История науки

Накопление рациональных знаний в системе первобытного сознания. Наука в цивилизациях древности, характеристика основных этапов. Первая научная революция и становление аристотелевской науки. Понятие гелиоцентрической системы мира. Картезианская физика.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 26.03.2013
Размер файла 496,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В-третьих, формируются простейшие геометрические абстракции -- прямой линии, угла, объема и др. Развитие земледелия, отношений земельной собственности требуют умения измерять расстояния, площади земельных участков (отсюда и происхождение слова «геометрия» -- от древнегреческого «землемерие»). Развитие строительного дела, гончарного производства, распределение урожая зерновых и проч. требовало умения определять объемы тел. В строительстве было необходимо уметь проводить прямые горизонтальные и вертикальные линии, строить прямые углы и т.д. Натянутая веревка служила прообразом представления о геометрической прямой линии. Одним из важнейших свидетельств освоения человеком геометрических абстракций является зафиксированный археологами бурный всплеск использования геометрических орнаментов на сосудах, ткани, одежде. Геометрическая отвлеченность начинает превалировать в художественной изобразительной деятельности, в передаче изображений животных, растений, человека.

На Древнем Востоке математика получила особое развитие в Месопотамии. Математика развивалась как средство решения повседневных практических задач, возникавших в царских храмовых хозяйствах (землемерие, вычисление объемов строительных и земляных работ, распределение продуктов между большим числом людей и Др.). Найдено более сотни клинописных математических текстов, которые относятся к эпохе Древневавилонского царства (1894-- 1595 гг. до н.э.). Их расшифровка (Варден ван дер Б.Л. и др.) показала, что в то время уже были освоены операции умножения, определения обратных величин, квадратов и кубов чисел, существовали таблицы с типичными задачами на вычисление, которые заучивали наизусть. Математики Древнего Вавилона уже оперировали позиционной системой счисления (в которой цифра имеет разное значение в зависимости от занимаемого ею места в составе числа). Система счисления была шестидесятиричной. Жителям Древнего Вавилона были известны приближенные значения отношения диагонали квадрата к его стороне (квадратный корень из 2 они считали равным приблизительно 1,24; число пи -- приблизительно равным 3,125).

Вавилонская математика поднялась до алгебраического уровня, оперируя не числом конкретных предметов (людей, скота, камней и проч.), а числом вообще, числом как абстракцией. При этом числа рассматривались как некий символ иной, высшей реальности (наряду с множеством других символов такой высшей реальности). Но у древних вавилонян, по-видимому, еще не было свойственного древнегреческой математике представления о числах как некоторой абстрактной реальности, находящейся в особой связи с материальным миром. Поэтому у них не вызывали мировоззренческих проблем вопросы о природе несоизмеримых отношений и иррациональных чисел.

На современном математическом языке те типовые задачи, которые могли решать вавилоняне, выглядят следующим образом:

Алгебра и арифметика:

уравнения с одним неизвестным

Геометрия:

пропорциональность для параллельных прямых;

теорема Пифагора;

площадь треугольника и трапеции;

Основная общая особенность и общий исторический недостаток Древневосточной математики -- ее преимущественно рецептурный, Алгоритмический, вычислительный характер. Математики Древнего Востока даже не пытались доказывать истинность тех вычислительных формул, которые они использовали для решения конкретных практических задач. Все такие формулы строились в виде предписаний: «делай так-то и так-то». Потому и обучение математике состояло в механическом зазубривании и заучивании веками не изменявшихся способов решения типовых задач. Идеи математического доказательства в древневосточной математике еще не было.

Вместе с тем у древних вавилонян уже складывались отдельные предпосылки становления математического доказательства. Они состояли в процедуре сведения сложных математических задач к прошлым (типовым) задачам, а также в таком подборе задач, который позволял осуществлять проверку правильности решения.

Тема 3. Первая научная революция. Становление аристотелевской науки

1. Возникновение античной науки

Первой в истории человечества формой существования естествознания была так называемая натурфилософия (от лат. natura - природа), или философия природы. Последняя характеризовалась чисто умозрительным истолкованием природного мира, рассматриваемого в его целостности. Считалось, что философии -- в ее натурфилософской форме -- отведена роль «науки наук», «царицы наук», ибо она является вместилищем всех человеческих знаний об окружающем мире, а естественные науки являются лишь ее составными частями.

Натурфилософское понимание природы содержало много вымышленного, фантастического, далекого от действительного понимания мира. Появление натурфилософии в интеллектуальной истории человечества и очень длительное ее существование объясняется рядом неизбежных обстоятельств.

1. Когда естественнонаучного знания (в его нынешнем понимании) еще практически не существовало, попытки целостного охвата, объяснения окружающей действительности были единственным и оправданным способом человеческого познания мира.

2. Вплоть до XIX столетия естествознание было слабо дифференцировано, отсутствовали многие его отрасли. Еще в XVIII веке в качестве сформировавшихся, самостоятельных наук существовали лишь механика, математика, астрономия и физика. Химия, биология, геология находились лишь в процессе становления. В такой ситуации натурфилософия, строя общую картину природы, стремилась заменить собой отсутствующее естественные науки.

3. Отрывочному знанию об объектах, явлениях приводы, которое давало тогдашнее естествознание, натурфилософия противопоставляла свои умозрительные представления о мире. В этих представлениях не известные еще науке причины и действительные (но пока непознанные) связи явлений заменялись вымышленными, фантастическими причинами в связями. Для истолкования непонятных явлений натурфилософы обычно придумывали какую-нибудь силу (например, жизненную силу) или какое-нибудь мифическое вещество (флогистон, электрическая жидкость, эфир и т. п.). Разумеется, действительные пробелы в естественнонаучном знания восполнялись при этом лишь в воображении. Это было вынужденное положение, которое, однако, не могло продолжаться бесконечно.

Когда в XIX веке естествознание достигло достаточно высокого уровня развития и был накоплен и систематизирован большой фактический материал, т. е. когда были познаны действительные причины явлений, раскрыты их реальные связи между собой, существование натурфилософии потеряло всякое историческое оправдание. А в связи с этим понимание философии как «науки наук» также прекратило свое существование. Вместе с уходом с исторической арены старой натурфилософии сама философия, также как и различные отрасли естествознания, наконец-то обрела свой предмет. Однако тесная двусторонняя связь между философией и естествознанием сохраняется по сей день.

