Лазеры и их применение в медицине. Физические основы интроскопии

Спонтанное и индуцированное излучение. Устройство оптического квантового генератора. Основные направления использования лазера в медицине. Электронный парамагнитный резонанс. ЯМР-интроскопия. Расщепление энергетических уровней атомов в магнитном поле.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 28.04.2013
Размер файла 461,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Государственное Образовательное Учреждение

Высшего Профессионального Образования «КГМУ»

Министерства Здравоохранения и Социально Развития России

Лазеры и их применение в медицине.

Физические основы интроскопии

Самостоятельная работа

Выполнила:Писарева Анастасия Дмитриевна

1 курс 3 группа педиатрический факультет

Проверил: Чистяков Михаил Владимирович

старший преподаватель

Курск-2012

Содержание:

Спонтанное и индуцированное излучение

Устройство оптического квантового генератора

Основные направления использования лазера в медицине

Расщепление энергетических уровней атомов в магнитном поле

Электронный парамагнитный резонанс

Медико-биологическое применение электронно парамагнитного резонанса

Основные характеристики ядер. Магнитный момент ядра

Ядерный магнитный резонанс

ЯМР-интроскопия

Используемая литература

излучение лазер интроскопия магнитный

Спонтанное и индуцированное излучение

Как отмечалось нами, атомы могут находиться лишь в квантовых состояниях с дискрет­ными значениями энергии Е1, Е2, Е3, ... Ради простоты рассмотрим только два из этих состояний (1 и 2) с энергиями Е1 и Е2. Если атом находится в основном состоянии 1, то под действием внешнего излучения может осуществиться вынужденный переход в воз­бужденное состояние 2 , приводящий к поглощению излучения. Вероятность подобных переходов пропорциональна плотности излучения, вызывающего эти переходы

Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромагнитного излучения (испуская фотон с энергией hn=E2-Е1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воз­действий называется спонтанным (или самопроизвольным) излучением (рис. 309, б). Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.

В 1916 г. А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамического равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбуж­денном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей усло­вию hv=E2-E1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv=E2-E1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

В статистической физике известен принцип детального равновесия, согласно которому при термодинамическом равновесии каждому процессу можно сопоставить обратный процесс, причем скорости их протекания одинаковы. А. Эйнштейн применил этот принцип и закон сохранения энергии при рассмотрении излучения и поглощения электромагнитных волн в случае черного тела. Из условия, что при равновесии полная вероятность испускания (спонтанного и вынужденного) фотонов равна вероятности поглощения фотонов той же частоты, Эйнштейн получил выведенную ранее Планком формулу .

Эйнштейн и Дирак показали, что вынужденное излучение (вторичные фотоны) тождественно вынуждающему излучению (первичным фотонам): оно имеет такие же частоту, фазу, поляризацию и направление распространения, как и вынуждающее излучение. Следовательно, вынужденное излучение строго когерентно с вынуждающим излучением, т. е. испущенный фотон неотличим от фотона, падающего на атом.

Испущенные фотоны, двигаясь в одном направлении и встречая другие возбужденные атомы, стимулируют дальнейшие индуцированные переходы, и число фотонов растет лавинообразно. Однако наряду с вынужденным излучением возможен и кон­курирующий процесс -- поглощение. Поэтому для усиления падающего излучения необходимо, чтобы число актов вынужденного излучения фотонов (оно пропорционально заселенности возбужденных состояний) превышало число актов поглощения фотонов (оно пропорционально заселенности основных состояний). В системе атомов, находящейся в термодинамическом равновесии, поглощение падающего излучения будет преобладать над вынужденным, т. е. падающее излучение при прохождении через вещество будет ослабляться.

Чтобы среда усиливала падающее на нее излучение, необходимо создать неравновесное состояние системы, при котором число атомов в возбужденных состояниях было бы больше, чем их число в основном состоянии. Такие состояния называются состояниями с инверсией населенностей. Процесс создания неравновесного состояния вещества (перевод системы в состояние с инверсией населенностей) называется накачкой. Накачку можно осуществить оптическими, электрическими и другими способами.

В средах с инверсными состоящими вынужденное излучение может превысить поглощение, вследствие чего падающий пучок света при прохождении через эти среды будет усиливаться (эти среды называются активными). В данном случае явление протекает так, как если бы в законе Бугера I=I0e-ax (см. (187.1)) коэффициент поглощения a, зависящий, в свою очередь, от интенсивности излучения, стал отрицательным. Активные среды поэтому можно рассматривать в качестве сред с отрицательным коэффициентом поглощения.

