Гидравлические механизмы

Определение назначения и описание устройства гидравлических механизмов как приспособлений, использующих в своей работе кинетическую и потенциальную энергию жидкости. Гидравлические схемы умножения силы и крутящего момента. Гидроприводы и гидронасосы.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 20.03.2013
Размер файла 577,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

на тему: «Гидравлические механизмы»

Работу выполнила:

Козлова Виктория

9 «Б» класс

Гидравлические механизмы

Гидравлические механизмы -- аппараты и инструменты, использующие в своей работе кинетическую или потенциальную энергию жидкости. К гидравлическим механизмам относят гидравлические машины.

В таких механизмах сила высокого давления гидравлической жидкости преобразуется механизмами различных гидравлических моторов и цилиндров. Потоком жидкости можно управлять напрямую или автоматически -- посредством управляющих клапанов. Распределение потока происходит по специальным гидравлическим шлангам и трубкам.

Гидравлические механизмы имеют большую популярность в машиностроении благодаря тому, что возможно передавать огромную энергию через тонкие трубки и гибкие шланги.

Умножение силы и крутящего момента

Примеры гидравлической силы и умножения вращающего момента.

Фундаментальной основой гидравлических систем является способность приумножать усилие или крутящий момент простым способом, без применения системы шестерён и рычагов. Это достигается изменением эффективной рабочей поверхности соединённых цилиндров или перемещением энергии от насоса к мотору.

Примеры

1. два соединённых цилиндра:

Цилиндр C1 имеет диаметр 1 см, а цилиндр С2 -- 10 см. Если сила воздействующая на С1 -- 10 Н, сила воздействующая на С2 со стороны жидкости -- 1000 Н, потому что цилиндр С2 по площади ( ) в 100 раз больше С1. Обратная сторона полученного преимущества в том, чтобы переместить цилиндр С2 на 1 см, необходимо переместить цилиндр С1 на 100 см.

2. насос и мотор:

Если гидравлический роторный насос, перемещающий 10 мл/об жидкости, соединён с гидравлическим роторным мотором, перемещающим 100 мл/об, прикладываемый момент для вращения насоса в 10 раз меньше, чем момент вращения мотора, но скорость вращения мотора будет в 10 раз меньше, чем насос.

Оба примера можно называть гидравлической или гидростатической трансмиссией, имеющей точное передаточное число.

кинетическая энергия жидкость гидропривод насос

Гидравлические схемы

Для того, чтобы гидравлическая жидкость могла совершить работу, поток жидкости должен поступить в силовой привод или мотор, а затем вернуться в ёмкость. Далее жидкость фильтруется и снова подаётся в насос (разомкнутая схема гидропривода). Путь прохождения жидкости называется гидравлической схемой, которые бывают нескольких типов.

В схемах с открытым центром используется насос, являющийся источником постоянного потока. Жидкость возвращается в ёмкость через управляющий клапан, под которым понимают гидрораспределитель с открытым центром, то есть когда клапан расположен в центральном положении, он открывает обратный путь для жидкости в ёмкость и высокого давления не создаётся. Когда же клапан приведён в действие, поток направляется или в силовой агрегат или в ёмкость. Давление жидкости будет расти, пока не получит сопротивление, далее насос будет иметь постоянный выход. Если давление жидкости станет слишком большим, жидкость начнёт возвращаться в ёмкость через предохранительный клапан (pressure relief valve (англ.)). Различные управляющие клапаны могут соединяться последовательно. В схемах такого типа могут использоваться недорогие заменяемые насосы.

В схемах с закрытым центром полное давление доставляется на управляющие клапаны, вне зависимости от того, приведён клапан в действие или нет. Насосы изменяют свои выходные потоки, нагнетая очень слабый поток жидкости до тех пор, пока оператор не приведёт в действие клапан. Различные управляющие клапаны могут соединяться параллельно между собой, давление на каждом одинаково.