Впервые наука в истории человечества возникает в Древней Греции в VI в. до н. э. Под наукой понимается не просто совокупность каких-то отрывочных, разрозненных сведений, а определенная система знаний, являющаяся результатом деятельности особой группы людей (научного сообщества) ио получению новых знаний. В отличие от ряда древних цивилизаций (Египта, Вавилона, Ассирии) именно в культуре Древней Греции обнаруживаются указанные характеристики науки. При этом древнегреческие мыслители были, как правило, одновременно и философами, и учеными. Господство натурфилософии обусловило такие особенности древнегреческой науки, как абстрактность и отвлеченность от конкретных фактов. Каждый ученый стремился представить все мироздание в целом, нимало не беспокоясь об отсутствии достаточного фактического материала о явлениях природы. Вместе с тем, достижения античных мыслителей в математике и механике навечно вошли в историю науки.

2. Миропонимание и научные достижения натурфилософии античности. Атомистика. Геоцентрическая космология. Развитие математики и механики

В ранней древнегреческой натурфилософии господствовала идея о некоторых исходных первоначалах, лежащих в основе мироздания. К таким первоначалам, из которых якобы создается весь окружающий мир, относили либо так называемые четыре «стихии» (воду, воздух, огонь, землю), либо какое-то мифическое первовещество. Подобное первовещество, придуманное древнегреческим натурфилософом Анаксимандром и названное им «апейрон» (в переводе «беспредельное», «неопределенное»), первоначально представляло собой неопределенную туманную массу, находившуюся в постоянном круговом вращении, из которой, в конце концов, якобы произошло все многообразие мира.

Но уже в этот период на смену подобным представлениям о мире приходит стройное по тому времени атомистическое учение о природе. Выдающимся представителем новой натурфилософской идеологии атомизма был Демокрит (ок. 460-370 гг. до н.э.). Основные принципы его атомистического учения можно свести к следующим положениям.

1. Вся Вселенная состоит из мельчайших материальных частиц -- атомов и незаполненного пространства -- пустоты. Наличие последней является обязательным условием для осуществления перемещения атомов в пространстве.

2. Атомы неуничтожимы, вечны, а потому и вся Вселенная, из них состоящая, существует вечно.

3. Атомы представляют собой мельчайшие, неизменные, непроницаемые и абсолютно неделимые частицы -- последние, образно говоря, «кирпичики мироздания».

4. Атомы находятся в постоянном движении, изменяют свое положение в пространстве.

5. Различаются атомы по форме и величине. Но все они настолько малы, что недоступны для восприятия органами чувств человека. Форма их может быть весьма разнообразной. Самые малые атомы имеют, например, сферическую форму; Это, по выражению Демокрита «атомы души и человеческой мысли».

6. Все предметы материального мира образуются из атомов различных форм и различного порядка их сочетаний (подобно тому как слова образуются из букв).

Представляет интерес учение Демокрита о строении Вселенной. Из атомов, считал он, образуются не только окружающие нас предметы, но и целые миры, которых во Вселенной бесчисленное множество. При этом одни миры еще только формируются, другие - находятся в расцвете, а третьи уже разрушаются. Новые тела и миры возникают от сложения атомов. Уничтожаются они от разложения на атомы.

Идеи атомистики получили свое развитие в учении Эпикура (341-270 гг. до н.э.). Эпикур разделял точку зрения Демокрита, согласно которой мир состоит из атомов и пустоты, а все существующее во Вселенной возникает в результате соединения атомов в различных комбинациях. Вместе с тем Эпикур внес в описание атомов, сделанное Демокритом, некоторые поправки: атомы не могут превышать известной величины, число их форм ограничено, атомы обладают тяжестью в т. д. Но самое главное в атомистическом учении Эпикура -- это попытка найти какие-то внутренние источники жизни атомов. Он высказал мысль, что изменение направления их движения может быть обусловлено причинами, содержащимися внутри самих атомов. Это был шаг вперед по сравнению с Демокритом, в учении которого атом непроницаем, не имеет внутри себя никакого движения, никакой жизни.

Одним из величайших ученых и философов античности, чья деятельность совпала с афинским периодом развития древнегреческой натурфилософии, был Аристотель (384-352 гг.. до н.э.).

В круг естественнонаучных интересов Аристотеля входили математика, физика, астрономия, биология. Среди естественных наук ему удалось достичь наибольших успехов в изучении живой природы. Он определил жизнь как способность к самообеспечению, а также к независимому росту и распаду. В своих исследованиях он упоминает несколько сот различных животных. Причем описывает многих из них с такой точностью и столь детально, что не оставляет сомнения в том, что это -- его собственные наблюдения. Многие факты, изложенные Аристотелем, были «переоткрыты» в последующие века. Ему было известно, например, что киты -- живородящие животные, он различал хрящевых рыб и позвоночных, описывал развитие куриного яйца вплоть до появления цыпленка и т. д.

Вместе с тем у Аристотеля было немало наивных и даже ложных представлений о явлениях природы. Следуя своему учителю -- Платону, он, например, приписывал движению некоторое «врожденное» свойство, заставляющее все на Земле стремиться к своему «естественному месту». Поэтому, считал он, дым поднимается вертикально вверх, а камень падает вертикально вниз.

В истории науки Аристотель известен также как автор космологического учения, которое оказало огромное влияние на миропонимание многих последующих столетий. Космология Аристотеля -- геоцентристическое воззрение: Земля, имеющая форму шара, неподвижно пребывает в центре Вселенной. Шаровидность Земли Аристотель выводит из наблюдений, сделанных им во время лунных затмений. Эти наблюдения показали круглую форму земной тени, надвигающейся на диск Луны. Только шаровидное тело, каким и является Земля, -- объяснял Аристотель, -- может отбрасывать в сторону, противоположную Солнцу, тень, которая представляется темным кругом на лунном диске. К атому же выводу -- о шаровидности Земли -- ведет, по мнению Аристотеля, и свойственное Земле тяготение к центру Вселенной. Как результат этого тяготения должна была получиться шарообразная форма.

Аристотель разделял мир на две области, качественно отличающиеся друг от друга: область Земли и область Неба. Область Земли имеет в своей основе четыре элемента: землю, воду, воздух и огонь (это те же четыре «стихии», о которых говорили представители натурфилософии доаристотелевского периода). Область Неба имеет в своей основе пятый элемент -- эфир, из которого состоят небесные тела. Самые совершенные из них -- неподвижные звезды. Они состоят из чистого эфира и настолько удалены от Земля, что недоступны никакому воздействию четырех земных элементов. Иное дало--Луна и планеты. Они также состоят из эфира, во в отличие от неподвижных звезд подвержены некоторому влиянию, по крайней мере, одного из элементов, образующих. Землю. По мнению Аристотеля, за оболочкой воздуха вокруг Земли находится наиболее легкий из земных элементов-- огонь, который помещается в пространстве между Землей в Луной в соприкасается с границей эфира.

