Современные тенденции развития физики термоэлектрических материалов

Физическое обоснование выбора оптимальной концентрации энергоносителей в зависимости от добротности ряда используемых и перспективных материалов. Электронные свойства сверхрешеток и систем с квантовыми ямами. Расчет теплофизических наноматериалов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.04.2013
Размер файла 372,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

на тему: «Современные тенденции развития физики термоэлектрических материалов»

Содержание

Введение

1. Выбор оптимальной концентрации носителей

1.1 Выбор оптимальной ширины запрещённой зоны

2. Наноструктурированные материалы

3. Сверхрешётки и системы с квантовыми ямами

3.1 Электронные свойства

3.2 Фононные свойства

4. Квантовые проволоки

Введение

Получение и преобразование энергии -- одно из важнейших направлений деятельности современной цивилизации, лежащее в самой основе её существования. Поскольку наиболее удобная и универсальная форма энергии для практических применений -- электрическая, то особое значение имеет разработка наиболее эффективных методов её получения, и поиск таких методов никогда не останавливался. Весьма остро встал вопрос о повышении эффективности преобразования тепловой энергии в электрическую из-за ощущающейся в настоящее время нехватки ископаемых видов топлива и выброса тепловыми электростанциями огромного количества газов, вызывающих парниковый эффект и глобальное изменение климата.

Большое внимание было обращено в этой связи на твердотельные термоэлектрические преобразователи. Последние имеют ряд преимуществ перед традиционными электрическими генераторами: простота конструкции, отсутствие движущихся частей, бесшумность работы, высокая надёжность, возможность миниатюризации без потери эффективности. Они используются и в экологически чистых холодильных агрегатах, поскольку преобразование энергии с их помощью возможно в обоих направлениях.

Однако сегодня обеспечиваемая термоэлектрическими устройствами эффективность преобразования ниже, чем у электрических генераторов или холодильников обычной конструкции, и поэтому они не получили широкого распространения в промышленности. Термоэлектрическая добротность непосредственно связана с эффективностью (КПД) устройства, поэтому это очень удобный параметр для сравнения потенциальной эффективности преобразователей, использующих различные материалы. Достигнутый сегодня уровень эффективности преобразования определяется параметрами лучших материалов, применяемых для этих целей.

Поскольку принципиальные физические ограничения эффективности термоэлектрического преобразования неизвестны, поиску новых термоэлектрических материалов с улучшенными параметрами уделяется сейчас очень большое внимание. Вопрос заключается, однако, в том, каким путём можно достигнуть увеличения эффективности преобразования.

Увеличение проводимости сопровождается не только ростом электронной теплопроводности, но обычно и падением термоэдс, так что оптимизировать величину ZT оказывается не просто. Металлы имеют высокую проводимость, но большую теплопроводность и низкую термоэдс.

Полупроводники и изоляторы имеют, напротив, высокую термо- эдс и небольшой электронный вклад в теплопроводность, но концентрация носителей заряда и электропроводность у них малы, что ведёт к низкому термоэлектрическому фактору мощности.

Лучшими известными термоэлектрическими материалами оказываются сильно легированные полупроводники или полуметаллы с концентрацией электронов порядка 1019 см-. На рисунках 1 и 2 показаны типичные величины термоэлектрической добротности для многих промышленных и перспективных материалов, работающих в различных температурных диапазонах. Как видно, термоэлектрическая добротность у них всех располагается в области ZT < 2, даже при повышенных температурах.

Рис. 1. Термоэлектрическая добротность ряда используемых и перспективных материалов

Однако для лабораторных образцов наилучшие достигнутые сегодня значения ZT при комнатной температуре уже лежат в диапазоне 2-3. Основным способом улучшения термоэлектрических свойств сегодня представляется использование пространственно-неоднородных материалов с неоднородностями, размеры которых сравнимы с характерными длинами волн электронов или фононов, т.е. лежат в нано-метровой области.