Гидравлические системы с регулируемым и нерегулируемым гидроприводом

Существуют две основные конфигурации схем с закрытым центром, связывающие регулятор с насосом переменного потока жидкости:

Стандартная система с нерегулируемым гидроприводом (Constant pressure systems, CP-system, standard). В такой системе давление насоса всегда равняется давлению, установленному его регулятором. Установка регулятора должна перекрывать максимальное давление, создаваемое нагрузкой. Насос создаёт поток, равный сумме потоков всех потребителей. Такая CP-система имеет большие потери мощности, если выходная нагрузка меняется в широком диапазоне, а среднее давление в системе намного ниже, чем установленное регулятором. CP-система проста в изготовлении. Также работает и пневматическая система. В систему легко могут быть добавлены новые гидравлические компоненты, и она быстро реагирует на управление.

Система с нерегулируемым гидроприводом низкого давления (Constant pressure systems, CP-system, unloaded). Та же самая конфигурация, как и в стандартной CP-системе, только насос находится в состоянии ожидания, генерируя низкое давление, когда все клапаны находятся в нейтральном положении. Система имеет более медленную реакцию при приведении управляющих клапанов в рабочее положение, чем стандартная CP-система, зато увеличивается время жизни насоса.

Система с регулируемым гидроприводом (Load-sensing systems, LS-system) имеет меньшие потери, так как насос снижает и выходной поток и давление, подгоняя их к требованиям нагрузки, но требует более точной регулировки, чем CP-система, по отношению к устойчивости. LS-системе требуются также дополнительные логические клапаны, компенсаторы в клапанах направленного действия, таким образом, система более сложна технически и имеет большую стоимость. В LS-системе возникают потери, которые зависят от падения давления на регуляторе насоса:

Обычно берётся около 2 МПа (290 psi). Если скорость потока высокая, потери могут быть значительными. Потери также увеличиваются, если действующая нагрузка сильно меняется.

Гидравлические насосы

Гидравлические насосы - гидромашины, которые преобразуют механическую энергию двигателя в энергию перемещаемой жидкости, повышая её давление. Разность давлений жидкости в насосе и трубопроводе обусловливает её перемещение. Гидравлические насосы поднимают жидкость на определённую высоту, подают её на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в какой-либо замкнутой системе.

Гидравлические насосы применяют в гидропередачах, назначением которых является передача механической энергии от двигателя к исполнительному рабочему органу, а также преобразование вида и скорости движения последнего посредством жидкости

Силовые приводы

В качестве силового привода служат различные силовые установки: двс, дизельные двигатели, электродвигатели.

Гидравлические аккумуляторы

Гидравлическим аккумулятором называется гидроёмкость, предназначенная для аккумулирования энергии рабочей жидкости, находящейся под давлением, с целью последующего использования этой энергии в гидроприводе. В зависимости от носителя потенциальной энергии гидроаккумуляторы подразделяют на грузовые, пружинные и пневматические.

Гидроаккумуляторы поддерживают на заданном уровне давление, компенсируют утечки, сглаживают пульсацию давления, создаваемую насосами, выполняют функцию демпфера, предохраняют систему от забросов давления, вызванных наездом машин на дорожные препятствия. Также используются для достижения большей скорости холостого хода при совместной работе с насосами.

Гидравлическая жидкость

Часто в роли гидравлической жидкости выступают гидравлические масла (ТНК Гидравлик, ВМГЗ). Работа с ними требует соблюдения правил техники безопасности.

Гидравлические фильтры

Часто устанавливаются в баке с гидравлической жидкостью. Иногда на схемах не обозначаются.

Гидравлический пресс.

После того как Паскаль провел ряд опытов по измерению атмосферного давления, он решил сконструировать "новую машину для увеличения сил". Его изобретение позволило создать гидравлический пресс (от греческого слова "гидравликос" - водяной).

Гидравлический пресс - это машина для обработки материалов давлением, приводимая в действие сдавливаемой жидкостью.

Чтобы понять принцип действия гидравлического пресса, рассмотрим рисунок 127. На нем изображены соединенные между собой два цилиндра с поршнями, имеющими разные площади сечения S1 и S2. В цилиндрах находится вода или минеральное масло.

Рисунок 127. Принцип действия гидравлического пресса.