В отличие от космологических воззрений Демокрита, космология Аристотеля включала представление о пространственной конечности мироздания. В этой конечной протяженности космоса расположены твердые кристально-прозрачные сферы, на которых неподвижно закреплены звезды и планеты. Их видимое движение объясняется вращением указанных сфер. С крайней («внешней») сферой соприкасается «Перводвигатель Вселенной», являющийся источником всякого движения. Он нематериален, ибо это есть Бог (Аристотель рассматривает Бога как разум мирового масштаба, дающий энергию «перводвигатель»).

Древнегреческая натурфилософия прославилась вкладом ее представителей в формирование и развитие математики. Здесь, прежде всего, следует отметить знаменитого древнегреческого мыслителя Пифагора (580-500 гг. до н.э.). Помимо всем известной «теоремы Пифагора» на счету этого античного ученого имеется и ряд других научных достижений. К их числу относится, например, открытие того факта, что отношение диагонали и стороны квадрата не может быть выражена целым числом и дробью. Тем самым я математику было введено понятие иррациональности. Имеются упоминания о том, что Пифагор придерживался мнения о шарообразности Земли, ее вращения вокруг собственной оси. Вместе с тем в своих космологических воззрениях Пифагор был геоцентристом, т.е. считал Землю центром Вселенной.

Важной отличительной чертой миропонимания Пифагора было учение о числе как основе Вселенной. «Самое мудрое в мире -- число», -- учил он. Считая, что мир состоит из пяти элементов (земли, огня, воздуха, воды и эфиpa), Пифагор увязал их с пятью видами правильных многогранников с тем или иным числом граней. Так, Земля, по его мнению, состоит из частиц кубической формы, огонь -- из частиц, имеющих форму четырехгранной пирамиды (тетраэдров), воздух -- из восьмигранников (октаэдров), вода-- из двадцатигранников (икосаэдров), а эфир-- из двенадцатигранников (додекаэдров).

До нашего времени дошел рассказ позднеримского философа Боэция (480-524 гг. н. э.) о том, каким образом Пифагор пришел к своей основной идее, что число -- основа всего существующего. Как-то, проходя мимо кузницы, Пифагор заметил, что совпадающие удары не одинаковых по весу молотов производят различные гармоничные созвучия. Вес молотов можно измерить. И, таким образом, качественное явление -- созвучие -- точно определяется через количество. Отсюда Пифагор сделал вывод, что «число владеет вещами».

Положив в основу космоса число, Пифагор придал этому старому слову обыденного языка новое значение. Это слово стало обозначать упорядоченное числом мироздание.

Весьма плодотворным для древнегреческой науки оказался последний ее период - примерно с 330 по 30 гг. до н.э., -- завершившийся с возвышением Древнего Рима. Одним из крупнейших ученых-математиков этого периода был Евклид, живший в III в. до н.э. в Александрии. В своем объемистом труде «Начала» он привел в систему все математические достижения того времени. Состоящие из пятнадцати книг «Начала» содержали не только результаты трудов самого Евклида, но и включали достижения других древнегреческих ученых. В «Началах» были заложены основы античной математики. Созданный Евклидом метод аксиом позволил ему построить здание геометрии, носящей по сей день его имя.

Указанный период в древнегреческой науке характеризовался также и немалыми достижениями в области механики. Первоклассным ученым - математиком и механиком - этого периода был Архимед (287-212 гг. до н.э.). Он решил ряд задач по вычислению площадей поверхностей и объемов, определил значение числа р (представляющего собой отношение длины окружности к своему диаметру). Архимед ввел понятие центра тяжести и разработал методы его определения для различных тел, дал математический вывод законов рычага. Ему приписывают «крылатое» выражение: «Дайте мне точку опоры, и я сдвину Землю». Архимед положил начало гидростатике, которая нашла широкое применение при проверке изделий из драгоценных металлов и определении грузоподъемности кораблей.

Широчайшую известность получил закон Архимеда, касающийся плавучести тел. Согласно атому закону, на всякое тело, погруженное в жидкость, действует поддерживающая сила, равная весу вытесненной телом жидкости, направленная вверх и приложенная к центру тяжести вытесненного объема. Если вес тела меньше поддерживающей силы, тело всплывает на поверхность, причем степень погруженности плавающего на поверхности тела определяется соотношением удельных весов этого тела и жидкости. Если вес тела больше поддерживающей силы, то оно тонет. В случае же, когда вес тела равен поддерживающей силе, это тело плавает внутри жидкости (как рыба или подводная лодка).

Научные труды Архимеда находили приложение в общественной практике. Многие технические достижения того времени связаны с его именем. Ему принадлежат многочисленные изобретения: так называемый «архимедов винт» (устройство для подъема воды на более высокий уровень), различные системы рычагов, блоков, полиспастов и винтов для поднятия больших тяжестей, военные метательные машины. Во время второй Пунической войны Архимед возглавлял оборону своего родного города Сиракузы, осажденного римлянами. Под его руководством были изготовлены весьма совершенные по тому времени машины, метавшие снаряды и не позволявшие римлянам овладеть городом. Когда же осенью 212 г. до н. э. Сиракузы были все же взяты римлянами, Архимед погиб. Существует легенда, что перед смертью он сказал собиравшемуся его убить римскому солдату: «Только не трогай моих чертежей».

К сожалению, научное наследие Архимеда долго не получало той оценки, которой оно заслуживало. Лишь спустя более полутора тысяч лет, в эпоху Возрождения, труды Архимеда были оценены по достоинству и получили дальнейшее развитие.

3. Продолжение идей атомистики и геоцентрической космологии в древнеримский период

Одним из наиболее известных натурфилософов-атомистов Древнего Рима был Тит Лукреций Кар, живший в I в. до н.э. Его философская проблема «О природе вещей» является важным источником, содержащим много интересных сведений об атомистических воззрениях Демокрита и Эпикура (поскольку из сочинений последних до нас дошли лишь немногие отрывки).

Лукреций высказал мысль о вечности материи:

вещи временны, они возникают и исчезают распадаясь на атомы -- свои первичные составные части;

атомы же вечны, и их количество во Вселенной всегда остается одним и тем же;

отсюда вытекал вывод о вечности материи, которую Лукреций отождествлял с атомами.

Сохранилось не так уж много сочинений древнеримского периода, посвященных естественнонаучным вопросам. Помимо упомянутой поэмы Лукреция, можно назвать сочинения Аннея Сенеки, Паппа Александрийского, Диофанта, Манилия. Все они написаны в литературной форме, т. е. в виде диалогов, поэм, энциклопедий. Сочинение Сенеки содержит сведения по физике, метеорологии и географии. Поэма Манилия касается астрономии. А сочинения Паппа Александрийского и Диофанта посвящены главным образом математике.

