Ультразвук
Механические и электромеханические устройства для генерации ультразвука. Общее понятие об обратном пьезоэлектрическом эффекте и магнитострикции. Анализ процесса образования электрических зарядов. Ультразвук в природе, использование эхолокации птицами.
Рубрика | Физика и энергетика |
Вид | доклад |
Язык | русский |
Дата добавления | 05.04.2013 |
Размер файла | 14,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ультразвук. Источники и приемники ультразвуковых волн. Применение ультразвука
ультразвук эхолокация заряд магнитострикция
Ультразвук - упругие волны с частотами от 20 кГц до 1 ГГц. Ультразвук (УЗ) подразделяют на три диапазона: УЗ низких частот (до 105 Гц), УЗ средних частот (105 - 107 Гц), УЗ высоких частот (107 - 109 Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приема, распространения и применения. Длина волны УЗ высокой частоты в воздухе составляет 3,4·10-3 - 3,4·10-5 см, что значительно меньше длины волны звуковых волн. Из-за малых длин волн УЗ, как и свет, может распространяться в виде строго направленных пучков большой интенсивности.
УЗ в газах, и в частности в воздухе, распространяется с большим затуханием. Жидкости и твердые тела (в особенности монокристаллы) представляют собой хорошие проводники УЗ, затухание в них значительно меньше. В воздухе и газах применяют только УЗ низких частот, для которых затухание меньше.
Устройства для генерации УЗ разделяют на две группы - механические и электромеханические.
Механические излучатели УЗ - воздушные и жидкостные свистки и сирены, они отличаются простотой устройства и эксплуатации, не требуют электрической энергии высокой частоты. Их недостаток - широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет использовать их для контрольно-измерительных целей; они применяются главным образом в промышленной УЗ-вой технологии и частично - как средство сигнализации.
Основными излучателями УЗ являются электромеханические, преобразующие электрические колебания в механические, которые используют в основном два явления: пьезоэлектрический эффект и магнитострикцию.
Обратный пьезоэлектрический эффект - это возникновение под действием электрического поля деформации в вырезанной определенным образом кварцевой пластине или пластине титаната бария. Если такую пластину поместить в высокочастотное переменное эл. поле, то можно вызвать ее вынужденные колебания. Для увеличения амплитуды колебаний и излучаемой в среду мощности, как правило, применяются резонансные колебания пьезоэлектрических элементов (пластин) на их собственной частоте. Предельные интенсивности излучения УЗ определяются прочностными свойствами материала излучателей. Для получения очень больших интенсивностей УЗ используют его фокусировку (параболоид).
Магнитострикция - это возникновение деформации в ферромагнетиках под действием магнитного поля. В ферромагнитном стержне (никель, железо и др.), помещенном в быстропеременное магнитное поле возбуждаются механические колебания, амплитуда которых максимальна в случае резонанса.
Приемники УЗ. В качестве приемников ультразвука на низких и средних частотах чаще всего применяют электроакустические преобразователи пьезоэлектрического типа. Такие приемники позволяют воспроизводить форму акустического сигнала, то есть временную зависимость звукового давления. В зависимости от условий применения приемники делают либо резонансными, либо широкополосными. Для получения усредненных по времени характеристик звукового поля используют термическими приемниками звука в виде покрытых звукопоглощающим веществом термопар или термисторов. Интенсивность и звуковое давление можно оценивать и оптическими методами, например по дифракции света на УЗ.
Вследствие обратимости пьезоэффекта пьезоэлектрические преобразователи используются и для приема УЗ. Ультразвуковые колебания, воздействуя на кварц, вызывают в нем упругие колебания, в результате чего на противоположных поверхностях кварца возникают электрические заряды, которые измеряются электроизмерительными приборами.
Применение УЗ. УЗ широко используется в технике, например для направленной подводной сигнализации, обнаружении подводных предметов и определении глубин (гидролокатор, эхолот). Принцип локации: посылается импульс УЗ и регистрируется время t до его возвращения после отражения от предмета, расстояние L до которого измеряется.
L = Vt/2.
По данным измерения поглощения УЗ можно осуществлять контроль за протеканием технологических процессов (контроль состава жидкостей, концентрации газов и т.д.). Используя отражение УЗ на границе различных сред с помощью УЗ-вых приборов измеряют размеры изделий (УЗ-вые толщиномеры), определяют уровни жидкостей в емкостях, недоступных для прямого измерения. УЗ используется в дефектоскопии для неразрушающего контроля изделий из твердых материалов (рельс, крупных отливок, качества проката и т.д.). Отдельно следует отметить, что при помощи УЗ осуществляется звуковое видение: преобразуя УЗ-вые колебания в электрические, а последние в световые, оказывается возможным увидеть те или иные предметы в непрозрачной для света среде (например, УЗИ брюшной полости, и т.д.). УЗ применяют для воздействия на различные процессы (кристаллизацию, диффузию, тепло- и массообмен в металлургии и т.д.) и биологические объекты, для изучения физических свойств веществ (поглощения, структуры вещества и т.д.). Ультразвуковая хирургия, микромассаж тканей.
Ультразвук в природе
Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые - Vespertilionidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые - Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 - 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 - 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноаурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отражёнными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полёта эхолокационную частоту таким образом, чтобы частота отражённого ультразвука оставалась в области максимальной чувствительности их «слуховых» центров, они могут определить скорость собственного перемещения.
У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых.
Эхолокацию используют для навигации и птицы - жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки - от Панамы на северо-западе до Перу на юге и Суринама на востоке. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щёлкающие звуки, воспринимаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чутким слухом птицы.