энергоноситель дробность ряда сверхрешетка материал

Рис. 2. Безразмерная термоэлектрическая добротность некоторых распространённых и перспективных материалов

1. Выбор оптимальной концентрации носителей

Один из самых простых с технологической точки зрения и поэтому практически всегда используемый метод улучшения термоэлектрических свойств полупроводникового материала -- выбор оптимального уровня легирования, т. е. такого, который обеспечивает максимальное значение термоэлектрической добротности. Как уже упоминалось выше, существование оптимального уровня концентрации электронов связано с тем, что при увеличении электронной концентрации проводимость обычно растёт, а термоэдс падает. Это падение можно понять, вспомнив механизм возникновения термоэдс.

Если в образце с электронной проводимостью существует перепад температуры, то электроны на горячем конце имеют более высокие энергии и скорости, чем на холодном, и более интенсивно диффундируют к холодному концу, чем двигающиеся им навстречу электроны с холодного конца, имеющие меньшие энергии и скорости. В результате возникает поток электронов с горячего конца на холодный, и на холодном конце образуется отрицательный заряд, а на горячем остаётся нескомпенсированный положительный. Таким образом возникает объёмная термоэдс. Если материал содержит носители заряда разных знаков, то их вклады в термоэдс будут вычитаться, потому что и электроны, и дырки идут с горячего конца образца на холодный, однако приносят с собой заряды противоположного знака. По этой причине хороший материал для термоэлектрических применений должен иметь монополярную проводимость. При увеличении концентрации газ носителей заряда (для определённости электронов) становится вырожденным, когда уровень Ферми ЕF (электрохимический потенциал) попадает в зону проводимости, а энергия Ферми, т. е. расстояние от уровня Ферми до дна этой зоны, превосходит kВ T. Энергия и скорость частиц определяются при этом величиной энергии Ферми и почти не зависят от температуры, поэтому электронные потоки с холодного и горячего концов образца различаются незначительно и термоэдс оказывается мала.

Заметно больших значений термоэдс и термоэлектрической добротности можно ожидать в случае полупроводников и полуметаллов в условиях, когда концентрация не слишком мала, но сильное вырождение отсутствует. Термоэдс и фактора мощности для РЬТе -- одного из распространённых термоэлектрических материалов, полученные на основе уравнений электронной кинетической теории с учётом вклада как электронов, так и дырок. Наибольшее значение фактора мощности в материале n-типа получается, когда уровень Ферми электронов лежит вблизи края зоны проводимости.

1.1 Выбор оптимальной ширины запрещённой зоны

Многие полупроводниковые материалы, используемые в термоэлектрических преобразователях, представляют собой сплавы или твёрдые растворы, зонная структура которых меняется при изменении состава сплава. В таких материалах за счёт изменения состава имеется возможность варьировать параметры их зонной структуры с целью оптимизации их термоэлектрических свойств.

Одним из фундаментальных параметров электронного спектра в полупроводнике является ширина запрещённой зоны Eg, и вопрос о наилучшем выборе её величины неоднократно привлекал внимание исследователей. При этом в разных работах делались различные предположения о том, как ведёт себя эффективная масса носителей при изменении Eg, но оказалось, что результаты от этого зависят слабо.

На основе решения уравнения Больцмана для электронов было показано, что и в этом случае оптимальная ширина запрещённой зоны, при которой термоэлектрическая добротность максимальна, должна существенно превышать kВT, а уровень Ферми должен быть расположен вблизи края зоны проводимости. Приведённая в работе оценка (Eg> 10kв Т) связана с тем, что при меньшей ширине запрещённой зоны в системе появляются дырки, а это уменьшает термоэдс материала. Если данное неравенство нарушается, то, чтобы избежать появления дырок, оптимальный уровень Ферми смещается вверх, входя в зону проводимости, но при этом величина фактора мощности оказывается меньшей, чем при более широкой щели.

Таким образом, результаты рассмотренных работ показывают, что в хорошем термоэлектрике щель в спектре должна быть значительно больше температуры (например, Eg > 10kв T), а уровень Ферми должен располагаться вблизи дна зоны основных носителей заряда. На практике термоэлектрики часто работают при температурах, несколько превосходящих десятую часть ширины их запрещённой зоны. Так, максимум термоэлектрической добротности теллурида висмута с Eg = = 0,16 эВ приходится на 400 К (рис. 1, 2), а в PbTe -- на 600 К (рис. 2), при том, что Eg при такой температуре у него равняется 0,36 эВ.