Впервые на возможность получения сред, в которых свет может усиливаться за счет вынужденного излучения, указал в 1939 г. российский физик В. А. Фабрикант, экспериментально обнаружив вынужденное излучение паров ртути, возбужденных при электрическом разряде. Открытие явления усиления электромагнитных волн и изобретенный способ их усиления (В. А. Фабрикант, М. М. Вудынский, Ф. А. Бугаева; 1951) легли в основу квантовой электроники, положения которой позволили впоследствии осуществить квантовые усилители и квантовые генераторы света.

Лазеры или оптические квантовые генераторы - это современные источники когерентного излучения, обладающие целым рядом уникальных свойств. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XX века, которое привело к революционным изменениям во многих областях науки и техники. К настоящему времени создано большое количество лазеров с различными характеристиками - газовых, твердотельных, полупроводниковых, излучающих свет в различных оптических диапазонах. Лазеры могут работать в импульсном и непрерывном режимах. Мощность излучения лазеров может изменяться в пределах от долей милливатта до 1012-1013 Вт (в импульсном режиме). Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т. д. Хотя первый оптический квантовый генератор был построен сравнительно недавно (1960 г.), современную жизнь уже невозможно представить без лазеров.

Одним из важнейших свойств лазерного излучения является чрезвычайно высокая степень его монохроматичности, недостижимая в излучении нелазерных источников. Это и все другие уникальные свойства лазерного излучения возникают в результате согласованного, кооперативного испускания световых квантов многими атомами рабочего вещества.

Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E1, E2 и т. д. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом в отсутствие внешних возмущений может находиться бесконечно долго, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка 10-8 с, после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10-3 с. Такие уровни называются метастабильными.

Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях.

Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными.

Теперь самое главное. В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным или индуцированным. Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца.

Именно индуцированное излучение является физической основой работы лазеров.

На рис. 6.4.1 схематически представлены возможные механизмы переходов между двумя энергетическими состояниями атома с поглощением или испусканием кванта света.

Рисунок 1

Условное изображение процессов (a) поглощения, (b) спонтанного испускания и (c) индуцированного испускания кванта

Рассмотрим слой прозрачного вещества, атомы которого могут находиться в состояниях с энергиями E1 и E2 > E1. Пусть в этом слое распространяется излучение резонансной частоты перехода н = ДE / h. Согласно распределению Больцмана, при термодинамическом равновесии большее количество атомов вещества будет находиться в нижнем энергетическом состоянии. Некоторая часть атомов будет находиться и в верхнем энергетическом состоянии, получая необходимую энергию при столкновениях с другими атомами. Обозначим населенности нижнего и верхнего уровней соответственно через n1 и n2 < n1. При распространении резонансного излучения в такой среде будут происходить все три процесса, изображенные на рис. 1 Эйнштейн показал, что процесс (a) поглощения фотона невозбужденным атомом и процесс (c) индуцированного испускания кванта возбужденным атомом имеют одинаковые вероятности. Так как n2 < n1 поглощение фотонов будет происходить чаще, чем индуцированное испускание. В результате прошедшее через слой вещества излучение будет ослабляться. Это напоминает появление темных фраунгоферовских линий в спектре солнечного излучения. Излучение, возникающее в результате спонтанных переходов, некогерентно, распространяется во всевозможных направлениях и не дает вклада в проходящую волну.

Чтобы проходящая через слой вещества волна усиливалась, нужно искусственно создать условия, при которых n2 > n1, т. е. создать инверсную населенность уровней. Такая среда является термодинамически неравновесной. Идея использования неравновесных сред для получения оптического усиления впервые была высказана В. А. Фабрикантомв 1940 году. В 1954 году русские физики Н. Г. Басов и А. М. Прохоров и независимо от них американский ученый Ч. Таунс использовали явление индуцированного испускания для создания микроволнового генератора радиоволн с длиной волны л = 1,27 см. За разработку нового принципа усиления и генерации радиоволн в 1964 году все трое были удостоены Нобелевской премии.