Говоря о состоянии естествознания в эпоху Древнего Рима, необходимо особо отметить натурфилософское наследие Клавдия Птолемея (прибл. 90-168 гг. н. э.). Большую часть своей жизни он провел в Александрии и фактически может считаться древнегреческим ученым. Но его научная деятельность протекала в период, когда Римская империя находилась в состоянии расцвета и включала в себя территорию Древней Греции. Птолемей по праву считается одним из крупнейших ученых античности. Он серьезно занимался математикой, увлекался географией, много времени посвящал астрономическим наблюдениям. Главный труд Птолемея, носивший название «Математическая система», определил дальнейшее развитие астрономии более чем на тысячелетие. В период упадка александрийской школы греческий оригинал этого сочинения был утерян. Сохранился только его арабский перевод, который много позднее, уже в XII веке, был переведен на латинский язык. Поэтому книга Птолемея дошла до нас под арабским латинизированным названием «Альмагест».

В этой книге нашла отражение колоссальная работа, проделанная Птолемеем по созданию первой математической теории, описывающей движение Солнца и Луны, а также пяти известных тогда планет на видимом небосводе. В своем «Альмагесте» Птолемей рисует следующую схему мироздания: в центре Вселенной находится неподвижная Земля. Ближе к Земле находится Луна, а затем следуют Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн. Объясняя данный порядок планет, Птолемей исходил из предположения, что чем быстрее движется планета, тем ближе к Земле она расположена. Геоцентрическая система мира, на обоснование которой Птолемей потратил немало сил, просуществовала после его смерти чрезвычайно долго -- целых 1375 лет -- вплоть до опубликования знаменитого труда Н. Коперника, заменившего эту систему на гелиоцентрическую. В послекоперниковскую эпоху Птолемея вспоминают главным образом как автора отвергнутой наукой системы мира.

Тема 4. Развитие науки в период Средневековья

Средние века (средневековье), принятое в исторической науке обозначение периода, следующего за историей древнего мира и предшествующего новой истории. В науке датируется кон. 5 в. -- 2-ой пол. 15 в. Условной датой начала средних веков считается взятие Рима Одоакром в 476, с датой окончания Средних веков связывают падение Константинополя в 1453, или же открытие Америки Х. Колумбом в 1492.

Эпоха средних веков характеризовалась в Европе закатом классической греко-римской культуры и резким усилением влияния церкви на всю духовную жизнь общества.

Вот что пишет об этой эпохе Ф. Энгельс: «Догматы церкви стали одновременно и политическими аксиомами, а библейские тексты получили на всяком суде силу закона... Это верховное господство богословия во всех областях умственной деятельности было в то же время необходимым следствием того положения, которое занимала церковь в качестве наиболее общего синтеза и наиболее общей санкции существующего феодального строя».

Развитие естественно-научного познания в Средние века было непосредственно сопряжено с утверждением двух мировых религий: христианства и ислама, которые претендовали на абсолютное знание природы. Эти религии объясняли происхождение природы в форме креационизма, т.е. учения о сотворении природа Богом. Все другие попытки объяснить мир и природу из самих себя, без допущения сверхъестественных божественных сил, осуждались и беспощадно пресекались. Многие достижения античной науки были забыты.

В эту эпоху философия тесно сближается с теологией (богословием), фактически становится ее «служанкой». Возникает непреодолимое противоречие между наукой, делающей свои выводы из результатов наблюдений, опытов, включая и обобщение этих результатов, и схоластическим богословием, для которого истина заключается в религиозных догмах.

В отличие от античности, средневековая наука не предложила новых фундаментальных программ, но она в то же время не ограничивалась только пассивным усвоением достижений античной науки. Ее вклад в развитие научного знания состоял в том, что был предложен целый ряд новых интерпретаций и уточнений понятий и методов исследования, которые разрушали античные научные программы, подготавливая почву для механики Нового времени.

С точки зрения христианского мировоззрения человек считался созданным по образу и подобию Божьему, чтобы он был господином земного мира. Так в сознание человека проникает очень важная идея, которая никогда не возникала и не могла возникнуть в античности: раз человек является господином этого мира, значит, он имеет право переделывать этот мир так, как это нужно ему. Новый, деятельный подход к природе был также связан с изменением отношения к труду, который становится обязанностью каждого христианина. Так постепенно физический труд стал пользоваться в средневековом обществе все большим уважением. Тогда же возникло желание облегчить этот труд, что вызвало новое отношение к технике. Теперь изобретение машин и механизмов переставало быть пустой забавой, как в античности, а становилось делом полезным и уважаемым. Все это не могло не подкрепить нового, деятельностно-практического отношения к миру.

Таким образом, именно христианское мировоззрение посеяло зерна нового отношения к природе, которое позволило уйти от созерцательного отношения, присущего античности, и прийти к экспериментальной науке Нового времени, поставившей целью практическое преобразование мира для блага человека.

Христианское вероучение, соединенное с выхолощенной философией Аристотеля, явилось в Средние века господствующим философским направлением и получило название схоластики. Для этого направления мысли было характерно упрощение натурфилософии Аристотеля и приспособление ее к догмам христианства в качестве официальной религиозной доктрины. Схоластика была оторвана от реальной действительности, занятие естествознанием рассматривалось как пустое дело. Тем не менее, схоластика сыграла очень важную роль в развитии способностей к познанию мира европейским человеком. Она должна была служить задачам теологии и изучать вопросы бессмертия души, конечности и бесконечности мира, существования добра, зла и истины в мире. При решении этих проблем, не данных человеку в области чувственной реальности и могущих изучаться только с помощью разума, и были получены важнейшие результаты. Это, прежде всего, развитие логико-дискурсивного мышления и искусства логической аргументации. Результатом стал высочайший уровень умственной дисциплины в эпоху позднего Средневековья. Без этого был бы невозможен дальнейший прогресс интеллектуальных средств научного познания.

Пока европейская христианская наука переживала длительный период упадка (вплоть до ХII-ХIII вв.), на Востоке, наоборот, наблюдался прогресс науки. Со второй половины VIII в. научное лидерство явно переместилось из Европы на Ближний Восток. В IX веке, наряду с вышеупомянутым трудом Птолемея («Альмагест»), на арабский язык были переведены «Начала» Евклида и сочинения Аристотеля. Таким образом, древнегреческая научная мысль получила известность в мусульманском мире, способствуя развитию астрономии и математики.