Ультразвуковой эхолокацией в воде пользуются китообразные.
Размещено на Allbest.ru
...Подобные документы
Понятие ультразвука, его предельная верхняя граница. Ученые, занимающиеся изучением ультразвуковых волн. Применение ультразвука в медицине, в приборах для контрольно-измерительных целей и в технике. Ультразвуковые импульсы и лучи в живой природе.
доклад [15,4 K], добавлен 26.01.2009Источники ультразвука и его применение в эхолокации, дефектоскопии, гальванотехнике, биологии. Диагностическое и терапевтическое применение ультразвука в медицине. Источники инфразвука, особенности распространения, физиологическое действие, применение.
презентация [2,6 M], добавлен 30.11.2011Определение инфразвука как механических волн, имеющих частоту менее 20 Гц, способных распространятся на огромные расстояния в воздухе, воде и земной коре. Использование свойств ультразвука (эхолокации) для расчета расстояния до объектов под водой.
презентация [2,7 M], добавлен 02.05.2012Понятие и общие характеристики ультразвука и инфразвука, их улавливаемость ухом человека и животных. Особенности использования данных физических явлений в современной промышленности и химико-техническом производстве, а также в медицине и эхолокации.
презентация [1,7 M], добавлен 16.12.2013Ультразвук как не слышимые человеческим ухом упругие волны, частоты которых превышают 20 кГц, его основные источники и приборы для анализа. Физические свойства и особенности распространения. Устройства для генерирования ультразвуковых колебаний.
презентация [703,8 K], добавлен 16.04.2015Сущность ультразвука, его восприятие человеком. Эхолокация летучих мышей и дельфинов. Первый ультразвуковой свисток. Терапевтическое применение ультразвука в медицине. Примеры его использования в химии и биологии, в некоторых отраслях промышленности.
презентация [2,0 M], добавлен 20.05.2011Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук. Хирургическое применение ультразвука. Эффект Доплера, применение для неинвазивного измерения скорости кровотока. Вибрации, физические характеристики.
контрольная работа [57,9 K], добавлен 25.02.2011Звук как источник информации. Причина и источники звука. Амплитуда колебаний в звуковой волне. Необходимые условия распространения звуковых волн. Длительность звучания камертона на резонаторе и без него. Использование в технике эхолокации и ультразвука.
презентация [3,7 M], добавлен 15.02.2011Теоретические основы акустики. Рождение, характеристика, специфические особенности, измерение и коэффициент поглощения звука. Дифракция света на ультразвуке в анизотропной среде. Схемы и характеристики ультразвуковой аппаратуры. Применение ультразвука.
научная работа [6,9 M], добавлен 11.03.2009Физические основы ультразвука — упругих колебаний, частота которых превышает 20 КГц , распространяющихся в форме продольных волн в различных средах. Явление обратного пьезоэлектрического эффекта. Медицинские области применения ультразвуковых исследований.
контрольная работа [88,0 K], добавлен 06.01.2015Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.
реферат [28,2 K], добавлен 04.06.2010Ознакомление с понятием и сущностью ультразвука. Рассмотрение частоты ультразвуковых волн, применяемых в промышленности и биологии. Изучение особенностей преобразования акустической энергии в тепловую. Применение ультразвука в диагностике и в терапии.
презентация [483,0 K], добавлен 11.02.2016Основные законы и правила распространения звуковых волн в различных средах, виды звуковых колебаний и их применение. Основные объективные и субъективные характеристики, скорость распространения, интенсивность. Эффект Доплера, ультразвук и инфразвук.
реферат [38,4 K], добавлен 24.06.2008Історія народження ультразвуку. Джерела ультразвуку: свисток Гальтона, рідинний ультразвуковий свисток, сирена. Різання металу за допомогою ультразвуку. Приготування сумішей за допомогою ультразвуку. Застосування ультразвуку для очищення коренеплодів.
контрольная работа [19,9 K], добавлен 18.11.2009Обработка результатов измерений физических величин. Среднеквадратическое отклонение, ошибка определения объема. Коэффициент проникновения ультразвука внутрь ткани. Энергия для поддержания разности давления. Средняя квадратичная скорость молекулы.
контрольная работа [119,5 K], добавлен 26.07.2012Свойства звука и его характеристики. Шум. Музыка. Речь. Законы распространения звука. Инфразвук, ультразвук, гиперзвук. Звук - это распространяющиеся в упругих средах - газах, жидкостях и твёрдых телах - механические колебания, воспринимаемые органами слу
реферат [13,8 K], добавлен 29.05.2003Механизм возникновения свободных носителей электрических зарядов. Электролитическая диссоциация - распад молекул на ионы под действием растворителя. Понятие электролита - жидкого проводника, в котором подвижными носителями зарядов являются только ионы.
презентация [2,1 M], добавлен 02.02.2011Прибор для обнаружения электрических зарядов и приблизительного определения их величины. Устройство и принцип работы электрометра. Вид электризации, происходящий от воздействия внешнего электрического поля на вещество. Определение маленького заряда.
презентация [57,4 K], добавлен 22.12.2010Эхолокация в природе. Пассивная локация. История открытия эхолокации. Использование локации в технике. Эхолокатор. Принцип действия модели звукового локатора. Усилитель сигнала и мощности. Звуковой генератор и детектор. Частотомер. Сборка звукового локато
научная работа [144,2 K], добавлен 04.11.2008Изучение сведений об электрической цепи, токе и законах электричества. Характеристика взаимодействия зарядов, источников тока, процесса электролиза. Анализ изобретения первых электрических конденсаторов и их использования, соединения проводников в цепи.
реферат [26,6 K], добавлен 15.09.2011