Среда, в которой создана инверсная населенность уровней, называется активной. Она может служить резонансным усилителем светового сигнала. Для того, чтобы возникала генерация света, необходимо использовать обратную связь. Для этого активную среду нужно расположить между двумя высококачественными зеркалами, отражающими свет строго назад так, чтобы он многократно прошел через активную среду, вызывая лавинообразный процесс индуцированной эмиссии когерентных фотонов. При этом в среде должна поддерживаться инверсная населенность уровней. Этот процесс в лазерной физике принято называть накачкой.

Начало лавинообразному процессу в такой системе при определенных условиях может положить случайный спонтанный акт, при котором возникает излучение, направленное вдоль оси системы. Через некоторое время в такой системе возникает стационарный режим генерации. Это и есть лазер. Лазерное излучение выводится наружу через одно (или оба) из зеркал, обладающее частичной прозрачностью. На рис. 2 схематически представлено развитие лавинообразного процесса в лазере.

Рисунок 2

Развитие лавинообразного процесса генерации в лазере

Существуют различные способы получения среды с инверсной населенностью уровней. В рубиновом лазере используется оптическая накачка, атомы возбуждаются за счет поглощения света. Но для этого недостаточно только двух уровней. Каким бы мощным не был свет лампы-накачки, число возбужденных атомов не будет больше числа невозбужденных. В рубиновом лазере накачка производится через выше расположенный третий уровень (рис. 3).

Рисунок 3

Трехуровневая схема оптической накачки. Указаны «времена жизни» уровней E2 иE3. Уровень E2 - метастабильный. Переход между уровнями E3 и E2безызлучательный. Лазерный переход осуществляется между уровнями E2 и E1. В кристалле рубина уровни E1, E2 и E3принадлежат примесным атомам хрома

После вспышки мощной лампы, расположенной рядом с рубиновым стержнем, многие атомы хрома, входящего в виде примеси в кристалл рубина (около 0,05 %), переходят в состояние с энергией E3, а через промежуток ф ? 10-8 с они переходят в состояние с энергией E2. Перенаселенность возбужденного уровня E2 по сравнению с невозбужденным уровнем E1 возникает из-за относительно большого времени жизни уровня E2.

Лазер на рубине работает в импульсном режиме на длине волны 694 мм (темно-вишневый свет), мощность излучения может достигать 106-109 Вт в импульсе. Исторически это был первый действующий лазер, построенный американским физиком Т. Майманом в 1960 г.

Одним из самых распространенных в настоящее время является газовый лазер на смеси гелия и неона. Общее давление в смеси составляет порядка 102 Па при соотношении компонент He и Ne примерно 10 : 1. Активным газом, на котором в непрерывном режиме возникает генерация на длине волны 632,8 нм (ярко-красный свет), является неон. Гелий - буферный газ, он участвует в механизме создания инверсной населенности одного из верхних уровней неона. Излучение He-Ne лазера обладает исключительной, непревзойденной монохроматичностью. Расчеты показывают, что спектральная ширина линии генерации He-Ne лазера составляет примерно Дн ? 5·10-4 Гц. Это фантастически малая величина. Время когерентности такого излучения оказывается порядка ф ? 1 / Дн ? 2·103 с, а длина когерентности cф ? 6·1011 м, т. е. больше диаметра земной орбиты!

На практике многие технические причины мешают реализовать столь узкую спектральную линию He-Ne лазера. Путем тщательной стабилизации всех параметров лазерной установки удается достичь относительной ширины Дн / н порядка 10-14-10-15, что примерно на 3-4 порядка хуже теоретического предела. Но и реально достигнутая монохроматичность излучения He-Ne лазера делает этот прибор совершенно незаменимым при решении многих научных и технических задач. Первый гелий-неоновый лазер был создан в 1961 году. На рис. 4 представлена упрощенная схема уровней гелия и неона и механизм создания инверсной населенности лазерного перехода.

Рисунок 4

Механизм накачки He-Ne лазера. Прямыми стрелками изображены спонтанные переходы в атомах неона

Накачка лазерного перехода E4 > E3 в неоне осуществляется следующим образом. В высоковольтном электрическом разряде вследствие соударений с электронами значительная часть атомов гелия переходит в верхнее метастабильное состояния E2. Возбужденные атомы гелия неупруго сталкиваются с атомами неона, находящимися в основном состоянии, и передают им свою энергию. Уровень E4 неона расположен на 0,05 эВ выше метастабильного уровня E2 гелия. Недостаток энергии компенсируется за счет кинетической энергии соударяющихся атомов. На уровне E4 неона возникает инверсная населенность по отношению к уровню E3, который сильно обедняется за счет спонтанных переходов на ниже расположенные уровни. При достаточно высоком уровне накачки в смеси гелия и неона начинается лавинообразный процесс размножения идентичных когерентных фотонов. Если кювета со смесью газов помещена между высокоотражающими зеркалами, то возникает лазерная генерация. На рис. 5 изображена схема гелий-неонового лазера.

