Манометрические термометры

Манометрический термометр как прибор для измерения температуры: основное предназначение, особенности конструкции. Рассмотрение и анализ способов подключения термопары к измерительным преобразователям. Анализ основных источников погрешности пирометров.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 10.02.2013
Размер файла 24,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Манометрический термометр -- прибор для измерения температуры, действие которого основано на измерении давления какого-либо вещества (жидкости или газа) при изменении температуры. Шкала манометра градуируется непосредственно в единицах температуры.

Принцип работы

Измерительная система состоит из погружаемого элемента, капиллярного провода и трубчатой пружины в корпусе.

Данные элементы соединены в единое устройство, которое под давлением заполнено инертным газом. Изменение температуры влечёт изменение объема или внутреннего давления в погружаемом устройстве. Давление деформирует измерительную пружину, отклонение которой передается с помощью стрелочного механизма на стрелку. Колебания температуры окружающей среды могут не приниматься во внимание, так как для компенсации между стрелочным механизмом и измерительной пружиной встроен биметаллический элемент. В зависимости от применяемого рабочего вещества различают следующие манометрические термометры: - газовые (азот); - конденсационные (метилхлорид, спирт, диэтиловый эфир); - жидкостные (метилксилол, силиконовые жидкости, металлы с низкой точкой плавления); - ртутные со специальными наполнителями.

Особенности

Диапазоны показаний лежат в пределах между ?200 °C и + 700 °C при измерениях с классом точности 1 согласно ДИН 16 203.

Манометрические термометры по принципу действия могут быть разделены на два типа: 1) газовые и жидкостные и 2) паровые.

Действие приборов первой группы основано на измерении давления газа или жидкости, находящихся в замкнутом пространстве; это давление зависит от температуры. Действие же приборов второй группы основано на измерении давления насыщенного пара над поверхностью жидкости; это давление также зависит от температуры. Манометрические термометры применяют для измерения температуры в различных Диапазонах и в зависимости от назначения заполняют различными жидкостями.

По конструкции манометрические термометры всех типов практически одинаковы и состоят из следующих основных деталей:, термометрического баллона, капиллярной трубки и манометра. Термометрический баллон / у приборов первой группы полностью заполнен соответствующим рабочим веществом, а у приборов второй группы -- на 2/з жидкостью, пары которой заполняют остальной объем. Капиллярную трубку 2, соединяющую баллон с манометром, н полую пружину 3 заполняют высококипящей жидкостью (часто -- во Дноглицериновой смесью). При нагревании или охлаждении давление в баллоне изменяется и через жидкость, заполняющую капилляр, действует на стенки пружины, раскручивающейся при повышении давления и скручивающейся при понижении его. Возникающее при этом движение свободного конца пружины передается через передаточную тягу 4 и зубчатый сектор 5 стрелке 6. Шкала 7 прибора, по которой проводится отсчет, градуирована в градусах Цельсия.

На показания приборов первой группы оказывает влияние температура капиллярной трубки, если она отличается от градуировочной температуры. Для уменьшения, этой погрешности термометрический баллон имеет объем, во много раз превышающий объем капиллярной трубки. Однако полное устранение погрешности достигается лишь введением специальных компенсирующих устройств.

У приборов третьей группы, т. е. у паровых термометров, этого недостатка нет, так как при изменении температуры капилляра объем заполняющей его жидкости изменяется, что приводит к движению жидкости или к баллону, или от него, а следовательно, и к изменению парового пространства в баллоне. Однако у паровых термометров имеется другой недостаток, заключающийся в том, что шкала их неравномерная, она сжата в начале и растянута в конце, что зависит от давления пара над поверхностью жидкости.

Манометрические термометры бывают указывающими и самопишущими на специальной диаграммной ленте или на диаграммном диске, причем самопишущий прибор может приводиться в движение или часовым механизмом, или электромотором.

При измерении температуры манометрическим термометром термометрический баллон вводят в испытуемую среду, прибор или аппарат. Если манометрический термометр не снабжен диаграммной лентой или диском, т. е. если он указывающий, его показания отсчитывают на шкале по положению стрелки.

