когда речь идет о цифровых сигналах, мы имеем дело с логическими уровнями - высоким и низким - и можем модулировать несущую (с помощью AM или ЧМ) рядом импульсов, который представляет цифровое значение. Например, если для числа 37 передается код ДКД (двоично-кодированное десятичное число) 00110111, то для модуляции несущей просто должна использоваться указанная последовательность нулей и единиц. Каждый нуль может быть представлен уровнем 0В, а каждая единица - уровнем, например, 5В. Образованная в результате последовательность импульсов показана на рис. 7 вместе с совпадающим рядом синхронизирующих импульсов, необходимых для идентификации положения единиц и нулей. В указанной последовательности важен порядок импульсов. Сначала передается МЗДР (младший значащий десятичный разряд) 7, а затем СЗДР (старший значащий десятичный разряд) 3. В каждом десятичном разряде на первом месте старший двоичный разряд (бит).

Отметим, что, даже если все импульсы имеют полную амплитуду 5 В, обычно допускается изменение цифровых уровней в широком диапазоне напряжений, что не приводит к нарушению нормальной работы системы. Например, логический уровень «1» может изменяться в пределах от 2,4 до 5,5 В.

При использовании импульсных методов для передачи аналоговых сигналов необходимо сначала преобразовать аналоговые данные в импульсную форму. Это преобразование также относится к модуляции, так как аналоговые данные используются для модулирования (изменения) последовательности импульсов или импульсной поднесущей. На рис. 8, а показана модуляция синусоидальным сигналом амплитуд последовательности импульсов.

Форма сигналов амплитудно-импульсной модуляции.

а-форма модулированного сигнала; б-воспроизведенная форма сигнала при низкой частоте следования импульсов, Т1 - период последовательности импульсов; в-воспроизведенная форма сигнала при высокой частоте следования импульсов, Т2 - период последовательности импульсов

Амплитуда каждого импульса в модулированной последовательности зависит от мгновенного значения аналогового сигнала. Синусоидальный сигнал может быть восстановлен из последовательности модулированных импульсов путем простой фильтрации. На рис. 8, б графически показан процесс восстановления первоначального сигнала путем соединения вершин импульсов прямыми линиями. Однако восстановленная на рис. 8, б форма колебаний не является хорошим воспроизведением первоначального сигнала из-за того, что число импульсов на период аналогового сигнала невелико. При использовании большего числа импульсов, т.е. при большей частоте следования импульсов по сравнению с частотой модулирующего сигнала, может быть достигнуто более лучшее воспроизведение (рис. 8, в). Этот процесс амплитудно-импульсной модуляции (АИМ), относящийся к модуляции поднесущей последовательности импульсов, может быть выполнен путем выборки аналогового сигнала через постоянные интервалы времени импульсами выборки с фиксированной длительностью. Импульсы выборки - это импульсы, амплитуды которых равны величине первоначального аналогового сигнала в момент выборки. Частота выборки (число импульсов в секунду) должна быть по крайней мере в два раза большей, чем самая высокая частота аналогового сигнала. Для лучшей воспроизводимости частота выборки обычно устанавливается в 5 раз большей самой высокой частоты модуляции.

АИМ является только одним типом импульсной модуляции. Кроме него существуют:

ШИМ - широтно-импульсная модуляция (модуляция импульсов по длительности);

ЧИМ - частотно-импульсная модуляция;

КИМ - кодово-импульсная модуляция.

Широтно-импульсная модуляция преобразует уровни выборок. напряжений в серии импульсов, длительность которых прямо пропорциональна амплитуде напряжений выборок (рис. 9, а). Отметим, что амплитуда этих импульсов постоянна; в соответствии с модулирующим сигналом изменяется лишь длительность импульсов. Интервал выборки - интервал между импульсами - также фиксирован.