В истории науки этого периода известны такие имена арабских ученых, как

Мухаммед аль-Баттани (850--929 гг.), астроном, составивший новые астрономические таблицы,

Ибн-Юнус (950--1009 гг.), достигший заметных успехов в тригонометрии и сделавший немало ценных наблюдений лунных и солнечных затмений, ок. 200 лет употреблялись его таблицы движения Луны, Солнца и планет,

Ибн аль-Хайсам (Альгазен) (965--1020 гг.), получивший известность своими работами в области оптики, Труд по физиологической и геометрической оптике «Сокровище оптики» (7 кн., переведен на латинский язык в 12 в., 1-е печатное издание в 1572), оказавший большое влияние на развитие оптики. Труды по математике, астрономии. Комментатор Аристотеля, Евклида, Галена.

Ибн Рушд (полн. имя Абу-ль Валид Мухаммед Ибн-Ахмед Ибн-Рошд, латинизированное Аверроэс) (1126 -- 1198), арабский философ и врач, представитель арабского аристотелизма. Разграничение Ибн Рушдом «рациональной» религии (доступной образованным) и образно-аллегорической религии (доступной всем) явилось одним из источников учения о двойственной истине. Рационалистические идеи Ибн Рушда оказали большое влияние на средневековую философию, особенно в Европе (аверроизм). Автор энциклопедического медицинского труда, изучал мусульманское богословие и право, философию, медицину и математику.

В историю европейской философии Ибн Рушд вошел под именем Комментатора: практически все мыслители средневекового Запада воспринимали его именно как толкователя учения Аристотеля. Возможно, он и сам рассматривал себя в этом же качестве; по крайней мере, его преклонение перед греческим философом не знало границ. В одном из своих сочинений Ибн Рушд писал: «Учение Аристотеля есть высшая истина, ибо его ум -- предел человеческого ума. Поэтому правильно будет сказать, что он был создан и дан нам божественным провидением, чтобы мы познали то, что можно познать». Многие произведения Аристотеля Ибн Рушд комментировал трижды: сначала в виде коротких парафраз, затем в виде компендиумов, или средних комментариев, и, наконец, в виде объемистых и обстоятельных комментариев.

Средневековой арабской науке принадлежат и наибольшие успехи в химии. Опираясь на материалы александрийских алхимиков I века и некоторых персидских школ, арабские химики достигли значительного прогресса в своей области. В их работах алхимия постепенно превращалась в химию. А уже отсюда (благодаря главным образом испанским маврам) в позднее средневековье возникла европейская химия.

В недрах средневековой культуры успешно развивались такие специфические области знания, как астрология, алхимия, ятрохимия, натуральная магия. Часто их называли герметическими (тайными) науками. Они представляли собой промежуточное звено между техническим ремеслом и натурфилософией, содержали в себе зародыш будущей экспериментальной науки в силу своей практической направленности. Например, на протяжении тысячелетия алхимики пытались с помощью химических реакций получить философский камень, способствующий превращению любого вещества в золото, приготовить эликсир долголетия. Побочными продуктами этих поисков и исследований стали технологии получения красок, стекла, лекарств, разнообразных химических веществ и т.д. Таким образом, алхимические исследования, несостоятельные теоретически, подготовили возможность появления современной науки.

В XI веке страны Европы пришли в соприкосновение с богатствами арабской цивилизации, а переводы арабских текстов стимулировали восприятие знаний Востока европейскими народами.

Очень важными для становления классической науки Нового времени были новые представления о мире, опровергавшие некоторые положения античной научной картины мира. Они легли в основу механистического объяснения мира. Без таких представлений просто не смогло бы появиться классическое естествознание.

Так, появились понятия пустоты, бесконечного пространства и движения по прямой линии. Также появляются понятия «средняя скорость», «равноускоренное движение», вызревает понятие ускорения. Конечно, эти понятия еще нельзя считать четко сформулированными и осознанными. Но без них, однако, не смогла бы появиться физика Нового времени.

Также закладывается новое понимание механики, которая в античности была прикладной наукой. Античность и раннее Средневековье рассматривали все созданные человеком инструменты как искусственные, чуждые природе. В силу этого они не имели никакого отношения к познанию мира, так как действовал принцип: «подобное познается подобным». Именно поэтому только человеческий разум в силу принципа подобия человека космосу (единства микро- и макрокосмоса) мог познавать мир. Теперь же инструменты стали считаться частью природы, лишь обработанной человеком, и в силу своего тождества с ней их можно было использовать для познания мира. Таким образом, открывалась возможность использования экспериментального метода познания.

Еще одной новацией стал отказ от античной идеи о модели совершенства -- круге. Эта модель была заменена моделью бесконечной линии, что способствовало формированию представлений о бесконечности Вселенной, а также лежало в основе исчисления бесконечно малых величин, без которого невозможно дифференциальное и интегральное исчисление. На нем строится вся математика Нового времени, а значит, и вся классическая наука.

Большую роль в подъеме западной христианской науки сыграли университеты (Парижский, Болонский, Оксфордский, Кембриджский и др.), которые стали образовываться начиная с XII в. И хотя эти университеты первоначально предназначались для подготовки духовенства, но в них уже тогда начинали изучаться предметы математического и естественнонаучного направления, а само обучение носило, более чем когда-либо раньше, систематический характер.

XIII век характерен для европейской науки началом эксперимента и дальнейшей разработкой статики Архимеда. Здесь наиболее существенный прогресс был достигнут группой ученых Парижского университета во главе с Иорданом Неморарием (вторая половина XIII в.). Они развили античное учение о равновесии простых механических устройств, решив задачу, с которой античная механика справиться не могла, -- задачу о равновесии тела на наклонной плоскости.

В XIV веке в полемике с античными учеными рождаются новые идеи, начинают использоваться математические методы, т. е. идет прогресс подготовки будущего точного естествознания. Лидерство переходит к группе ученых Оксфордского университета, среди которых наиболее значительная фигура -- Томас Брадвардин (1290-1349). Ему принадлежит трактат «О пропорциях» (1328 г.), который в истории науки оценивается как первая попытка написать «Математические начала натуральной философии» (именно так почти триста шестьдесят лет спустя назовет свой знаменитый труд Исаак Ньютон).

Схоластика (от греч. scholastikos -- школьный, ученый), тип религиозной философии, характеризующийся соединением теологодогматических предпосылок с рационалистической методикой и интересом к формально-логическим проблемам; получила наибольшее развитие в Западной Европе в средние века. Ранняя схоластика (11-12 вв.) находится под влиянием августиновского платонизма (Ансельм Кентерберийский и др.). В споре об универсалиях схоластическому реализму (Гильом из Шампо) противостоят номинализм (Росцелин), а также концептуализм (Абеляр). Зрелая схоластика (12-13 вв.) -- христианский аристотелизм Альберта Великого и Фомы Аквинского, аверроизм (Сигер Брабантский и др.), ее главный центр Парижский университет, основной жанр -- «сумма», энциклопедический свод ответов на вопросы. Поздняя схоластика (13-14 вв.) -- Иоанн Дунс Скот, У. Оккам. Против схоластики выступили гуманисты Возрождения.