Пусть F1 и F2 - силы, действующие на поршни со стороны находящихся на них гирь. Докажем, что жидкость в цилиндрах будет находиться в равновесии лишь тогда, когда сила, действующая на большой поршень, во столько раз превышает силу, действующую на меньший поршень, во сколько раз площадь большего поршня превышает площадь меньшего поршня. Для этого заметим, что жидкость будет оставаться в равновесии только тогда, когда давления под поршнями будут одинаковыми: p1 = p2

Но каждое из этих давлений можно выразить через силу и площадь:

Что и требовалось доказать.

Отношение F1/F2 характеризует выигрыш в силе, получаемый в данной машине. Согласно полученной формуле выигрыш в силе определяется отношением площадей S2/S1. Поэтому, чем больше отношение площадей поршней, тем больше выигрыш в силе.

Например, если площадь малого поршня S1 = 5 см2, а площадь большего поршня S2 = 500 см2, то выигрыш в силе будет составлять сто раз! Установив этот удивительный факт, Паскаль написал, что с помощью изобретенной им машины "один человек, надавливающий на малый поршень, уравновесит силу ста человек, надавливающих на поршень, в сто раз больший, и тем самым преодолеет силу девяносто девяти человек". Это открытие и легло в основу принципа действия гидравлического пресса.

Рисунок 128. Устройство гидравлического пресса.

Устройство гидравлического пресса показано на рисунке 128. Цифрой 4 обозначен манометр, служащий для измерения давления жидкости внутри пресса; 5 - предохранительный клапан, автоматически открывающийся, когда это давление превышает допустимое значение. Действие гидравлического пресса основано на законе Паскаля. Прессуемое тело 3 помещают на платформу, соединенную с большим поршнем 2. При действии некоторой силы F1 на малый поршень 1 в узком цилиндре пресса создается избыточное давление р = F1/S1. По закону Паскаля это давление передается во второй цилиндр и на поршень 2 начинает действовать сила:

Так как площадь второго поршня существенно превышает площадь первого поршня, то сила F2 оказывается значительно больше силы F1. Под действием силы поршень 2 начинает подниматься и сдавливает прессуемое тело. Последующие перекачивания жидкости из узкого цилиндра в широкий осуществляются с помощью периодических нажатий на рычаг 8. После каждого нажатия рычаг следует возвращать в исходное положение. При его подъеме малый поршень перемещается вверх, клапан 6 открывается и в пространство, находящееся под поршнем, из сосуда 9 засасывается очередная порция жидкости. При опускании рычага поршень 1 перемещается вниз и сдавливаемая жидкость закрывает клапан 6; при этом клапан 7 открывается и часть жидкости переходит в широкий цилиндр.

Впервые гидравлические прессы стали применяться на практике в конце XVIII - начале XIX в. Современная техника уже немыслима без них. Они используются в металлообработке для ковки слитков, листовой штамповки, выдавливания труб и профилей, прессования порошковых материалов. С помощью гидравлических прессов получают фанеру, картон и искусственные алмазы.

Рисунок 129. Схема автомобильного гидравлического тормоза

Гидравлический Тормоз

Тормоз (от греч. tоrmos - отверстие для вставки гвоздя, задерживающего вращение колеса), комплекс устройств для снижения скорости движения или для осуществления полной остановки машины

Рис. 1. Схема колодочного тормоза: 1 - барабан; 2 и 4 - колодки; 3 - шарнир; 5 - стяжная пружина. Или механизма, а в подъёмно-транспортных машинах также для удержания груза в подвешенном состоянии

Тормоз подразделяются по принципу действия на механические (фрикционные), гидравлические и электрические (электромагнитные, индукционные и т.д.). По конструктивному выполнению рабочих элементов различают Тормоз колодочные, ленточные, дисковые, конические и др.

Наибольшее применение в машинах и механизмах (подъёмно-транспортные машины, механизмы станков, железнодорожные поезда) находят колодочные Тормоз с внешними колодками, расположенными на качающихся рычагах, обычно диаметрально по отношению к тормозному барабану. В автомобилях применяются колодочные Тормоз с внутренними колодками (рис. 1).