Рис. 6. (а) Схема электронной плотности состояний в валентной зоне PbTe (штриховая линия) и TlxPb1_xTe (сплошная линия), в последнем плотность состояний увеличена за счёт уровней Tl. Термоэлектрическая добротность возрастает, когда уровень Ферми дырок Ef лежит в интервале энергии Er вблизи этих уровней. (б) Измеренная температурная зависимость ZT в Tlo,o2Pbo,9sTe и Tl0,01Pb0,99Te по сравнению со стандартным PbTe: Na.

Теплопроводность Tl0,02Pb0,98Te не зависела от уровня легирования, проводимость же увеличивалась с ростом концентрации дырок, и её рост, не сопровождающийся падением термоэдс, и приводил к увеличению термоэлектрической добротностиЗ.

Более глубокие изменения свойств исходного материала происходят в сплавах PbTe и AgSbTe2, называемых LAST. В них атомы Ag и Sb занимают места Pb, и образуется система полупроводниковых соединений AgPbmSbTe2+m, весьма перспективная для высокотемпературных термоэлектрических приложений, таких, например, как утилизация остаточного тепла выхлопных газов автомобильных двигателей или выработка электричества за счёт тепла сгорания органического топлива. Результаты расчётов электронного зонного спектра AgPbmSbTe2+m, показывают, что в этом веществе, помимо структурных изменений, происходит существенная модификация плотности электронных состояний. Оказалось, что вид плотности состояний около потолка валентной зоны и дна зоны проводимости в AgPbmSbTe2+m чувствителен к локальному упорядочению пар Ag-Sb. Наличие этих пар приводит к более быстрому увеличению плотности состояний на краях разрешённых зон по сравнению с однородным РЬТе из-за появления отчётливо выраженных резонансных состояний. Ряд более сложных соединений был создан и на основе теллурида висмута В12Те3; так, четверные соединения (Bi1-- xSbx)2(Se1-- уTey)3 -- один из основных современных материалов для термоэлектрических холодильников. Другим примером термоэлектрического материала на основе теллурида висмута служит С8ВцТе6 -- вещество, растущее в виде игольчатых кристаллов и имеющее (при соответствующем уровне легирования) высокую термоэлектрическую добротность, достигающую максимального значения ZT = 0,8 при температуре 225 К, гораздо ниже комнатной.

2. Наноструктурированные материалы

Одним из важнейших направлений, по которым в последние годы был достигнут прогресс в области создания новых термоэлектрических материалов, явилось применение неоднородных материалов. Электронная кинетика в таких материалах может заметно усложняться, в частности, из-за появления круговых токов, величина которых зависит от структуры и геометрии системы. Тем не менее введение размера компонентов как дополнительного параметра системы облегчает решение задачи улучшения термоэлектрической добротности. Наноструктурированные материалы и структуры представляют значительный интерес для термоэлектрических применений. К их числу относятся сверхрешётки, системы с квантовыми ямами, проволоками и точками, а также всевозможные композиты с нерегулярными включениями нанометрового размера.

3. Сверхрешётки и системы с квантовыми ямами

3.1 Электронные свойства

Расчёты фактора мощности и термоэлектрической добротности в системах с квантовыми ямами и проволоками показали, что на эти величины оказывают своё влияние изменения электронной плотности состояний, обусловленные понижением размерности. Позже внимание привлекли и сверхрешётки из квантовых проволок и точек. Вычисления предсказывали значительное увеличение Р и Z при уменьшении поперечных размеров ям и проволок, обусловленное возрастанием термоэдс за счёт особенностей плотности состояний на дне нижней подзоны размерного квантования. Так, в работах с помощью модели Кронига- Пенни были рассмотрены структуры с ямами конечной глубины, хотя рассеяние по-прежнему описывалось в приближении постоянного времени релаксации. Было найдено, что при конечной высоте барьеров между ямами фактор мощности сначала увеличивается при уменьшении ширины ямы в соответствии с первоначальными ожиданиями, а затем начинает уменьшаться из-за туннелирования электронов сквозь барьеры, проходя через максимум при промежуточных значениях толщины. Было также показано, что при уменьшении высоты барьеров фактор мощности заметно падает. Имеются и другие возможности улучшения термоэлектрических характеристик систем с квантовыми ямами по сравнению с массивными образцами.