Все вышесказанное свидетельствует о том, что на протяжении многовековой, довольно мрачной эпохи, именуемой средневековьем, интерес к познанию явлений окружающего мира все же не угасал, и процесс поиска Истины продолжался. Появлялись все новые и новые поколения ученых, стремящихся, несмотря ни на что, изучать природу. Вместе с тем научные знания этой эпохи ограничивались в основном познанием отдельных явлений и легко укладывались в умозрительные натурфилософские схемы мироздания, выдвинутые еще в период античности (главным образом в учении Аристотеля). В таких условиях наука еще не могла подняться до раскрытия объективных законов природы. Естествознание -- в его нынешнем понимании -- еще не сформировалось. Оно находилось в стадии своеобразной «преднауки».

Тема 5. Познание природы в эпоху возрождения. Смена космологической картины мира

Развитие естествознания не является лишь монотонным процессом количественного накопления знаний об окружающем природном мире (как это могло показаться из предшествующего изложения). И если процесс простого приращения знаний (а иногда и вымыслов) был присущ для натурфилософии античности, для «преднауки» средневековья, то с XVI в. характер научного прогресса существенно меняется. В развитии науки появляются переломные этапы, кризисы, выход на качественно новый уровень знаний, радикально меняющий прежнее видение мира.

Эти переломные этапы в генезисе научного знания получили наименование научных революций. Причем революция в науке -- это, как правило, не кратковременное событие, ибо коренные изменения в научных знаниях требуют определенного времени. Поэтому в любой научной революции можно хронологически выделить некоторый более или менее длительный исторический период, в течение которого она происходит. Периоды революций в науке, отмечал всемирно известный физик Луи де Бройль, «всегда характеризуют решающие этапы в прогрессивном развитии наших знаний».

Эти решающие этапы в развитии фундаментальных наук можно разделить по результатам и степени их влияния на развитие науки в целом, на глобальные научные революции и на «микрореволюции» в отдельных науках. Последние означают создание новых теорий в той или иной области науки, которые меняют представления об определенном, сравнительно узком круге явлений, но не оказывают решающего влияния на существующую научную картину мира, не требуют коренного изменения способа научного мышления.

Глобальная научная революция приводит к формированию совершенно нового видения мира, вызывает появление принципиально новых представлений о его структуре и функционировании, а также влечет за собой новые способы, методы его познания. Глобальная научная революция может происходить первоначально в одной из фундаментальных наук (или даже формировать эту науку), превращая ее затем на определенный исторический период в лидера науки. Последнее означает, что происходит своеобразная экспансия ее новых представлений, принципов, методов, возникших в ходе революции, на другие области знания и на миропонимание в целом. В дальнейшем изложении мы рассмотрим несколько глобальных научных революций, имевших место в истории естествознания и определивших характер его формирования и развития во второй половине нынешнего тысячелетия.

Первая научная революция произошла в эпоху, оставившую глубокий след в культурной истории человечества. Это был период конца XV-XVI вв., ознаменовавший переход от средневековья к Новому времени и получивший название эпохи Возрождения. Последняя характеризовалась возрождением культурных ценностей античности (отсюда и название эпохи), расцветом искусства, утверждением идей гуманизма.

Возрождение (Ренессанс), эпоха в истории европейской культуры 13-16 вв., ознаменовавшая собой наступление Нового времени. Возрождение самоопределилось прежде всего в сфере художественного творчества. Как эпоха европейской истории оно отмечено множеством знаменательных вех:

укрепление экономических и общественных вольностей городов,

духовное брожение, приведшее в итоге к Реформации и Контрреформации, Крестьянской войне в Германии,

формирование абсолютистской монархии (наиболее масштабной во Франции),

начало эпохи Великих географических открытий,

изобретением европейского книгопечатания,

открытием гелиоцентрической системы в космологии и т. д.

Однако первым его признаком, как казалось современникам, явился «расцвет искусств» после долгих веков средневекового «упадка», расцвет, «возродивший» античную художественную мудрость.

Крупнейшие представители ренессансной философии: Николай Кузанский, Марсилио Фичино, Пико делла Мирандола, Парацельс, Джордано Бруно -- делают средоточием своих размышлений проблему духовного творчества, которое, охватывая все сферы бытия, тем самым бесконечной своей энергией доказывает право человека называться «вторым богом» или «как бы богом». Подобное интеллектуально-творческое устремление может включать в себя -- наряду с античной и библейско-евангельской традицией -- сугубо неортодоксальные элементы гностицизма и магии (так называемая «натуральная магия», сочетающая натурфилософию с астрологией, алхимией и другими оккультными дисциплинами, в эти века тесно сплетается с начатками нового, экспериментального естествознания). Однако проблема человека (или человеческого сознания) и его укорененности в Боге остается общей для всех.

Первый период Возрождения. В историческом развитии Возрождения можно выделить три периода. Первый (14 в.) -- период размежевания со средневековой философией и рождения гуманизма. Показательно отличие философского стиля таких мыслителей, как Фома Аквинский, Иоанн Дунс Скот, Данте, которые принадлежат средневековью, от «нового пути» номиналистов-оккамистов 14 в. (Буридан, Орем, Николай из Отрекура), обосновывающих примат воли и субстанциальность индивидуума, от апологии светской власти у Марсилия Падуанского, от натурализма падуанской школы (Пьетро Д'Абано), от гуманистического культа античной образованности и морали у Петрарки и Салютати. «Искусство жизни», разработанное Петраркой и противопоставившее средневековому идеалу жертвы и надежды на загробное воздаяние новые ценности духовного аристократизма и совершенствования земного бытия при помощи гуманитарной культуры, является самым очевидным знамением поворота к обновлению философии.

Второй период Возрождения. Второй период (15 -- нач. 16 вв.) -- это этап созревания альтернативных мировоззренческих моделей, вынужденных до определенного времени сосуществовать вместе и искать компромисса. В трудах Бруни, Браччолини, Альберти, Манетти, Валлы гуманистическая этика окончательно формируется как особый тип философского отношения к жизни и творчеству, предпринимается попытка гармонизации христианства и античной философии (что особенно заметно в развитии любимой гуманистической темы «добродетель и судьба»).