Нельзя нагревать манометрический термометр-выше предельной температуры, до которой он рассчитан.

Термоэлектрические термометры

Термопара (термоэлектрический преобразовательтемпературы) -- термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара -- пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма такихразностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3. Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик [1]:

-- Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра; -- Не допускать по возможности механических натяжений и вибраций термопарной проволоки; -- При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода; -- По возможности избегать резких температурных градиентов по длине термопары; -- Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях; -- Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур; -- Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Преимущества термопар

· Высокая точность измерения значений температуры (вплоть до ±0,01 °С)

· Большой температурный диапазон измерения: от ?200 °C до 2500 °C

· Простота

· Дешевизна

· Надежность

Недостатки

· Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.

· На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.

· Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).

· Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.

· Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.

· На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Бесконтактное измерение температуры

Пирометр -- прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.

Назначение

Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства(сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.

Классификация пирометров

Пирометры можно разделить по нескольким основным признакам:

· Яркостные. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путем сравнения его цвета с цветом эталонной нити.

· Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения.

· Цветовые (другие названия: мультиспектральные, спектрального отношения) -- позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.

Температурный диапазон

· Низкотемпературные. Обладают способностью показывать температуры объектов, обладающих даже отрицательными значениями этого параметра.

· Высокотемпературные. Оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют сильное смещение в пользу «верхнего» предела измерения.

Исполнение

· Переносные. Удобны в эксплуатации в условиях, когда необходима высокая точность измерений, в совокупности с хорошими подвижными свойствами, например для оценки температуры труднодоступных участков трубопроводов. Обычно снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.

· Стационарные. Предназначены для более точной оценки температуры объектов. Используются в основном в крупной промышленности, для непрерывного контроля технологического процесса производства расплавов металлов и пластиков.

Основные источники погрешности пирометров

Самыми важными характеристиками пирометра, определяющими точность измерения температуры являются оптическое разрешение и настройка степени черноты объекта [1].

Иногда оптическое разрешение называют показателем визирования. Этот показатель рассчитывается как отношение диаметра пятна (круга) на поверхности, излучение с которого регистрируется пирометром к расстоянию до объекта. Чтобы правильно выбрать прибор, необходимо знать сферу его применения. Если необходимо проводить измерения температуры с небольшого расстояния, то лучше выбрать термометр с небольшим разрешением, например, 4:1. Если температуру необходимо измерять с расстояния в несколько метров, то рекомендуется выбирать пирометр с большим разрешением, чтобы в поле зрения не попали посторонние предметы. У многих пирометров есть лазерный целеуказатель для точного наведения на объект.

Cтепень черноты (или коэффициент излучения) характеризует свойства поверхности объекта, температуру которого измеряет пирометр. Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно черного тела при той же температуре. Он может принимать значения от 0,1 до близких к 1. Неправильный выбор коэффициента излучения -- основной источник погрешности для всех пирометрических методов измерения температуры [2]. На коэффициент излучения сильно влияет окисленность поверхности металлов.

манометрический термометр преобразователь

Размещено на Allbest.ru

...

Подобные документы

  • Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие [1,3 M], добавлен 18.05.2014

  • Сущность и типы тепловых преобразователей, принцип их действия и назначение, сферы практического использования, этапы изготовления. Характеристика стандартных общепринятых типов подключения термопары к измерительным и преобразовательным приборам.

    презентация [331,6 K], добавлен 27.06.2014

  • Классификация датчиков по принципу преобразования электрических и неэлектрических величин, виду выходного сигнала. Принцип действия тепловых датчиков, его основание на тепловых процессах. Термопреобразователи сопротивления, манометрические термометры.

    курсовая работа [1,4 M], добавлен 08.10.2012

  • Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа [476,6 K], добавлен 07.06.2014

  • Измерение температуры с помощью мостовой схемы. Разработка функциональной схемы измерения температуры с применением термометра сопротивления. Реализация математической модели четырехпроводной схемы измерения температуры с использованием источника тока.

    курсовая работа [1,4 M], добавлен 19.09.2019

  • История изобретения термометра. Ртутные и спиртовые термометры. Теплоизоляция в жизни человека и животных. Увеличение и уменьшение потерь тепла у человека. Температура тела человека, тепловой баланс. Способы регулирования температуры в животном мире.