3.2 Фононные свойства

До сих пор речь шла только об электронных свойствах систем с квантовыми ямами, однако наноструктура образца отражается не только на его электронных, но и на фононных, решёточных свойствах. Неоднородности нанометровых размеров могут эффективно рассеивать тепловые фононы, длины волн которых лежат также в нанометровом диапазоне, что приводит к уменьшению теплопроводности. Влияние наноструктуры материала на теплопроводность решётки изучалось во многих работах, поскольку уменьшение теплопроводности очень важно для повышения термоэлектрической добротности. Из общих соображений можно ожидать, что при толщинах слоёв, существенно превосходящих длину свободного пробега фононов, величина теплопроводности должна приближаться к взвешенному среднему от теплопроводностей материалов слоёв. Если же слои очень тонкие (в пределе моноатомные), то теплопроводность должна быть близка к теплопроводности сплава соответствующего состава. При промежуточных толщинах слоёв, сравнимых с длиной волны переносящих тепло фононов, возможно уменьшение теплопроводности за счёт брэгговских отражений фононов от границ слоёв. Наблюдавшееся уменьшение поперечной фононной теплопроводности в сверхрешётках, по-видимому, ещё не предел. Теоретические расчёты показывают, что дальнейшее уменьшение теплопроводности может быть достигнуто в сверхрешётках со сложной элементарной ячейкой, каждый период которых содержит не два, а три, четыре или большее число слоёв.

Устройства на основе теллурида висмута могут работать при температурах вблизи комнатной и поэтому находят основные применения в разнообразных холодильных устройствах. Для использования в термоэлектрических генераторах требуются материалы, которые способны работать при более высоких температурах; к числу таких материалов относится теллурид свинца. Следует отметить, что обычно измеряется полная теплопроводность сверхрешётки, а для выделения решёточной компоненты из неё вычитается электронный вклад, рассчитанный по закону Видемана-Франца. Как известно, этот закон справедлив при упругом рассеянии носителей заряда. Поскольку в теллуриде свинца при комнатной температуре большую роль играет неупругое рассеяние на продольных оптических фононах, к результатам, полученным с помощью этого закона для сверхрешёток на основе РЬТе, следует относиться с осторожностью. Кроме того, недавно было показано, что в сверхрешётках постоянная Лоренца может существенно изменяться по сравнению с её величиной в однородном и изотропном материале и даже осциллировать при изменении толщины слоёв.

4. Квантовые проволоки

Ещё один объект, который в последнее время привлекает внимание с точки зрения его возможных термоэлектрических применений, -- это квантовые проволоки и их массивы. Как и у сверхрешёток, наличие гетерограниц меняет как электронные, так и фононные свойства систем с квантовыми проволоками. Рассмотрим сначала их электронные свойства. В квантовых проволоках фактор мощности может заметно увеличиваться по сравнению как с объёмными материалами, так и с квазидвумерными слоями. Причиной этого служит большая степень квантового ограничения движения носителей в них, приводящая к более резким особенностям электронной плотности состояний на краю разрешённой зоны. Существенное увеличение добротности происходило при толщинах, меньших тепловой де-бройлевской длины волны электрона. При надлежащем выборе толщины проволоки и электронной концентрации расчёт (по-прежнему в приближении постоянного времени релаксации) предсказывал значительный рост термоэлектрической добротности для малых толщин.

Аналогичные результаты были получены и в работе, где была развита теоретическая модель электронного транспорта в квантовых висмутовых проволоках цилиндрической формы. Исходя из зонной структуры Вi и по-прежнему пользуясь квазиклассической теорией транспорта в приближении постоянного времени релаксации, авторы рассчитали ZT для проволок разных диаметров и кристаллических ориентаций. Результаты показали, что для термоэлектрических применений наиболее благоприятно тригональное направление проволоки и что при диаметре меньше 10 нм получается ZT > 1. Была также исследована роль тяжёлых дырок в Т-экстремуме, и оказалось, что ZT можно было бы значительно увеличить, особенно в материале p-типа, если бы удалось уменьшить их концентрацию. В описанных выше в этом разделе статьях внимание авторов было сосредоточено в основном на электронных свойствах нанопроволок. Ясно, однако, что, как и в сверхрешётках, наличие границ может приводить к повышенному рассеянию фононов, снижению теплопроводности проволок и увеличению их термоэлектрической добротности.