К середине 15 в. формируется возрожденческий неоплатонизм. В центре этого процесса -- «платоновская школа» во Флоренции во главе с Фичино. В работах флорентийских платоников осуществлялся эклектический синтез неоплатонизма, герметизма, каббализма, арабской мистики. Пико делла Мирандола, один из лидеров школы, создает знаменитую «Речь о достоинстве человека», признаваемую манифестом зрелого гуманизма.

Особняком стоит в 15 в. философия Николая Кузанского, выделяющаяся своей масштабностью и глубиной. Кузанец осуществил единственный в своем роде синтез ортодоксальной христианской философии, неоплатонизма и новейших тенденций гуманистической мысли. В этом отношении он -- последний средневековый и первый нововоевропейский философ. Кузанец в своей теории «ученого незнания» утверждает богоподобность конечного разума и его способность познать абсолютное не только через явления, но через саму его непознаваемость, которая каждый раз дана уму особым образом. На этом принципе строится изощренная диалектика относительного и абсолютного, «максимума» и «минимума». Предвосхищая Бэкона и Декарта, он выдвигает программу тотальной реформы наук и религий. Однако в культурной ситуации Возрождения философия Николая Кузанского оказалась невостребованной.

Третий период Возрождения (16 -- нач. 17 вв.) знаменуется началом общеевропейской религиозной революции -- Реформации, которая стимулировала ряд дискуссий с далеко идущими для европейской философии последствиями. Прежде всего это спор о свободе воли между Лютером и Эразмом Роттердамским. Эразм, утверждая свободу воли, призывает перейти от нагромождений схоластической культуры на «путь Христа», каковым он считал милосердие, веру и простую жизненную мудрость.

Лютер разрабатывает теорию предопределения и спасения только верой, в силу чего традиционная философия оказывается излишней, если не вредной.

Развитие науки в эпоху Возрождения неразрывно связано с именем Леонардо да Винчи (1452 - 1519), который развил свой метод познания природы. Он был убежден, что познание идет от частных опытов и конкретных результатов к научному обобщению. По его мнению, опыт является не только источником, но и критерием познания.

Многочисленные открытия, проекты, экспериментальные исследования в области математики, естественных наук, механики. Отстаивал решающее значение опыта в познании природы (записные книжки и рукописи, около 7 тысяч листов). На службе у правителя Милана Лодовико Моро (с 1481) Леонардо выступает в роли военного инженера, гидротехника, организатора придворных празднеств.

Как ученый и инженер Леонардо да Винчи обогатил проницательными наблюдениями и догадками почти все области знания того времени, рассматривая свои заметки и рисунки как наброски к гигантской натурфилософской энциклопедии. Он был ярким представителем нового, основанного на эксперименте естествознания. Особое внимание Леонардо уделял механике, называя ее «раем математических наук» и видя в ней ключ к тайнам мироздания; он попытался определить коэффициенты трения скольжения, изучал сопротивление материалов, увлеченно занимался гидравликой. Многочисленные гидротехнические эксперименты получили выражение в новаторских проектах каналов и ирригационных систем. Страсть к моделированию приводила Леонардо к поразительным техническим предвидениям, намного опережавшим эпоху: таковы наброски проектов металлургических печей и прокатных станов, ткацких станков, печатных, деревообрабатывающих и прочих машин, подводной лодки и танка, а также разработанные после тщательного изучения полета птиц конструкции летальных аппаратов и парашюта.

Оптика. Собранные Леонардо наблюдения над влиянием прозрачных и полупрозрачных тел на окраску предметов, отраженные в его живописи, привели к утверждению в искусстве принципов воздушной перспективы. Универсальность оптических законов была связана для него с представлением об однородности Вселенной. Он был близок к созданию гелиоцентрической системы, считая Землю «точкой в мироздании». Изучал устройство человеческого глаза, высказав догадки о природе бинокулярного зрения.

Анатомия, ботаника, палеонтология. В анатомических исследованиях, обобщив результаты вскрытий трупов, в детализированных рисунках заложил основы современной научной иллюстрации. Изучая функции органов, рассматривал организм как образец «природной механики». Впервые описал ряд костей и нервов, особое внимание уделял проблемам эмбриологии и сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Утвердив ботанику как самостоятельную дисциплину, дал классические описания листорасположения, гелиогеотропизма (изменения направления роста органов растения в зависимости от источника света) и объяснил причины появления жилок на листьях, корневого давления и движения соков растений. Явился одним из основоположников палеонтологии, считая, что окаменелости, находимые на вершинах гор, опровергают представления о «всемирном потопе».

Явив собою идеал ренессансного «универсального человека», Леонардо да Винчи осмыслялся в последующей традиции как личность, наиболее ярко очертившая диапазон творческих исканий эпохи

Будучи приверженцем экспериментального метода исследования, он изучал падение тел, траекторию полета снарядов, коэффициенты трения, сопротивления материалов и т.д. В ходе своих исследований да Винчи заложил фундамент экспериментального естествознания. Например, занимаясь практической анатомией, он оставил зарисовки внутренних органов человека, снабженные описанием их функций. В итоге многолетних наблюдений он раскрыл явление гелиотропизма Леонардо да Винчи считается первым исследователем, который обозначил проблему связи между живыми существами и окружающей их природной средой.

Вместе с тем эпоха Возрождения отличалась существенным прогрессом науки и радикальным изменением миропонимания, которое явилось следствием появления гелиоцентрического учения великого польского астронома Николая Коперника (1473--1543).

В своем труде «Об обращениях небесных сфер» (1543) Коперник утверждал, что Земля не является центром мироздания и что «Солнце, как бы восседая на Царском престоле, управляет вращающимся около него семейством светил». Это был конец старой аристотелевско-птолемеевской геоцентрической системы мира. На основе большого числа астрономических наблюдений и расчетов Коперник создал новую, гелиоцентрическую систему мира, что явилось первой в истории человечества научной революцией.

Возникло принципиально новое миропонимание, которое исходило из того, что Земля - одна из планет, движущихся вокруг Солнца по круговым орбитам. Совершая обращение вокруг Солнца, Земля одновременно вращается и вокруг собственной оси, чем и объясняется смена дня и ночи, видимое нами движение звездного неба. Но гелиоцентрическая система мира, предложенная Коперником, не сводилась только к перестановке предполагаемого центра Вселенной. Включив Землю в число небесных тел, которым свойственно круговое движение, Коперник высказал очень важную мысль о движении как естественном свойстве небесных и земных объектов, подчиненным некоторым общим закономерностям единой механики. Тем самым было разрушено догматизированное представление Аристотеля о неподвижном «перводвигателе», якобы приводящем в движение Вселенную.

Коперник показал ограниченность чувственного познания, неспособного отличать то, что нам представляется, от того, что в действительности имеет место (визуально нам кажется, что Солнце «ходит» вокруг Земли). Таким образом, он продемонстрировал слабость принципа объяснения окружающего мира на основе непосредственной видимости и доказал необходимость для науки критического разума.

