Применение солнечной энергии

Разработка солнечных электростанций и параболо-цилиндрических концентраторов, концентрирующих солнечную энергию на трубчатых приемниках. Внедрение фотоэнергетики. Солнечная энергия - наиболее мощный из всех видов нетрадиционных источников энергии в Крыму.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.04.2013
Размер файла 17,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Применение солнечной энергии

солнечный электростанция фотоэнергетика

Солнечные электростанции. После энергетического кризиса 1973 г. правительствами стран и частными компаниями были приняты экстренные меры по поиску новых видов энергетических ресурсов для получения электроэнергии. Таким источником в первую очередь стала солнечная энергия. Были разработаны параболо-цилиндрические концентраторы. Эти устройства концентрируют солнечную энергию на трубчатых приемниках, расположенных в фокусе концентраторов. Интересно, что в 1973 г. вскоре после начала нефтяного эмбарго был сконструирован плоский концентратор, явившийся успехом научной и инженерной мысли. Это привело к созданию первых солнечных электростанций (СЭС) башенного типа. Широкое применение эффективных материалов, электронных устройств и параболо-цилиндрических концентраторов позволило построить СЭС с уменьшенной стоимостью - системы модульного типа. Началось внедрение этих систем в Калифорнии фирмой Луз (Израиль). Были подписаны контракты с фирмой Эдисон на строительство в южной Калифорнии серии СЭС.

В качестве теплоносителя использовалась вода, а полученный пар подавался к турбинам. Первая СЭС, построенная в 1984 г., имела КПД 14,5%, а себестоимость производимой электроэнергии 29 центов/(кВт-ч). В 1994 г. фирма Луз реорганизована в компанию Солел, базирующуюся в Израиле, и продолжает успешно работать над созданием СЭС, ведет строительство СЭС мощностью 200 МВт, а также разрабатывает новые системы аккумулирования энергии. В период между 1984 и 1990 г. фирмой Луз было построено девять СЭС общей мощностью 354 МВт. Последние СЭС, построенные фирмой Луз, производят электроэнергию по 13 центов/(кВт-ч) с перспективой снижения до 10 центов/(кБт-ч). Д. Миле из университета Сиднея улучшил конструкцию солнечного концентратора, использовав слежение за Солнцем по двум осям и применив вакуумированный теплоприемник, получил КПД 25--30%. Стоимость получаемой электроэнергии составит 6 центов/(кВт-ч).

Строительство первой экспериментальной установки с таким концентратором начато в 1994 г. а Австралийском национальном университете, мощность установки 2 МВт. Считают, что подобная система будет создана в США после 2000 г. и она позволит снизить стоимость получаемой электроэнергии до 5,4 цента/(кВт-ч). При таких показателях строительство СЭС станет экономичным и конкурентоспособным по сравнению с ТЭС.

Другим типом СЭС, получившим развитие, стали установки с двигателем Стирлинга, размещаемым в фокусе параболического зеркального концентратора. КПД таких установок "может достигать 29%. Предполагается использовать подобные СЭС небольшой мощности для электроснабжения автономных потребителей в отдаленных местностях.

ОТЭС. В перспективе можно использовать для получения электроэнергии разность температуры слоев воды в океане, которая может достигать 20°С. Станции на этой основе (ОТЭС) находятся в разработке. Первый вариант подобной установки мощностью 5 МВт проектируется в Израиле. Меньшие по мощности установки действуют в Австралии, Калифорнии и ряде других стран. Основная сложность перспективы их использования - низкая экономичность и как следствие отсутствие коммерческого интереса.

Фотоэнергетика. Начиная с 70-х годов правительства индустриальных стран израсходовали биллион долларов на разработки фотоэлектрических преобразователей. За последние 10 лет стоимость фотоэлектрических преобразователей снижалась и в 1993 г. достигла 3,5-4,75 дол/Вт, а стоимость получаемой энергии 25-40 центов/(кВт/ч). Мировой объем производства с 6,5 МВт в 1980 г. увеличился до 29 МВт в 1987 г. и в 1993 г. составил более 60 МВт.

В Японии ежегодно выпускается 100 млн. калькуляторов общей мощностью 4 МВт, что составляет 7% мировой торговли фотоэлектрическими преобразователями. Более 20 тыс. домов в Мексике, Индонезии, Южной Африке, Шри-Ланке и в других развивающихся странах используют фотоэлектрические системы, смонтированные на крышах домов, для получения электроэнергии для бытовых целей.

Наилучшим примером использования таких систем является Доминиканская республика, где 2 тыс. домов имеют фотоэлектрические установки, сконструированные в последние 9 лет. Стоимость такой установки 2 тыс. дол.