С помощью решения уравнения Больцмана была рассчитана решёточная теплопроводность свободной проволоки. Диффузное и зеркальное отражение фононов от поверхности проволоки учитывались с помощью соответствующих граничных условий на функцию распределения фононов. Это объясняется большим отношением поверхности к объёму у проволоки по сравнению со слоем, что ведёт к возрастанию поверхностного рассеяния фононов и понижению теплопроводности. При уменьшении диаметра проволок наблюдалось сильное уменьшение их теплопроводности и изменение её температурной зависимости. Это было объяснено сокращением длины свободного пробега фононов за счёт поверхностного рассеяния, а также, возможно, и изменением фононного спектра в наиболее тонких проволоках за счёт квантового ограничения движения фононов.

Существенного падения теплопроводности можно ожидать и в нанопроволоках из других материалов, если их толщина становится меньшей длины свободного пробега фононов в однородном материале. Это подтвердили расчёты решёточной теплопроводности нанопроволок, выращенных из полупроводников типа III-V и II-VI.

Накопление данных об электронных и фононных свойствах нанопроволок позволило обратиться к изучению их термоэлектрических характеристик. Детальные теоретические исследования термоэлектрических свойств полупроводниковых нанопроволок состава III-V показали, что их фактор мощности возрастает при уменьшении толщины, но рост этот имеет ограниченный характер, аналогичный тому, который был получен в для структур пониженной размерности на основе PbTe. Были рассчитаны тепловые и электронные свойства нанопроволок, причём основой расчёта служило кинетическое уравнение Больцмана, а приближение постоянного времени релаксации не использовалось. Свободные нанопроволоки, однако, неудобны для практических применений.

Оказалось, что за счёт квантового размерного эффекта для электронов матрицы можно получить увеличение фактора мощности, если надлежащим образом выбрать параметры структуры, период сверхрешётки и толщину проволок. Расчётное увеличение фактора мощности по сравнению с материалом матрицы достигает 2,5 раз в композите на основе РЬТе и 3,5 раз в композите на базе InSb при периоде структуры 5-10 нм и комнатной температуре. На основе измерений термоэдс, удельной проводимости и коэффициента Нернста-Эттингсгаузена для плёнок PbTe в работе [78] было предположено, что одним из таких нетрадиционных механизмов могло служить асимметричное рассеяние потенциальными барьерами, высота которых зависит от положения уровня Ферми, определяющего заряд некоторых неизвестных приграничных состояний. Микроскопическая модель этого типа рассеяния ещё не развита.

Размещено на Allbest.ru

...

Подобные документы

  • Традиционные термоэлектрические материалы, теллуриды висмута и свинца. Улучшение термоэлектрической добротности однородных материалов. Термовольтаический эффект в поликристаллическом SmS. Выбор оптимальной концентрации носителей и ширины запрещённой зоны.

    дипломная работа [1,3 M], добавлен 11.07.2015

  • Свойства материалов: механические, физические, химические. Виды деформаций: растяжение, сжатие, сдвиг, кручение и изгиб. Расчет плотности, теплопроводности и теплоемкости материалов. Огнестойкость материалов: несгораемые, трудносгораемые, сгораемые.

    презентация [32,0 M], добавлен 10.10.2015

  • Свойства нанокристаллических порошковых материалов на основе тугоплавких соединений. Высокоэнергетические методы консолидации порошковых наноматериалов. Получение спеканием и свойства плотных образцов карбонитрида титана c нанокристаллической структурой.

    реферат [5,2 M], добавлен 26.06.2010

  • Структура межзеренных границ наноструктурированных материалов и сверхпластичность наноструктур. Сущность закона Хола-Петча. Дефекты в наноструктурированных материалах. Влияние границ раздела на механические свойства нанокристаллических наноматериалов.

    курсовая работа [838,1 K], добавлен 21.09.2013

  • Понятие мощности как физической величины, ее виды. Соотношения между единицами мощности. Основное содержание и методы сопротивления материалов. Физические свойства машиностроительных материалов: чугуна, быстрорежущей стали и магниевых сплавов.

