Дифракционная решетка, дифракционный спектр, дисперсия и разрешающая способность решётки

Рассмотрение конструктивных особенностей дифракционной решетки для видимого света, назначение. Анализ плоской монохроматической волны. Характеристика дифракции рентгеновских лучей, применение в рентгеновской спектроскопии и в рентгеноструктурном анализе.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 12.04.2013
Размер файла 241,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Дифракционная решетка, дифракционный спектр, дисперсия и разрешающая способность решётки

дифракционный решетка рентгеновский луч

1. Дифракционная решетка. Для увеличения интенсивности и более четкого разделения цветов следует воспользоваться не одной щелью, а целой дифракционной решеткой, которая представляет собой ряд параллельных щелей одинаковой ширины а, разделённых между собой непрозрачными промежутками шириной b. Сумма называется периодом или постоянной дифракционной решетки.

а + b = 1 (1)

Конструктивно дифракционная решетка для видимого света изготавливается путем нанесения на прозрачную стеклянную пластинку с помощью алмазного резца делительной машины ряда тонких параллельных штрихов-канавок одинаковой ширины bна равных расстоянияха друг от друга. Поверхность стекла внутри канавок становится матовой, и эти канавки являются непрозрачными промежутками, разделяющими участки с ненарушенной поверхностью - "щели"_решётки, рис.1.

Дифракционные решетки имеют обычно от 100 до 600 щелей на 1 мм, т.е. период l=10-2 мкм. Лучшие решетки содержат до 1800 щелей на 1 мм, при общей длине до нескольких см., так что общее число щелей достигает 105.

Рис.1.

Рассмотрим плоскую монохроматическую волну, нормально падающую на решетку, рис.2. Поместим параллельно решетке собирающую линзу L, а в ее фокальной плоскости - экранE. Каждая из параллельных щелей решётки дает на экране дифракционную картину, показанную на рис.2 пунктиром. Линза L собирает параллельные когерентные лучи, идущие от всех щелей под углом цк главной оптической оси, в одну и ту же точку М фокальной плоскости. При параллельности всех щелей дифракционной решётки и строгой одинаковости их размеров амплитуды колебаний, создаваемых в точке М каждой щелью в отдельности, будут одинаковы. Практически одинаковым будет и распределение вдоль экрана интенсивностей и амплитуд колебаний, приходящих от каждой щели. Дифракционная картина на решетке определяется как результат взаимной интерференции большого числа волн, идущих от всех щелей.

Pис.2.

На центральной линии экрана, проходящей через главный фокус линзы О, лучи, идущие от всех щелей, сходятся без дополнительной разности хода, т.е. приходят в одинаковой фазе. При этом амплитуды их колебаний просто складываются, и в случае N одинаковых щелей амплитуда результирующего колебания будет в N раз, а интенсивность в N2 раз больше, чем в случае одной щели.

Лучи, идущие от разных щелей под углом , отличным от нуля, сходятся в точке М, пройдя различные оптические пути и имея различные фазы колебаний. Они дают при интерференции более сложную картину.

Рассмотрим две соседние щели. Из рис.2 видно, что лучи, идущие от соответственных точек обеих щелей (крайних, центральных или промежуточных), имеют одну и ту же разность хода

= lsin(2)

и приходят в точку М со сдвигом фазы = 2(lsin)/. Такой же точно сдвиг фазы будет между колебаниями, приходящими от третьей щели и второй, четвертой и третьей, и т.д.

Резкое возрастание амплитуды результирующего колебания наблюдается в тех случаях, когда амплитуды колебаний от всех щелей Аiнаправлены одинаково, т.е. имеют сдвиг фазы кратный 2 (рис.3), что соответствует разности хода между соседними щелями кратной четному числу полуволн:

lsinm = 2m /2 = m, m = 0, 1, 2, 3, .... (3)

Условие (3) характеризует положение главных максимумов дифракционнойрешетки. При углах k, удовлетворяющих (3), амплитуда результирующего колебания А = NА1 и интенсивность дифракционной картины возрастает в N2 раз по сравнению с дифракцией от одной щели. Вследствие взаимной интерференции световых лучей из N щелей в некоторых направлениях они будут гасить друг друга. В этих направлениях между главными максимумами располагаются дополнительные минимумы интенсивности, разделенные вторичными максимумами, интенсивность которых значительно меньше, чем главных максимумов.