Конструктивные разновидности колодочных Тормоз (рис. 2) определяются главным образом рычажной системой и типом привода. В механизмах передвижения некоторых транспортных машин, железнодорожных вагонов и локомотивов применяются колодочные рельсовые Тормоз, действие которых основано на прижатии тормозных колодок к рельсам. Эти Тормоз особенно эффективны при экстренном торможении.

В ленточном Тормоз вместо колодок используется гибкая лента, охватывающая барабан, что позволяет повысить момент трения, возрастающий с увеличением угла обхвата. Ленточные Тормоз находят применение в механизмах подъёма, передвижения и поворота подъёмно-транспортных машин. К недостаткам ленточных Тормоз относятся значительное усилие, изгибающее вал тормозного барабана, неравномерность распределения давления и износа фрикционного материала по дуге обхвата, большее по сравнению с др. Тормоз влияние изменения коэффициента трения на тормозной момент.

В дисковых Тормоз момент трения создаётся в результате прижатия дисков, вращающихся вместе с валом механизма, к закрепленным дискам. Дисковыми Тормоз можно получать высокие значения момента трения, возрастающего с увеличением числа дисков. Кроме того, эти Тормоз отличаются компактностью, возможностью относительно лёгкой защиты их от окружающей среды (вплоть до герметизации). Недостатки - плохой отвод тепла от поверхностей трения, особенно в многодисковых Тормоз Дисковые Тормоз находят применение в различных механизмах транспортных машин, металлообрабатывающих станков.

Перспективны дисково-колодочные Тормоз, в которых трение создаётся между торцевыми поверхностями диска и прижимаемыми к диску с обоих торцов фрикционными колодками, перекрывающими только небольшую часть поверхности трения диска, что обеспечивает улучшение теплоотвода и повышение срока службы колодок. Существенное достоинство дисково-колодочного Тормоз - относительно малый момент инерции диска (по сравнению с моментом инерции тормозного барабана колодочного или ленточного Тормоз), что уменьшает нагрузку на двигатель при пуске механизма и кинетическую энергию, переходящую в теплоту при торможении. Такие Тормоз особенно эффективны в системах торможения тяжёлых транспортных машин, например грузовых автомобилей.

В механизмах подъёмно-транспортных машин применяются грузоупорные Тормоз, в которых тормозной момент создаётся под действием транспортируемого груза. Эти Тормоз применяются в качестве спускных Тормоз в подъёмных и стреловых лебёдках, а также как аварийные Тормоз в эскалаторах. В грузоподъёмных машинах с ручным приводом используют так называемые безопасные рукоятки (грузоупорные Тормоз с храповым механизмом), предотвращающие вращение (раскручивание) приводных рукояток под действием поднимаемого груза. По условиям безопасности работ в некоторых машинах и механизмах необходимо применение так называемых скоростных Тормоз (ограничителей скорости), которые не допускают увеличения скорости движения механизма сверх заданной, но остановить механизм и груз не могут. Их используют для регулирования скорости спуска тяжёлых грузов в приводах различных подъёмников, конвейеров, в испытательных установках и т.п. Различают несколько типов скоростных Тормоз: центробежные, динамические (гидравлические), вихревые (индукционные), порошковые. Например, в центробежном Тормоз при увеличении скорости движения сверх заданной возрастает центробежная сила вращающихся элементов Тормоз, создающая давление на неподвижную часть тормозного устройства, в результате чего возникает необходимый тормозной момент.

Момент трения, создаваемый Тормоз, зависит от усилия, с которым фрикционные элементы Тормоз (колодки, лента, диски) прижимаются к поверхности трения элемента, связанного с механизмом (барабан, диск), и от свойств материалов трущейся пары. Для увеличения усилия прижатия в некоторых Тормоз используется эффект самоторможения, при котором сила трения, возникающая между трущимися поверхностями, способствует дополнительному сжатию этих поверхностей. Для обеспечения малых габаритных размеров Тормоз и меньшей мощности его привода с одновременным получением больших тормозных моментов применяют фрикционные материалы, которые приклеивают или приклёпывают к рабочим элементам Тормоз