Рисунок 5.

Схема гелий-неонового лазера: 1 - стеклянная кювета со смесью гелия и неона, в которой создается высоковольтный разряд; 2 - катод; 3 - анод; 4 - глухое сферическое зеркало с пропусканием менее 0,1 %; 5 - сферическое зеркало с пропусканием 1-2 %

Современные высокостабильные гелий-неоновые лазеры производятся в моноблочном исполнении. Для этого используется стеклообразное вещество - ситалл, обладающий практически нулевым температурным коэффициентом расширения. В куске ситалла в форме прямоугольного параллелепипеда просверливается канал, к торцам которого на оптическом контакте приклеиваются лазерные зеркала. Канал заполняется смесью гелия и неона. Катод и анод вводятся через дополнительные боковые каналы. Такая моноблочная конструкция обеспечивает высокую механическую и тепловую стабильность.

Модель. Лазер, двухуровневая модель

Основные направления использования лазеров в медицине

Наша страна, по сути, является родиной лазеров. Но она одной из первых увидела еще и перспективу их применения в медицине и одной из первых инициировала широкий спектр научных исследований в этом направлении. Благодаря России лазеры в медицину стали внедряться практически с момента их рождения, породив целое новое направление в медицине с условным названием «Лазерная медицина». Ряд государственных, а затем и малых частных предприятий успешно освоил производство терапевтических и хирургических лазерных аппаратов, продавая их тысячами на внутреннем рынке и за рубежом. Хирургическое, а особенно терапевтическое применение лазеров практикуется сегодня в нашей стране настолько широко, что многие специалисты всерьез говорят о лидирующем положении в мире России в области лазерной медицины. Особенно в области низкоинтенсивной лазерной терапии (НИЛТ). Между тем, низкоинтенсивные лазерные технологии в медицине далеко не все бесспорны, и не ограничиваются только рамками проведения лечебных процедур. Поэтому здесь остается еще большое поле для научных исследований. Не менее перспективной областью их применения в медицине, например, может считаться так называемая неинвазивная (неразрушающая, in vivo, in situ) диагностика.

Основные направления исследований в лаборатории в области применения лазеров в медицине:

Для нас термин "лазерная медицина" в первую очередь означает именно лазерную медицинскую диагностику. Сохраняя преемственность и накопленный научный задел в области лазерных методов диагностики в медицине, биофотометрии, биомедицинской спектроскопии и т.п. (см. раздел "О лаборатории", подраздел "История") лаборатория сегодня продолжает исследования в области оптической неинвазивной диагностики. Ранее, в 2002-2008гг., нам удалось вычленить и сформулировать основной предмет исследования в биофотометрии, показать родственность задач биофотометрии обычным задачам клинической лабораторной спектрофотометрии с отличием лишь в прижизненном и неинвазивном характере измерений и предсказать появление многофункциональных диагностических систем, реализующих на едином оборудовании различные методы оптической неинвазивной диагностики (см. Рогаткин Д.А., Лапаева Л.Г. // Медицинская техника, №4, 2003. - с.31-36). Поэтому, начиная с 2003г., это научное направление получило у нас новое обобщающее название "Неинвазивная медицинская спектрофотометрия" (НМС), и сегодня исследования в нем проводятся по следующим основным разделам:

Научно-инженерные основы моделирования, проектирования и создания аппаратного, программного и методического обеспечения для неинвазивной медицинской спектрофотометрии (НМС) в дополнение к выполненным ранее исследованиям и полученным ранее результатам развиваются сегодня нами в направлении разработки и создания научно обоснованной системы метрологического обеспечения НМС. Как методов, так и приборов. Исследуются физические и медико-биологические источники случайных и систематических погрешностей в НМС (как инструментальных, так и методических). Разрабатываются имитационные оптические меры для калибровки, настройки и поверки приборов НМС. Оцениваются достигаемые уровни погрешностей для разных методов и приборов в лабораторных условиях и в условиях натурных применений приборов и методик НМС в различных клиниках института и различных областях медицины.