С увеличением N возрастает четкость дифракционной картины - увеличивается интенсивность и уменьшается ширина главных максимумов. Вследствие интерференции происходит перераспределение энергии в пространстве, и эта энергия концентрируется во все более узком интервале углов .

Подчеркнем, что хотя положение главных максимумов решетки не зависит от числа щелей, наличие большого числа щелей очень существенно:

Рис.3.

1)яркость каждой линии растет как N2, 2) ширина каждой линии убывает как 1/N. Тем самым увеличивается точность производимых измерений.

2. Дифракционный спектр.Если на дифракционную решетку будет падать немонохроматический свет, то все дифракционные максимумы, кроме центрального, для лучей разного цвета разложатся в спектр. Центральный максимум (m=0) для всех длин волн будет совпадать при = 0. Максимумы первого порядка (m=1) будут для фиолетовых лучей расположены ближе к центру, чем для красных. Между ними расположатся максимумы промежуточных цветов, и мы будем наблюдать дифракционный спектр первого порядка. Между нулевым и первым порядками спектра расположена практически темная зона очень слабых вторичных максимумов. Такая же темная зона расположена между красным концом спектра первого порядка и фиолетовым краем спектра второго порядка, рис.4.

Рис.4.

Рис. 5

Благодаря узости дифракционных максимумов решетки различные цвета почти не накладываются друг на друга. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т.е. дифракционная решетка может быть использована как спектральный прибор.Для этогорешетка D помещается на столике гониометра и освещается параллельным пучком света из коллиматора К(рис.5.). Разложенный дифракционной решеткой в спектр свет регистрируется фотоприемником r или наблюдается в зрительную трубу. Угол ц можно изменять и определять по шкале гониометра. Спектр дифракционной решетки получается тем более четким, чем больше щелей N содержит решетка. Максимальное число наблюдаемых дифракционных спектров определяется из условия, чтобы модуль sinm1, т.е.

mmaxl/. (4)

Из условия

sinm =m/l(5)

видно, что синусы углов в спектре данного порядка прямо пропорциональны длинам волн, т.е. дифракционные спектры, в отличие от спектров призматических монохроматоров, всегда одинаковы и равномерны. Помещая дифракционную решетку D на столик гониометра ( рис.5) и освещая ее пучком параллельных лучей через щель коллиматора К, можно, измеряя угол m, под которым видны данные лучи в зрительную трубу Т, точно найти их длину волны .

Отражательная решетка изготовляется процарапыванием параллельных штрихов на зеркальной поверхности. Её теория, по существу, не отличается от теории прозрачной решетки.

Для некоторых областей спектра стекло непрозрачно (например, для УФ-лучей). В этом случае нужно пользоваться кварцевой оптикой и отражательными решетками. Без линз можно обойтись, заменяя плоскую отражательную решетку вогнутой.

3.Дисперсия и разрешающая способность. Основными характеристиками всякого спектрального прибора является его дисперсия и разрешающая способность. Дисперсия определяет угловое или линейное расстояние между двумя спектральными линиями, отличающимися по длине волны на единицу (например, на 1 ангстрем). Разрешающая сила определяет минимальную разность длин волн , при которой две линии воспринимаются в спектре раздельно.

Угловой дисперсией называется величина

D= , (6)

где - угловое расстояние между спектральными линиями, отличающимися по длине волны на (рис.6). Можно показать, что

D = m/lcosц ?m/l, (7)

так как cosц ? 1. Откуда следует, что угловая дисперсия обратно пропорциональна периоду решетки l. Чем выше порядок спектра k, тем больше дисперсия.

Дифракционная решетка

Рис.6.

Линейной дисперсией называют величину

Dлин =l /, (8)

где l- линейное расстояние на экране или на фотопластинке между спектр.линиями, отличающимися по длине на. Линейная дисперсия связана с угловой дисперсией соотношением

Dлин =fD, (9)

где f- фокусное расстояние линзы, собирающей дифрагирующие лучи на экране. Приняв во внимание (7), запишем

Dлин =fm/l. (10)

Разрешающей силой спектрального прибора называют безразмерную величину

R= , (11)

где - минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются раздельно.