В Шри-Ланке израсходовано 10 млн. дол на электрификацию 60тыс. домов с помощью фотосистем. Стоимость установки мощностью 50Вт, включающая фотопанель, источник света и аккумуляторную батарею, составляет 500 дол.

В будущем стоимость установки для малых систем будет снижаться, например установки с люминесцентными лампами. В Кении в течение последних лет 20 тыс. домов электрифицировано с помощью фотосистем по сравнению с 17 тыс. домами, где за это же время введено централизованное электроснабжение. В Зимбабве за счет кредита в 7 млн. дол, выделенного в 1992 г., будет электрифицировано 20 тыс. домов в течение 5 лет. Мировым банком выделен кредит в 55 млн. дол. для электрификации 100 тыс. домов в Индии фотосистемами. В США стоимость 1 км распределительных электросетей составляет 13-33 тыс. дол. Контракт на установку мощностью 500 МВт, включающую электроснабжение дома, освещение, радио, телевидение и компьютер, составляет не менее 15 тыс. дол. (включая аккумуляторную батарею). Уже имеется 50 тыс. таких установок в городах и ежегодно строится около 8 тыс. установок. Среди индустриальных стран кроме США также лидируют в использовании фотосистем в домах Испания и Швейцария.

Если даже ежегодно в мире будет снабжаться фотосистемами 4 млн. домов (1% тех, что электрифицируются ежегодно), то общая установленная мощность фотосистем составит всего 200 МВт, что в 4 раза меньше мирового производства их в 1993 г. Если производство фотосистем достигнет ежегодно 1% общей продажи энергии в мире, то их производство по сравнению с современным уровнем должно возрасти десятикратно, а увеличение до 10% этой продажи приведет к стократному росту производства фотосистем.

Для успешного внедрения фотосистем их удельная стоимость должна быть снижена в 3-5 раз прежде, чем появятся крупные энергосистемы.

Половина продажи кремния приходится на монокристаллы, поликристаллическая модификация также имеет большое будущее. Большое будущее будут иметь тонкопленочные системы, в частности на основе аморфного кремния. Некоторые образцы фотоэлектро-преобразователей на основе аморфного кремния имеют КПД 10%, удельную стоимость 1 дол/Вт, стоимость получаемой электроэнергии 10-12 центов/(кВт/ч) - это ниже, чем была ее стоимость в 1993 г. Имеется перспектива снижения стоимости к 2000 г. до 10 центов/(кВт /ч) и до 4 центов/(кВт /ч) к 2020 г.

Итак, фотоэнергетика может стать ведущим источником энергии мировой большой индустрии. Это подтверждают сделанные в 1994 г. разработки, считают эксперты. В результате создания новых технологий и повышения технического уровня продукции может быть преодолен барьер для внедрения фотоэлектрических систем, связанный с высокой их стоимостью. Так, по инициативе корпорации Енрон ведется разработка фотоэлектрической станции мощностью 100 МВт для строительства в Неваде, на которой стоимость вырабатываемой электроэнергии составит 5,5 цента/(кВт/ч).[1]

Солнечная энергия является наиболее мощным и доступным из всех видов нетрадиционных и возобновляемых источников энергии в Крыму. Солнечное излучение не только неисчерпаемый, но и абсолютно чистый источник энергии, обладающий огромным энергетическим потенциалом.

В реальных условиях облачности, годовой приход суммарной солнечной радиации на территории Крымского региона находится на уровне 1200-1400 кВт ч/м2.

При этом, доля прямой солнечной радиации составляет: с ноября по февраль 20-40 %. с марта по октябрь - 40-65%, на Южном берегу Крыма в летние месяцы - до 65-70%.

В Крыму наблюдается также наибольшее число часов солнечного сияния в течение года (2300-2400 часов в год), что создает энергетически благоприятную и экономически выгодную ситуацию для широкого практического использования солнечной энергии.

В то же время, источник имеет довольно низкую плотность (для Крыма до 5 ГДж на 1 м2 горизонтальной поверхности) и подвержен значительным колебаниям в течение суток и года в зависимости от погодных условий, что требует принятия дополнительных технических условий по аккумулированию энергии.

Основными технологическими решениями по использованию энергии являются: превращение солнечной энергии в электрическую и получение тепловой энергии для целей теплоснабжения зданий.