Для управления Тормоз служит привод, который может быть механическим, гидравлическим, пневматическим, вакуумным, электромагнитным, электрогидравлическим, электромеханическим и т.п. При механическом управлении Тормоз (обычно ручные Тормоз автомобилей и др. транспортных машин) усилие управления передаётся от рычага или педали управления к рабочим элементам Тормоз через систему тяг, рычагов, шарниров. При значительном удалении Тормоз от места управления механический привод становится громоздким. Более совершенны гидравлическая система управления Тормоз (например, в легковых автомобилях и подъёмных кранах) и пневматическая система (например, в грузовых автомобилях, автобусах, трамваях, железнодорожных поездах, шасси самолётов). Пневматические и электропневматические системы привода Тормоз (рис. 3), в которых основными силовыми органами являются тормозные силовые цилиндры, связанные воздушной магистралью с компрессором через кран машиниста, а системой рычагов с фрикционными колодками, применяются на железнодорожном подвижном составе (см. Казанцева тормоз, Матросова тормоз). При электрическом приводе Тормоз используют специальные тормозные электромагниты постоянного или переменного тока, воздействующие на рычажную систему Тормоз, а также электрогидравлические или электромеханические толкатели, которые представляют собой устройства, состоящие из преобразователя энергии с самостоятельным двигателем и собственно толкателя со штоком, движущимся поступательно и соединённым с рычажной системой Тормоз Толкатели Тормоз нечувствительны к перегрузкам (позволяют ограничить ход штока в обоих направлениях без опасности перегрузки двигателя и элементов толкателя), дают возможность работать с большой частотой включений, благодаря чему их можно использовать в системах регулирования скорости движения рабочих органов машины. В некоторых конструкциях Тормоз находят применение приводы от короткозамкнутого серводвигателя, соединённого с рычажной системой Тормоз через зубчатую или кривошипную передачи.

Кроме торможения, осуществляемого описанными Тормоз, применяют торможение электрическое и аэродинамическое (например, с помощью тормозных парашютов и элементов механизации крыла самолёта), а также торможение, производимое в результате изменения режима работы двигателя машины (например, тормоз-замедлитель в автомобиле).

Рис. 1. Схема колодочного тормоза: 1 - барабан; 2 и 4 - колодки; 3 - шарнир; 5 - стяжная пружина

Рис. 2. Трансмиссионный тормоз автомобиля: 1 - тормозная накладка; 2 - тормозной барабан; 3 - стяжная пружина; 4 - фланец вторичного вала коробки передач; 5 - колодка; 6 - разжимной кулак; 7 - тормозной щит; 8 - рычаг привода ручного тормоза; 9 - коробка передач

Рис. 3. Схема тормозной системы железнодорожного поезда: 1 - воздушный компрессор; 2 - главный воздушный резервуар; 3 - воздухопровод; 4 - кран машиниста; 5 - воздушная магистраль; 6 - тормозная колодка; 7 - обратный клапан; 8 - воздухораспределитель; 9 - запасной воздушный резервуар; 10 - тормозной цилиндр; А, В, С - основные положения рукоятки крана машиниста (отпуск тормозов, нейтральное положение, торможение)

Размещено на Allbest.ru

...

Подобные документы

  • Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.

    курсовая работа [846,7 K], добавлен 09.05.2014

  • Основное уравнение гидростатики, его формирование и анализ. Давление жидкости на криволинейные поверхности. Закон Архимеда. Режимы движения жидкости и гидравлические сопротивления. Расчет длинных трубопроводов и порядок определения силы удара в трубах.

    контрольная работа [137,3 K], добавлен 17.11.2014

  • Три случая относительного покоя жидкости в движущемся сосуде. Методы для определения давления в любой точке жидкости. Относительный покой жидкости в сосуде, движущемся вертикально с постоянным ускорением. Безнапорные, напорные и гидравлические струи.

    презентация [443,4 K], добавлен 18.05.2019

  • Определение результирующей силы с использованием силы крутящего момента. Определение реакций опор твердого тела, расчет силы воздействия на крепящие раму стержни при необходимом и достаточном условии, что сумма проекций сил и моментов равнялась нулю.