Возможность разрешения (т.е. раздельного восприятия) двух близких спектральных линий зависит не только от расстояния между ними, которое определяется дисперсией прибора, но также и от ширины спектральных, максимумов (рис. 7). Согласно критерию Рэлея, изображения двух близлежащих одинаковых точечных источников света или двух близлежащих спектральных линий с равными интенсивностями разрешимы, если центр дифракционного пятна каждого из них пересекается с краем первого темного кольца другого. При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80 % интенсивности в максимуме.

Рис.7.

Разрешающая сила дифракционной решетки пропорциональна порядку спектра m и числу щелей N:

Rдифр. реш. = mN,

то есть при заданном числе щелей для увеличения разрешающей силы необходимо переходить к большему порядку дифракционного спектра. Современные дифракционные решетки обладают довольно высокой разрешающей силой (до 2105).

При падении на объектив света от удаленного точечного источника света в фокальной плоскости объективавследствие дифракции световых волн вместо точечного изображения наблюдается дифракционная картина в виде светового пятна, окруженного чередующимися темными и светлыми кольцами. Если на объектив падает свет от двух удаленных точечных источников света с некоторым угловым расстоянием дц, то в фокальной плоскости объектива наблюдается наложение их дифракционных картин. Используя критерий Рэлея можно получить, что наименьшее угловое расстояние между двумя точками, при котором они еще разрешаются объективом с фокусным расстоянием f, равно

дц = 1,22лf/D, (13)

где D - диаметр входного зрачка объектива.

Величина, обратная дц, называется разрешающей силой (способностью) объектива

R = 1/дц = D/1,22fл. (14)

Из формулы (14) следует, что для увеличения разрешающей способности оптических приборов необходимо увеличивать диаметр объектива. Поэтому оптические телескопы изготавливают с диаметром входного зеркала в несколько метров.

Для примера, диаметр зрачка человеческого глаза при нормальном освещении равен приблизительно 2·10-3 м. Для оптического излучения с длиной волны л = 0,5·10-6 м и f = 1, получим дц = 3·10-4 рад ? 1?. Значит, минимальное угловое расстояние между точками, при котором глаз воспринимает их еще раздельно, равно одной угловой минуте.

4. Дифракция рентгеновских лучей на кристаллической решетке

В 1895 г. Рентген обнаружил, что при электрическом разряде в вакуумной трубке возникает излучение, невидимое для глаз. Дальнейшие исследования показали, что это излучение, названное в дальнейшем рентгеновским, возникает при бомбардировке вещества быстрыми электронами. В современных рентгеновских трубках мишенью, обстреливаемой электронами, является металлическая пластинка - катод, расположенный под углом 45° к потоку электронов. Скорость электронов определяется величиной разности потенциалов между анодом и катодом.

Рентгеновское излучение - жесткое электромагнитное излучение, и оно обладает волновыми свойствами. Для того чтобы обнаружить дифракцию его, необходимо чтобы размеры щелей и преград, образующих правильную решетку на пути волн, были не слишком велики по сравнению с длиной волны. Рентгеновское излучение обладает столь малой длиной волны, что для него на обычных дифракционных решетках дифракция не наблюдается.

Дифракция электромагнитного излучения наблюдается не только на одномерной дифракционной решетке, но и на двух- и трехмерных периодических структурах. Проделаем мысленно следующее. Поставим две дифракционные решетки одну за другой так, чтобы их штрихи были взаимно перпендикулярными. Первая решетка даст, например, в горизонтальном направлении ряд максимумов, положения которых определяются условием

l1sin1 = m1 (m1 =0, 1,2,3,..,). (15)

Вторая решетка разобьет каждый из образовавшихся таким образом пучков излучения на расположенные по вертикали максимумы, положения которых определяются условием

l2sin2 = m2 (m2 =0, 1,2,...). (16)

В итоге дифракционная картина будет иметь вид правильно расположенных светлых пятен.

Такая же дифракционная картина получится, если вместо двух решеток взять одну прозрачную пластинку с нанесенными на нее двумя системами взаимно перпендикулярных штрихов. Подобная пластинка представляет собой двумерную периодическую структуру.

Дифракция наблюдается также на трехмерных структурах, т.е. пространственных образованиях, обнаруживающих периодичность по трем не лежащим в одной плоскости направлениям. Подобными структурами являются все кристаллические тела. Однако их период (« 10-10 м) слишком мал для того, чтобы можно было наблюдать дифракцию в видимом свете. В случае кристаллов условие lвыполняется только для рентгеновского излучения.