Физико-технические аспекты влияния низкоинтенсивного лазерного излучения (НИЛИ) на функциональное состояние тканей и органов пациента при проведении любых процедур НМС, а также любых лечебно-профилактических процедур на основе низкоинтенсивной лазерной терапии (НИЛТ), фотодинамической терапии (ФДТ) и т.п. также входит в круг наших интересов. Сегодня эти работы проводятся совместно с научной группой Орловского Государственного технического университета. Особое внимание уделяется изучению изменений при проведении процедур НИЛТ (острый эксперимент) параметров микроциркуляции крови и тканевого дыхания, как наиболее чувствительных к НИЛИ (по данным литературы) и наиболее надежно регистрируемых методами НМС (оптической тканевой оксиметрией, лазерной доплеровской флоуметрией и т.д.). Эти работы, фактически, непрерывно ведутся в МОНИКИ с начала 1990-х годов, однако до сегодняшнего дня достоверно зафиксировать сколько-нибудь очевидных изменений в системе микроциркуляции крови при НИЛТ нам так и не удалось...

Клинические методики применения и интерпретация результатов лазерной диагностики - наиболее интересный и профильный раздел наших исследований для такого многопрофильного медицинского научного центра как МОНИКИ. В институте представлены практически все разделы медицины (за исключением психиатрии, акушерства и гинекологии), и имеется возможность изучать эффективность и информативность лазерных диагностических методов для решения самых разнообразных прикладных задач практического здравоохранения (дифференциальная диагностика и выявление ранних форм заболеваний, мониторинг процесса лечения, функциональная диагностика и пр.). Среди всех этих задач для НМС сегодня выделяются две наиболее сложные и перспективные с точки зрения фундаментальной науки: интерпретация результатов флюоресцентной диагностики в широком спектральном диапазоне длин волн для идентификации накопления эндогенных флюорохромов в тканях (NADH, коллаген, липофусцин и т.п.) и изучение методами НМС особенностей реакции системы микроциркуляции крови на различные функциональные нагрузочные тесты и лечебные мероприятия (оперативное вмешательство, процедуры физиотерапии, прием лекарственных препаратов и т.п.), что перекликается с предыдущим направлением исследований.

Одним из направлений научных исследований в лаборатории является разработка новых диагностических приборов и устройств для НМС по договорам о научно-техническом сотрудничестве с фирмами-производителями медицинского оборудования. В этих договорах лаборатория медико-физических исследований (МОНИКИ) выступает в роли медицинского соисполнителя разработки, который по ГОСТ Р 15.013-94 и определяет все основные медико-технические требования (МТТ) к прибору, основные его функциональные возможности, принцип действия, методики обработки и анализа результатов диагностики, методики применения в медицине и т.п. На этом поприще с участием лаборатории были разработаны, созданы и доведены до рынка медицинской техники такие российские диагностические приборы для НМС как: первый российский портативный неинвазивный оптический тканевой оксиметр "Спектротест" и многофункциональный лазерный неинвазивный диагностический комплекс (МЛНДК) "ЛАКК-М".

Расщепление энергетических уровней атомов в магнитном поле

Для непрерывного наблюдения поглощения энергии условия резонанса недостаточно, т.к. при воздействии электро-магнитным излучения произойдет выравнивание заселенностей подуровней (эффект насыщения). Для поддержания больцманов-ского распределения заселенностей подуровней необходимы релаксационные процессы. Релаксационные переходы электронов из возбужденного состояния в основное реализуются при обмене энергией с окружающей средой (решеткой), к-рый осуществляется при индуцированных решеткой переходах между электронными подуровнями и определяется как спин-решеточная релаксация. Избыток энергии перераспределяется и между самими электронами - происходит спин-спиновая релаксация. Времена спин-решеточной релаксации T1 и спин-спиновой релаксации Т2 являются количеств. мерой скорости возврата спиновой системы в исходное состояние после воздействия электромагнитным излучения. Зафиксированное регистрирующим устройством поглощение электромагнитным энергии спиновой системой и представляет собой спектр ЭПР.

Основные параметры спектров ЭПР - интенсивность, форма и ширина резонансной линии, g-фактор, константы тонкой и сверхтонкой (СТС) структуры. На практике обычно регистрируется 1-я, реже 2-я производные кривой поглощения, что позволяет повысить чувствительность и разрешение получаемой информации.