    доклад [15,1 K], добавлен 28.11.2010

  • Две основные группы методов измерения, различаемые в зависимости от диапазона измеряемых температур. Термодинамическая шкала Кельвина. Манометрический термометр, его устройство. Поправка на температуру свободных концов термоэлектрического преобразователя.

    презентация [4,3 M], добавлен 22.07.2015

  • Основные сведения о термометрах сопротивления и металлах, применяемых для их изготовления. Автоматические компенсационные приборы для работы с малоомными термометрами сопротивления. Общие сведения об автоматических уравновешенных мостах. Логометры.

    реферат [513,9 K], добавлен 27.02.2009

  • Автоматизированная система как совокупность средств, способов и мероприятий, используемых для систематичной обработки информации. Работа трансформаторной подстанции и схема ее автоматизации. Оценка погрешности измерения напряжения, тока и температуры.

    курсовая работа [1,2 M], добавлен 03.07.2010

  • Первый прибор для наблюдений за изменениями температуры, созданный Галилео Галилеем. Преобразование воздушного термоскопа в спиртовой флорентийским ученым Торричелли. Изготовление в 1714 г. Фаренгейтом ртутного термометра, его усовершенствование Цельсием.

    презентация [2,7 M], добавлен 23.09.2014

  • Понятие и основные законы существования электрического поля. Сущность и устройство электрических машин, их функциональные особенности и сферы практического применения. Понятие погрешности прибора и ее определение. Средства измерения физических величин.

    шпаргалка [999,1 K], добавлен 06.06.2013

  • Средства обеспечения единства измерений, исторические аспекты метрологии. Измерения механических величин. Определение вязкости, характеристика и внутреннее устройство приборов для ее измерения. Проведение контроля температуры и ее влияние на вязкость.

    курсовая работа [465,3 K], добавлен 12.12.2010

  • Определение максимальной в заданном диапазоне температуры погрешность нелинейности характеристики, необходимость линеаризации. Определение разрядности аналого-цифрового преобразования термопары ТХА(К), принцип его работы, функциональная схема прибора.

    курсовая работа [126,3 K], добавлен 30.11.2009

  • Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.

    реферат [1,5 M], добавлен 08.01.2015

  • Принцип работы электрических, жидкостных, механических, газовых и оптических термометров. Особенности создания абсолютной шкалы температур английским физиком Вильямом Томсоном. Изобретение первого термометра Галилеем и схематический принцип его действия.

    презентация [855,2 K], добавлен 20.11.2011

  • Понятие и основное назначение тросовых и струнных электропроводок: анализ конструкции, особенности монтажа, характеристика видов, примеры выполнения. Рассмотрение и анализ концевых анкерных крепежных конструкций для тросов, способы их установки.

    курсовая работа [5,0 M], добавлен 25.12.2012

  • Понятие термоэлектрического эффекта; технические термопары, их типы. Характеристика и конструкция ТЭП, исполнение, назначение, условия эксплуатации, недостатки. Измерение температуры, пределы допускаемых отклонений термоЭДС от номинального значения.

    контрольная работа [138,8 K], добавлен 30.01.2013

  • Изучение истории развития электроприборостроения и российской метрологии. Общие детали устройства измерения электрических величин. Условные обозначения принципа действия прибора, требования и погрешности. Персональный компьютер в измерительной технике.

    отчет по практике [6,2 M], добавлен 13.07.2014

  • Основное предназначение релейной защиты. Анализ и особенности двухобмоточного трансформатора ТДН–16000/110. Краткое рассмотрение схемы выключения реле РНТ-565. Характеристика газовой защиты трансформатора. Методы защиты трансформатора от перегрузки.

    курсовая работа [547,0 K], добавлен 23.08.2012

  • Методика определения систематической составляющей погрешности вольтметра в точках 10 и 50 В. Вычисление значения статистики Фишера для двух значений напряжений. Расчет погрешности измерительного канала, каждого узла с учетом закона распределения.

    курсовая работа [669,2 K], добавлен 02.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.