Впервые дифракция на кристаллах с использованием очень узких пучков рентгеновского излучения наблюдалась в 1913 г. в опыте Лауэ, Фридриха и Книппинга. Первые методы расчета дифракции от объемной решетки дал Лауэ. Совершенно эквивалентные формулам Лауэ, но гораздо более удобные для анализа, формулы были даны независимо русским ученым Вульфом и английскими физиками У .Г. и У.Л .Брэггами. Метод, предложенный ими, состоит в следующем.

Рис.8. (d заменить на l)

Если падающая на кристалл волна плоская, то огибающая вторичных волн, порождаемых атомами, лежащими в таком слое, также будет представлять собой плоскость. Таким образом, суммарное действие атомов, лежащих в одном слое, можно представить в виде плоской волны, отразившейся от усеянной атомами поверхности по обычному закону отражения.

Плоские вторичные волны, отразившиеся от разных атомных слоев, когерентны и будут интерферировать между собой подобно волнам, посылаемым в данном направлении различными щелями дифракционной решетки. Вторичные волны будут практически гасить друг друга во всех направлениях, кроме тех, для которых разность хода между соседними волнами является кратной . Из рис.8 видно, что разность хода двух волн, отразившихся от двух соседних атомных слоев, равна 2lsinQ, где l - период идентичности кристалла в направлении, перпендикулярном к рассматриваемым слоям, Q - угол скольжения падающих лучей. Следовательно, направления, в которых получаются дифракционные максимумы рентгеновского излучения, определяется условием

2lsinQ = ±m (m =1,2,...). (17)

Это соотношение называется формулой Вульфа - Брэггов.

Атомные слои в кристалле можно провести множеством способов. Каждая система слоев может дать дифракционный максимум, если для нее окажется выполнимым (17). Однако заметную интенсивность имеют лишь те максимумы интенсивности, которые получаются за счет отражений от слоев, достаточно густо усеянных атомами. При произвольном направлении падения монохроматического рентгеновского излучения на кристалл дифракция не возникает. Чтобы ее наблюдать, надо, поворачивая кристалл, найти определенный угол скольжения. Дифракционная картина может быть получена и при произвольном положении кристалла, для чего нужно пользоваться рентгеновским излучением с непрерывным спектром. Тогда для таких условий опыта всегда найдутся длины волн , удовлетворяющие условию (17).

Дифракция рентгеновских лучей от кристаллов находит два основных применения. Она используется для исследования спектрального состава рентгеновского излучения (рентгеновская спектроскопия) и для изучения структуры кристаллов (рентгеноструктурный анализ). Определяя направления максимумов, получающихся при дифракции рентгеновского излучения с неизвестной длиной волны от кристаллов с известной структурой, можно определить длину волны.

В методе структурного анализа узкий пучок рентгеновского излучения направляется на кристалл. Для каждой системы слоев, достаточно густо усеянных атомами, находится в излучении длина волны, при которой выполняется условие (17). Поэтому на помещенной за кристаллом фотопластинке регистрируется (после проявления) совокупность черных пятнышек, взаимное расположение которых отражает симметрию кристалла. Расшифровывая рентгенограммы, по расстоянию между пятнышками и по их интенсивности удается найти размещение атомов в кристалле и расстояния между ними.

Размещено на Allbest.ru

...

Подобные документы

  • Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.

    методичка [211,1 K], добавлен 30.04.2014

  • Открытие, свойства и применение рентгеновских лучей. Торможение быстрых электронов любым препятствием. Большая проникающая способность рентгеновских лучей. Дифракционная картина, даваемая рентгеновскими лучами при их прохождении сквозь кристаллы.

    презентация [1,8 M], добавлен 04.12.2014

  • Рассмотрение дифракции - отклонения световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий. Волновые свойства света. Принцип Гюйгенса–Френеля. Строение дифракционной решетки.

    презентация [1,4 M], добавлен 04.08.2014

  • Изучение дифракции света на одномерной решетке и определение ее периода. Образование вторичных лучей по принципу Гюйгенса-Френеля. Расположение главных максимумов относительно центрального. Измерение среднеарифметического значения длины световой волны.