    контрольная работа [298,7 K], добавлен 23.11.2009

  • Физические свойства жидкости и уравнение гидростатики. Пьезометрическая высота и вакуум. Приборы для измерения давления. Давление жидкости на плоскую наклонную стенку и цилиндрическую поверхность. Уравнение Бернулли и гидравлические сопротивления.

    курсовая работа [1,2 M], добавлен 30.11.2014

  • Произведение расчета кривых потребного напора трубопроводов (расход жидкости, число Рейнольдса, относительная шероховатость, гидравлические потери) с целью определение затрат воды в ветвях разветвленного трубопровода без дополнительного контура.

    контрольная работа [142,7 K], добавлен 18.04.2010

  • Основные функции рабочей жидкости в гидравлических системах. Выбор рабочей жидкости. Расчет гидравлического цилиндра, расхода жидкости при перемещениях рабочих органов. Способы обеспечения нормальной работы гидропривода, тепловой расчет гидросистемы.

    курсовая работа [309,5 K], добавлен 21.10.2014

  • Определение геометрических характеристик устройства. Гидравлические параметры ячейки. Энтальпия теплоносителя по высоте канала. Коэффициент теплоотдачи и температура. Температурный перепад между наружной поверхностью оболочки ТВЭЛа и теплоносителем.

    курсовая работа [1,0 M], добавлен 12.02.2014

  • Виды вещества. Реакция твердого тела, газа и жидкости на действие сил. Силы, действующие в жидкостях. Основное уравнение гидростатики. Дифференциальное уравнение равновесия жидкости. Определение силы давления столба жидкости на плоскую поверхность.

    презентация [352,9 K], добавлен 28.12.2013

  • Решение задач по гидростатике: определение давления жидкости на стенки резервуара при ее нагреве, расчет минимального и конечного усилий для удержания крышки. Расчёт линейного сопротивлении трубопровода. Определение рабочей точки при работе насоса.

    контрольная работа [1,1 M], добавлен 27.06.2010

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Методика расчёта гидравлических сопротивлений на примере расчёта сложного трубопровода с теплообменными аппаратами, установленными в его ветвях. Определение потерь на отдельных участках трубопровода, мощности насоса, необходимой для перемещения жидкости.

    курсовая работа [158,3 K], добавлен 27.03.2015

  • Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.

    контрольная работа [11,4 M], добавлен 26.10.2011

  • Определение продольной силы в стержнях, поддерживающих жёсткий брус. Построение эпюры продольных усилий, нормальных напряжений и перемещений. Расчет изгибающих моментов и поперечных сил, действующих на балку. Эпюра крутящего момента и углов закручивания.

    контрольная работа [190,3 K], добавлен 17.02.2015

  • Расчет суммарных потерь на всех участках гидравлической системы с учетом режима движения жидкости, материалов, состояния поверхностей труб, характера местных сопротивлений. Энергоэффективность пневматической системы. Потери энергии при работе компрессора.

    курсовая работа [372,7 K], добавлен 14.06.2010

  • Простые механизмы как устройства, служащие для преобразования силы. Характерные особенности, предназначение и применение древнейших изобретений человечества: подвижного и неподвижного блока. Определение содержания понятий ворота и наклонной плоскости.

    презентация [1,2 M], добавлен 01.05.2011

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Определение зависимости сопротивления сети от скорости потока, расчет сопротивления для определенного значения. Принцип работы и внутреннее устройство насосной установки, определение расхода воды в зависимости от перепада давления на дифманометре.

    курсовая работа [75,8 K], добавлен 21.02.2009

  • Момент силы относительно центра как вектор, приложенный к центру О, направленный перпендикулярно плоскости, образованной векторами по правилу правого винта. Порядок вычисления момента силы относительно оси. Свойства момента пары сил, их сложение.

    презентация [74,0 K], добавлен 08.04.2015

  • Характеристика магнитоупругого эффекта как явления обратного магнитострикции, заключающееся в изменении намагниченности магнетика под действием механических деформаций. Использование данного эффекта для измерения силы, крутящего момента и давления.

    курсовая работа [1,2 M], добавлен 13.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.