Частотно-импульсная модуляция преобразует уровни выборок напряжений в последовательность импульсов, мгновенная частота которых, или частота повторения, непосредственно связана с величиной напряжений выборок. И здесь амплитуда всех импульсов одинакова, изменяется только их частота. По существу все аналогично обычной частотной модуляции, лишь несущая имеет несинусоидальную форму, как в случае обычной ЧМ; она состоит из последовательности импульсов.

Кодово-импульсная модуляция преобразует выборки напряжения в кодированное сообщение. К примеру, дискретный уровень, равный 5,5 В, может быть представлен двоичным числом 101.101=5,5 с помощью аналого-цифрового преобразователя. Кодовое сообщение 101.101 представляет собой некоторую выборку напряжения Vs. Подобным кодированием (в данном случае двоичным кодом) преобразуют каждую выборку. Последовательность таких кодовых сообщений представляет собой серию чисел, описывающих последовательные выборки. Код может быть любым: двоичным с шестью разрядами, как представленный выше, или двоичным кодом с N разрядами, или двоично-кодированным десятичным и т.д. (рис. 7).

Рис. 9. Широтно-импульсная модуляция

Приведенные выше модуляционные схемы - лишь некоторые представители большого числа используемых методов. Подчеркнем, что рассмотренная здесь ИМ-модуляция относится к модуляции поднесущей, т.е. модуляции последовательности импульсов, которые затем используются в системах AM или ЧМ. Речь идет о двух следующих друг за другом модуляциях. Во-первых, информация модулирует последовательность импульсов. Здесь может быть использована АИМ, ШИМ, ЧИМ, КИМ или любой другой вид модуляции. Во-вторых, содержащая информацию поднесущая модулирует синусоидальную несущую.

Частотно-импульсная модуляция синусоидальной несущей приводит к н - девиации частоты несущей скачкообразным отклонением от несущей. Например, частотная модуляция логических уровней «0» и «1» (0 В и 5В) дает две частоты - н (для логического уровня «0») и н+н (для уровня «5»). По существу, мы просто сдвигаем частоту несущей от к н+н для изображения логического уровня «1». Этот тип частотной модуляции называется также и частотной манипуляцией и обычно используется в передаче сигналов с помощью телеграфа и других цифровых устройств связи. Для восстановления логических уровней из частотно-манипулированной несущей может быть использована цепь фазовой автоподстройки (ФАП).

Методы импульсной модуляции очень широко распространены в приложениях телеметрии.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность и разновидности амплитудно-импульсной модуляции. Основные интегральные характеристики напряжения с АИМ-3, а также направления улучшения спектрального состава. Особенности применения функций Уолша в процессе реализации сложных законов модуляции.

    реферат [1,0 M], добавлен 26.08.2015

  • Основные принципы фазовой модуляции, ее теоретические основы, фокусирование внимания на ее частном случае - передатчике ФМ-8. Формирование функциональной схемы передатчика. Компьютерное моделирование примера передачи информации по предложенной схеме.

    курсовая работа [2,8 M], добавлен 05.01.2013

  • Разновидности, задание сигнала широтно-импульсной модуляции и его свойства. Спектр при большой, малой и дробной кратности квантования. Электронно-волновые системы миллиметрового диапазона. Основы надежности и управление качеством электронных средств.

    реферат [1,2 M], добавлен 26.08.2015

  • Примеры измерительных сигналов, используемых в различных разделах науки и техники. Спектральная плотность стационарного случайного процесса. Составляющая погрешности измерений. Причины возникновения внешних помех. Частотная, амплитудная модуляции.

    реферат [245,9 K], добавлен 07.05.2014

  • Управление лазерным пучком и контроль сигнала излучения с высокой скоростью с помощью электрооптической модуляции. Продольная и поперечная, амплитудная и фазовая электрооптическая модуляция. Виды и устройство электрооптических модуляторов Фабри-Перо.

    реферат [422,7 K], добавлен 28.06.2009

  • Изучение принципов и особенностей осуществления угловой модуляции. Ознакомление с физическими процессами, происходящими в автогенераторе с частотной модуляцией на варикапах. Проведение экспериментального анализа характеристик частотного модулятора.