    лабораторная работа [67,1 K], добавлен 25.11.2010

  • Понятие дифракции световых волн. Распределение интенсивности света в дифракционной картине при освещении щели параллельным пучком монохроматического света. Дифракционная решетка, принцип Гюйгенса - Френеля, метод зон. Дифракция Фраунгофера одной щели.

    реферат [43,7 K], добавлен 07.09.2010

  • Изучение особенностей распространения световой волны с помощью принципа Гюйгенса-Френеля. Характеристика разных видов дифракции Фраунгофера. Структура и методы изготовления дифракционных решеток. Конструкция дифракционных спектрографов и монохроматоров.

    курсовая работа [3,0 M], добавлен 24.03.2013

  • Дифракция в сходящихся лучах (дифракция Френеля). Схема дифракции Фраунгофера в параллельных лучах. Интерференция волн, идущих от щелей решетки. Формулы условий, определяющих дифракционную картину. Спектральное разложение. Разрешающая способность решетки.

    презентация [135,3 K], добавлен 18.04.2013

  • Компакт-диск как дифракционная решетка. Компакт-диск – зонная пластинка. Фокусирующее действие компакт-диска. Наблюдения в монохроматическом и белом свете. Дифракция света. Поляризация света. Проверка закона Малюса.

    лабораторная работа [274,5 K], добавлен 19.07.2007

  • Явление дифракции частиц. Структурные и магнитные характеристики вещества. Разложение волн по их частотному спектру. Свободное движение частицы. Волновой вектор монохроматической волны. Применение дифракции частиц для изучения физических объектов.

    реферат [109,6 K], добавлен 21.12.2016

  • Понятие и общие характеристики плоской волны, их разновидности, отличительные признаки и свойства. Сущность гармонической волны. Уравнения однородной линейно поляризованной плоской монохроматической электромагнитной волны. Определение фазовой скорости.

    презентация [276,6 K], добавлен 13.08.2013

  • Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.

    реферат [893,5 K], добавлен 20.03.2014

  • Дифракционный структурный метод. Взаимодействие рентгеновского излучения с электронами вещества. Основные разновидности рентгеноструктурного анализа. Исследование структуры мелкокристаллических материалов с помощью дифракции рентгеновских лучей.

    презентация [668,0 K], добавлен 04.03.2014

  • Определение дифракции в волновой и геометрической оптике. Сущность принципа Гюйгенса-Френеля. Виды дифракции и определение дифракционной решетки. Дифракция Фраунгофера на одной щели. Распределение интенсивности в дифракционной картине от двух щелей.

    презентация [82,6 K], добавлен 17.01.2014

  • Анализ структуры вещества с помощью рентгеновских лучей. Свойства рентгеновских лучей. Периодичность в распределении атомов по пространственным плоскостям с различной плотностью. Дифракция рентгеновских лучей. Определение кристаллической структуры.

    презентация [1013,1 K], добавлен 22.08.2015

  • Характеристика диапазона частот, излучаемых электромагнитными волнами. Особенности распространения радиоволн. Исследование частотного диапазона инфракрасного и ультрафиолетового излучения. Специфика восприятия видимого света. Свойства рентгеновских лучей.

    презентация [122,5 K], добавлен 20.04.2014

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

  • Обзор дифракции в сходящихся лучах (Френеля). Правила дифракции световых волн на круглом отверстии и диске. Схема дифракции Фраунгофера. Исследование распределения интенсивности света на экране. Определение характерных параметров дифракционной картины.

    презентация [135,3 K], добавлен 24.09.2013

  • Устройство микроскопа, история его разработок и тенденции к совершенствованию. Разрешающая способность микроскопов. Особенности оптических, электронных, сканирующих зондовых, рентгеновских, дифференциальных интерференционно-контрастных микроскопов.

    презентация [393,7 K], добавлен 06.02.2014

  • Исследование кристаллической структуры поверхности с помощью рентгеновских и электронных пучков. Дифракция электронов низких и медленных энергий (ДЭНЭ, ДМЭ), параметры. Тепловые колебания решетки, фактор Дебая-Валлера. Реализация ДЭНЭ, применение метода.

    курсовая работа [3,2 M], добавлен 08.06.2012

  • Функция рассеяния точки в случае отсутствия аберраций. Влияние неравномерности пропускания по зрачку на ФРТ. Безаберационная ОПФ. Предельная пространственная частота. Критерии качества оптического изображения. Предельная разрешающая способность.

    реферат [566,7 K], добавлен 15.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.