    контрольная работа [29,1 K], добавлен 21.12.2010

  • Определение тока утечки, мощности потери, удельных диэлектрических потерь при включении образца на переменное напряжение. Классификация и основные свойства полупроводниковых материалов. Физический смысл и область использования магнитных материалов.

    контрольная работа [93,7 K], добавлен 28.10.2014

  • Расчет основных электрических величин трансформатора, его размеров, выбор и обоснование используемых материалов. Вычисление параметров обмоток и механических сил в них, короткого замыкания. Магнитная система трансформатора и этапы его теплового расчета.

    курсовая работа [251,3 K], добавлен 21.01.2014

  • Предварительный выбор двигателя турникета. Расчет требуемой мощности и редуктора. Необходимые геометрические размеры. Проверочный расчет требуемой мощности двигателя. Кинематическая погрешность редуктора. Обоснование выбора применяемых материалов.

    контрольная работа [58,9 K], добавлен 11.01.2014

  • Теоретические аспекты изучения магниторазведки. Рассмотрение принципов работы с квантовыми и протонными магнитометрами. Особенности применяемой магниторазведочной аппаратуры. Методика и техника съемки, обработка полевых материалов магниторазведки.

    отчет по практике [693,1 K], добавлен 23.09.2019

  • Классификация, структура, свойства, достоинства и недостатки композиционных материалов. Методы их обработки: контактное (ручное) формование, напыление, инжекция, вакуумная инфузия, намотка, пултрузия, прямое прессование. Рынок композиционных материалов.

    курсовая работа [2,7 M], добавлен 14.12.2015

  • Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.

    реферат [52,2 K], добавлен 30.10.2007

  • Механизм создания инверсных населенностей в трехуровневых схемах. Принцип работы лазера на рубине. Лазер в режиме модулированной добротности. Расчет характеристик рубинового лазера, работающего в режиме модулированной добротности и свободной генерации.

    курсовая работа [945,6 K], добавлен 29.10.2010

  • Факторы, учитываемые при предварительном выборе двигателя. Расчет требуемой мощности двигателя и определение мощности на выходном валу редуктора. Кинематический расчет редуктора и его геометрических параметров. Обоснование выбора применяемых материалов.

    курсовая работа [23,0 K], добавлен 24.06.2010

  • Получение композиционных материалов. Применение топологического подхода, основанного на теории катастроф, к аномальному поведению дисперсных систем и материалов. Анализ процессов структурообразования дисперсных систем при динамических воздействиях.

    статья [171,2 K], добавлен 19.09.2017

  • Характеристика методик испытаний, используемых для целей сертификации. Принципы эллипсометрического измерения температуропроводности наноструктурированных материалов. Процессы температуропроводности в нанопокрытиях при воздействии лазерного излучения.

    курсовая работа [642,1 K], добавлен 13.12.2014

  • Исследование наиболее известных видов зрительных иллюзий и их природы, физическое обоснование. Экспериментальное изучение материалов о различных видах иллюзий зрительного восприятия, принципы и основные этапы их создания и апробации на практике.

    презентация [5,0 M], добавлен 19.05.2014

  • Расчет температурной зависимости концентрации электронов в полупроводнике акцепторного типа. Определение и графическое построение зависимости энергии уровня Ферми от температуры: расчет температур перехода к собственной проводимости и истощения примеси.

    курсовая работа [3,1 M], добавлен 15.02.2013

  • Свойства звукоизоляции и звукопроницаемости материалов. Определение звукоизоляции образца звукоизоляционного материала с помощью акустического интерферометра. Характеристики погрешности измерений. Оценка погрешности измерений звукоизоляции образца.

    дипломная работа [3,4 M], добавлен 24.06.2012

  • Изучение метрологии как наука об измерениях, методах и средствах обеспечения их единства и точности. Характеристика и сущность преобразователей термоэлектрических. Общие технические требования термопары. Методика поверки. Расчет методом прямых измерений.

    курсовая работа [143,9 K], добавлен 29.06.2015

  • Основные сведения о строении вещества, классификация и общие характеристики электротехнических материалов. Принципы использования электротехнических материалов в устройствах электротехники и электроэнергетики. Силы электростатического притяжения.

    презентация [706,2 K], добавлен 29.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.