    лабораторная работа [457,4 K], добавлен 01.07.2015

  • Процесс управления высокочастотными колебаниями при передаче речи, музыки или телевизионных сигналов. Ток несущей частоты. Амплитудная модуляция. Наблюдение модуляции, формы и частоты колебаний. Детектирование.

    лабораторная работа [179,0 K], добавлен 19.07.2007

  • Составляющие тока заряжения. Способ осуществления выборки. Виды импульсных методов. Нормальная импульсная вольтамперометрия: влияние адсорбции, достоинства и недостатки, используемые приборы и материалы, отличительные черты от дифференциально-импульсной.

    контрольная работа [387,9 K], добавлен 07.06.2011

  • Обоснование выбора рода тока и рабочего напряжения электрической станции проекта. Выбор типа, числа и мощности генераторных агрегатов. Выбор устройств автоматизации проектируемой электрической станции. Разработка схемы распределения электроэнергии.

    курсовая работа [4,9 M], добавлен 17.02.2015

  • Порядок проектирования электрической части станции, выбор мощности и типов трансформаторов и электрической схемы ГПП. Расчет токов при КЗ и при нормальных режимах работы. Правила и порядок проверки каждого аппарата при различных условиях режима работы.

    курсовая работа [488,4 K], добавлен 22.08.2009

  • Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций [950,2 K], добавлен 21.02.2009

  • Понятие и принципы работы атомной электростанции как станции, предназначенной для производства электрической энергии. Основные современные энергетические реакторы, их разновидности и функции. Российские энергоблоки типа ВВЭР, эксплуатируемые на 5 АЭС.

    презентация [3,1 M], добавлен 27.10.2013

  • Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.

    лабораторная работа [565,1 K], добавлен 04.06.2015

  • Классификация и основные характеристики неоднородных систем, их разновидности и отличительные признаки. Классификация, принципы и обоснование выбора, оценка эффективности методов разделения. Разделение в поле сил тяжести, в поле центробежных сил.

    презентация [851,5 K], добавлен 28.09.2013

  • Особенности разработки принципиальной электрической схемы управления системой технологических машин. Обоснование выбора силового электрооборудования, аппаратуры управления и защиты. Характеристика методики выбора типа щита управления и его компоновки.

    методичка [2,2 M], добавлен 29.04.2010

  • Разработка проекта электрической сети с учетом существующей линии 110 кВ. Исследование пяти вариантов развития сети. Расчет напряжения, сечений ЛЭП, трансформаторов на понижающих подстанциях и схемы распределительных устройств для каждого варианта.

    курсовая работа [2,4 M], добавлен 24.10.2012

  • Структура фактических и коммерческих потерь электроэнергии, их нормирование. Определение потребной мощности сети, годового потребления энергии для каждого пункта. Выбор типа и мощности батарей конденсаторов. Схема замещения сети и расчет ее параметров.

    дипломная работа [7,0 M], добавлен 06.02.2013

  • Статическая нагрузочная диаграмма электропривода. Определение мощности резания для каждого перехода, коэффициента загрузки, мощности на валу двигателя, мощности потерь в станке при холостом ходе. Расчет машинного (рабочего) времени для каждого перехода.

    контрольная работа [130,5 K], добавлен 30.03.2011

  • Выбор конфигурации районной электрической сети, номинального напряжения, трансформаторов для каждого потребителя. Расчет потокораспределения, определение тока короткого замыкания на шинах низшего напряжения подстанции. Выбор сечения проводников.

    курсовая работа [1,6 M], добавлен 07.08.2013

  • Понятие трансформатора, его сущность и особенности, принцип работы и назначение. Классификация и разновидности трансформаторов, их характеристика и отличительные черты. Режимы работы различных трансформаторов, методика увеличения их производительности.

    реферат [304,3 K], добавлен 01.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.