Учение Коперника подрывало опиравшуюся на идеи Аристотеля религиозную картину мира. Последняя исходила из признания центрального положения Земли, что давало основание объявлять находящегося на ней человека центром и высшей целью мироздания. Кроме того, религиозное учение о природе противопоставляло земную материю, объявляемую тленной, преходящей - небесной, которая считалась вечной и неизменной. Однако в свете идей Коперника трудно было представить, почему, будучи «рядовой» планетой, Земля должна принципиально отличаться от других планет.

...

Подобные документы

  • Происхождение понятия "физика". Развитие науки в России. Основные физические термины. Точность и погрешность измерений. Наблюдения и опыты как источники физических знаний. Значение физики для развития техники. Физические величины и их измерение.

    реферат [16,4 K], добавлен 20.06.2009

  • Взгляд на ньютоновскую и эйнштейновскую физику. Вторая научная революция. Механистическая картина мира. Оценка вклада Галилео Галилея в науку с современных позиций и его эволюция через Ньютона и до Альберта Эйнштейна, т.е. до физики наших дней.

    реферат [26,4 K], добавлен 13.09.2010

  • Особенности второй механической революции: критика системы Аристотеля Н. Коперником, Г. Галилеем. Анализ воздействия механической картины мира. Основные постулаты редукционизма и физики – науки о природе. Антропный принцип в современной науке и философии.

    контрольная работа [35,0 K], добавлен 25.03.2010

  • Научно-техническая революция (НТР) ХХ века и ее влияние на современный мир. Значение физики и НТР в развитии науки и техники. Открытие и применение ультразвука. Развитие микроэлектроники и применение полупроводников. Роль компьютера в развитии физики.

    презентация [4,5 M], добавлен 04.04.2016

  • Физика – фундаментальная отрасль естествознания. Механистическая картина мира - законы динамики. Электромагнитная картина мира - физика полей. Современная научная картина мира - теория относительности. Закон всемирного тяготения и принцип относительности.

    презентация [8,5 M], добавлен 12.10.2012

  • Изучение физики как науки. Различия в структуре и содержании аксиоматической системы Евклида и дедуктивного метода литературного героя Шерлока Холмса. Преимущества нарезного оружия перед гладкоствольным. Сущность инертность газа гелия и активности хлора.

    контрольная работа [18,4 K], добавлен 10.08.2015

  • Биография Аристотеля. Его трактаты: "Физика", "О себе", "Метеорология", "Механика". Учения о видах движений в аристотелевской натурфилософии, их классификация на круговые, естественные и насильственные. Изучение гидравлических и пневматических машин.

    презентация [801,8 K], добавлен 16.12.2011

  • Современное учение об открытых системах и необратимых физических процессах. Нелинейная и неравновесная термодинамика необратимых процессов как основа современной концепции самоорганизации. Особенности синергетики как науки, теория автоволновых процессов.

    реферат [29,2 K], добавлен 05.06.2015

  • Аристотель - отец логики как систематизированной науки о мышлении и его законах, вклад мыслителя в развитие данной науки. Становление учения об индукции, законы мышления. Категории как наиболее общие роды высказываний. Сущность и содержание силлогизма.

    реферат [27,3 K], добавлен 19.12.2010

  • Классическая физика и теория относительности. Понятие единого времени в рамках инерциальной системы отсчёта. Возникновение представления о пространственно-временном четырехмерном континиуме. Релятивистское правило сложения скоростей и замедление времени.

    презентация [119,1 K], добавлен 17.05.2014

  • Важная роль физики в техническом развитии оборонной промышленности. Теоретические исследования физиков, начальное развитие новых отраслей науки: теории относительности, атомной квантовой физики. Работы в области радиотехники, военных прикладных отраслей.

    доклад [17,9 K], добавлен 27.02.2011

  • Этапы развития науки об электричестве. Теории электрических явлений. Физика и живые организмы, их связь. Электричество в различных классах живых организмах. Исследование протекания электричества в земноводных, опыты Гальвани, Александра Вольта.

    реферат [17,9 K], добавлен 20.12.2010

  • Психолого-педагогические основы проверки знаний, умений и навыков по физике. Основные функции и формы проверки. Методика тестового контроля знаний, виды тестов по физике. Систематизация знаний по физике при подготовке к централизованному тестированию.

    дипломная работа [3,6 M], добавлен 13.10.2009

  • Обзор научной революции ХVII в. Рассмотрение особенностей построения механической картины мира. Изучение жизни и творчества Ньютона. Характеристика гипотезы обратных квадратов Гука и теории тяготения Ньютона. Анализ полемики картезианцев и ньютонианцев.

    реферат [59,8 K], добавлен 26.04.2019

  • История становления ядерной физики в ХХ веке. Применение теоретических моделей электродинамики Максвелла и общих принципов термодинамики. Развитие молекулярно-кинетической теории. Изучение физической картины мира Галилея-Ньютона. Физический вакуум.

    реферат [59,2 K], добавлен 25.03.2016

  • Органические и неорганические полимеры. Физика и химия высокомолекулярных соединений. Молекулярный вес полимеров, определение их основных свойств и особенностей химических реакций. Дробное поведение макромолекул полимера, анализ их геометрической формы.

    курсовая работа [780,3 K], добавлен 14.06.2014

  • Історичний шлях виокремлення біофізики як феноменологічної науки, виходячи із еволюційних теорій термодинаміки Клаузіуса, Гіббса, Больцмана, Берталанфи та квантовомеханічних закономірностей Шредингера, Ельзасера та Ейгена. Основні розділи дисципліни.

    контрольная работа [25,0 K], добавлен 29.01.2011

  • Аристотель верил в бога, противопоставлял земное и небесное, в центре ограниченной Вселенной он поместил неподвижную Землю. Аристотеля называют крёстным отцом физики: ведь название его книги "Физика" стало названием всей физической науки.

    реферат [43,1 K], добавлен 15.09.2006

  • Статистически неопределимые системы, работающие на растяжение и сжатие. Статистически неопределимые задачи на кручение и изгиб. Метод сил, использование свойств симметрии при раскрытии статистической неопределимости. Физика усталости разрушения.

    контрольная работа [241,0 K], добавлен 11.10.2013

  • Історія розвитку фізики. Фізика в країнах Сходу. Електричні і магнітні явища. Етапи розвитку фізики. Сучасна наука і техніка. Використання електроенергії, дослідження Всесвіту. Вплив науки на медицину. Розвиток засобів зв'язку. Дослідження морських глибин

    реферат [999,0 K], добавлен 07.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.