Прямое использование солнечной энергии в условиях Крыма, для выработки в настоящее время электроэнергии, требует больших капитальных вложений и дополнительных научно-технических проработок.[8]

В 1986 г. вблизи г. Щелкино построена первая в мире солнечная электростанция (СЭС-5) мощностью 5 тыс. кВт. К 1994 г. она выработала около 2 млн. кВт.час электроэнергии. Эксперимент с СЭС показал реальность преобразования солнечной энергии в электрическую, но стоимость отпускаемой электроэнергии оказалась слишком высокой, что в условиях рыночной экономики является малоперспективным.

В настоящее время ПЭО "Крымэнерго" обосновало применение в Крыму солнечно-топливных электростанций, являющихся СЭС второго поколения с более высокими технико-экономическими показателями. Такую электростанцию планируется построить в Евпатории. Сегодня солнечная энергетика получила широкое развитие в мире. Мировым лидером по строительству СЭС является американско-израильская фирма "Луз", сооружающая станции мощностью 30-80 МВт, на которых используется принципиально новая технология с параболо-цилиндрическими концентратами солнечного излучения. Себестоимость вырабатываемой ими электроэнергии ниже, чем на атомных электростанциях.[9]

Перспективность применения фотоэлектрического метода преобразования солнечной энергии обусловлено его максимальной экологической чистотой преобразования, значительным сроком службы фотоэлементов и малыми затратами на их обслуживание. При этом простота обслуживания, небольшая масса, высокая надежность и стабильность фотоэлектропреобразователей делает их привлекательными для широкого использования в Крыму.

Основными задачами по широкому внедрению фотоэлектрических источников питания являются:

o разработка научно-технических решений по повышению КПД фотоэлементов;

o -применение высокоэффективных фотоэлементов с использованием концентраторов солнечного излучения.

Техническая подготовленность отечественных предприятий на Украине позволяет освоить производство фотоэлектрических источников питания на суммарную установленную мощность до 100 МВт.

Мощность фотоэлектрических преобразователей солнечной энергии, внедряемых в Крыму к 2010 г., может составить до 3,0 МВт, что может обеспечить экономию топлива до 1,7 тыс т у.т. в автономных системах энергообеспечения.

Солнечная энергия в Крыму может использоваться не только для производства электроэнергии, но и тепла. Это реально при широком распространении в республике солнечных батарей (коллекторов), легко сооружаемых и высокорентабельных. Разработкой и изготовлением солнечных коллекторов новой конструкции занимаются ГНПП “Гелиотерн”, “Крымэнерго” (пос. Утес) и трест “Южстальмонтаж” (г. Симферополь). Горячее водоснабжение от солнца (коллекторов) сбережет дефицитное органическое топливо и не будет загрязнять воздушный бассейн. В настоящий же период 80% тепловой энергии производят более трех тысяч котельных, которые не только сжигают огромное количество органического топлива, по и существенно повышают концентрацию газопылевых загрязнений воздушной среды.

Для успешного внедрения экологически чистых систем солнечного теплоснабжения, повышения надежности их функционирования необходимо:

o * разработать и внедрить в производство на предприятиях Крыма различные виды энергетически эффективных солнечных коллекторов с улучшенными теплотехническими характеристиками, отвечающими современному зарубежному уровню, в частности: с селективным покрытием, вакуумные, пластмассовые для бытовых нужд, воздушные для нужд сельского хозяйства;

o * довести выпуск солнечных коллекторов к 2010 г. до 3-5 тыс. штук в год, что эквивалентно замещению годового использования топлива - 0,35 - 0,65 тыс. т у.т.;

o * увеличить в 2-3 раза выпуск высокоэффективных теплообменников для солнечных установок;

o * обеспечить достаточную постановку запорной и регулирующей арматуры, приборов для автоматизации технологических процессов.

Реализация этих предложений позволяет создать в Крыму собственную промышленную индустрию по выпуску основного специализированного оборудования для комплектации и строительства установок по использованию солнечной энергии.

Наиболее перспективными направлениями солнечного теплоснабжения на ближайшую перспективу (до 2010 г.) являются:

o * солнечное горячее водоснабжение индивидуальных и коммунальных потребителей сезонных объектов (детские, туристические, спортивные лагеря, объекты санаторно-курортной сферы, жилых и общественных зданий);

o * пассивное солнечное отопление малоэтажных жилых домов и промышленных сооружений, главным образом, в сельской местности и Южном берегу Крыма;

o использование солнечной энергии в различных сельскохозяйственных производствах (растениеводство в закрытых грунтах, сушка зерна, табака и других сельхозпродуктов и материалов);

o применение низкопотенциальной теплоты, полученной на солнечных установках, для разнообразных технологических процессов в различных отраслях промышленности (для пропарки при производстве железобетонных изделий и др. целей).

Экономия топлива на отопительных котельных от внедрения этих установок может составить к 2000 г. - 4,01 тыс. т у.т., за период 2001-2005 г. - 6,5 тыс. т у. т. и за период с 2006 по 2010 г. - 11,66 тыс т у.т.

Дополнительная выработка электроэнергии от работы солнечных фотоэлектрических преобразователей батарей может составить к 2000 г. - 0,30 млн. кВт. ч., за период с 2001 по 2005 г. - 0,72 млн. кВт. ч., за период с 2006 по 2010 гг. - 1,8 млн. кВт. ч.

Для реализации программы к 2010 г. промышленность Крыма должна обеспечить производство солнечных коллекторов до 3,5 - 4,0 тыс. штук ежегодно.[8]

Размещено на Allbest.ru

...

Подобные документы

  • Потенциал и сферы использования солнечной энергии, которая трансформируется в другие формы: энергию биомассы, ветра или воды. Механизм действия солнечных коллекторов и систем, тепловых электростанций, фотоэлектрических систем. Солнечная архитектура.

    курсовая работа [420,7 K], добавлен 07.05.2011

  • Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат [999,0 K], добавлен 22.12.2010

  • Количество солнечной энергии, попадающей на Землю, ее использование человеком. Способы пассивного применения солнечной энергии. Солнечные коллекторы. Технологический цикл солнечных тепловых электростанций. Промышленные фотоэлектрические установки.

    презентация [3,3 M], добавлен 06.12.2015

  • Использование ветрогенераторов, солнечных батарей и коллекторов, биогазовых реакторов для получения альтернативной энергии. Классификация видов нетрадиционных источников энергии: ветряные, геотермальные, солнечные, гидроэнергетические и биотопливные.

    реферат [33,0 K], добавлен 31.07.2012

  • Возрастание интереса к проблеме использования солнечной энергии. Разные факторы, ограничивающие мощность солнечной энергетики. Современная концепция использования солнечной энергии. Использование океанской энергии. Принцип действия всех ветродвигателей.

    реферат [57,6 K], добавлен 20.08.2014

  • Солнечная, ветряная, геотермальная энергия и энергия волн. Использование альтернативной энергии в России. Исследование параметров солнечной батареи и нестандартных источников энергии. Реальность использования альтернативной энергии на практике.

    реферат [3,8 M], добавлен 01.01.2015

  • Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа [487,3 K], добавлен 15.12.2011

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Обзор технологий и развитие электроустановок солнечных электростанций. Машина Стирлинга и принцип ее действия. Производство электроэнергии с помощью солнечных батарей. Использования солнечной энергии в различных отраслях производства промышленности.

    реферат [62,3 K], добавлен 10.02.2012

  • География мировых природных ресурсов. Потребление энергии как проблема устойчивого развития. Общая характеристика альтернативных источников энергии: солнечная, ветряная, приливная, геотермальная энергия и энергия, получаемая при сжигании биомассы.

    презентация [1,2 M], добавлен 08.12.2012

  • Оценка состояния энергетической системы Казахстана, вырабатывающей электроэнергию с использованием угля, газа и энергии рек, и потенциала ветровой и солнечной энергии на территории республики. Изучение технологии комбинированной возобновляемой энергетики.

    дипломная работа [1,3 M], добавлен 24.06.2015

  • Солнечная энергетика — использование солнечного излучения для получения энергии; общедоступность и неисчерпаемость источника, полная безопасность для окружающей среды. Применение нетрадиционной энергии: световые колодцы; кухня, транспорт, электростанции.

    презентация [4,5 M], добавлен 05.12.2013

  • Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация [911,5 K], добавлен 20.12.2009

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Обоснование экодома как жилища. Низкопотенциальная тепловая энергия. Первая солнечная батарея. Эффективность солнечных коллекторов. Климатическая характеристика Оренбургской области. Характеристика и расчёты солнечных батарей, ветряных генераторов.

    курсовая работа [3,5 M], добавлен 02.12.2014

  • Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.

    курсовая работа [2,2 M], добавлен 11.03.2010

  • Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация [1,1 M], добавлен 25.05.2016

  • История открытия солнечной энергии. Принцип действия и свойства солнечных панелей. Типы батарей: маломощные, универсальные и панели солнечных элементов. Меры безопасности при эксплуатации и экономическая выгода применения солнечной системы отопления.

    презентация [3,1 M], добавлен 13.05.2014

  • Исследование электроснабжения объектов альтернативными источниками энергии. Расчёт количества солнечных модулей, среднесуточного потребления энергии. Анализ особенностей эксплуатации солнечных и ветровых установок, оценка ветрового потенциала в регионе.

    курсовая работа [258,8 K], добавлен 15.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.