Интенсивность линии определяется площадью под кривой поглощения , к-рая пропорциональна числу парамагнитным частиц в образце. Оценку их абс. кол-ва осуществляют сравнением интенсивностей спектров исследуемого образца и эталона. При регистрации 1-й производной кривой поглощения используют процедуру двойного интегрирования. В ряде случаев интегральную интенсивность можно приближенно оценить, пользуясь выражением , где Sпл - площадь под кривой поглощения, Iмакс - интенсивность линии, - ширина линии. 1-я и особенно 2-я производные весьма чувствительны к форме линии поглощения.

Форма линии в спектре ЭПР сравнивается с лоренцевой и гауссовой формами линии, к-рые аналитически выражаются в виде: у= a/(1 + bх2)(лоренцева линия), у = а ехр (-bx2) (гауссова линия). Лоренцевы линии обычно наблюдаются в спектрах ЭПР жидких р-ров парамагнитным частиц низкой концентрации. Если линия представляет собой суперпозицию мн. линий (неразрешенная СТС), то форме ее близка к гауссовой.

Важным параметром является ширина линии к-рая связана с шириной линий на полувысоте соотношениями(лоренцева форма) и (гауссова форма). Реальные линии ЭПР, как правило, имеют промежуточную форму (в центре лоренцева, по краям - гауссова формы). Времена релаксации T1 и Т2 определяют ширину резонансной линии Величина T1 характеризует время жизни электронного спина в возбужденном состоянии, в соответствии с принципом неопределенности при малых T1 происходит уширениё линии ЭПР. В парамагнитным ионах T1имеет порядок 10-7 - 10-9 с и определяет осн. канал релаксации, обусловливающий появление очень широких линий (вплоть до таких, к-рые невозможно наблюдать в обычных условиях). Использование гелиевых т-р позволяет наблюдать спектры ЭПР за счет увеличения T1. В своб. орг. радикалах T1 достигает порядка секунд, поэтому главный вклад в ширину линии вносят релаксационные процессы, связанные со спин-спиновым взаимодействием и определяемые временем Т2, обратно пропорциональнымгде- гиромагнитным отношение для электрона,- параметр, зависящий от формы линии, в частности= 1 для лоренцевой линии и для гауссовой линии. Физ. смысл Т2 заключается в том, что каждый электронный спин в системе создает локальные поля в местах нахождения др. электронов, модулируя резонансное значение поля H и приводя к уширению линии.

g-Фактор формально определяется как фактор спектроскопич. расщепления Ланде, равный где L, S, J - квантовые числа соотв. орбитального, спинового и полного моментов кол-ва движения. В случае чисто спинового магнетизма L= 0 (ситуация своб. электрона) g = 2,0023. Отклонение от этой величины свидетельствует о примеси орбитального магнетизма (спин-орбитальное взаимодействие), приводящего к изменению величины резонансного поля. Ценную информацию величина g-фактора дает при анализе спектров ЭПР парамагнитным ионов с сильным спин-орбитальным взаимодействием, т. к. она весьма чувствительна к лигандному окружению иона, к-poe формирует кристаллич. поле (см. Кристаллического поля теория). Для ионов g-фактор определяется в виде где - константа спин-орбитального взаимодействия (или спин-орбитальной связи),-т. наз. расщепление в поле лигандов. Для радикалов величина очень велика, мала и отрицательна, поэтому для этих систем g-фактор близок к таковому для свободного электрона и изменяется в пределах третьего знака после запятой.

Магнитные взаимодействия в спиновых системах в общем случае анизотропны, что определяется анизотропией волновых фракций (орбиталей) неспаренного электрона за исключением систем с неспаренным электроном в s-состоянии. Резонансное значение магнитным поля и величина g-фактора зависят от относит. ориентации магнитным поля и кристаллографическим (или молекулярных) осей. В жидкой фазе анизотропные взаимод. усредняются, приводя к изотропному (усредненному) значению g-фактора. В отсутствие усреднения (твердая фаза) в зависимости от структуры и хим. окружения спиновой системы, реализуется цилиндрическим (осевая) или более низкая симметрия. В случае цилиндрической симметрии различают и причем - величина при поле Н, параллельном оси симметрии z,- величина при H, перпендикулярном оси z.

Тонкая структура возникает в спектрах ЭПР парамагнитным ионов, содержащих более одного неспаренного электрона (S> 1/2). В частности дня иона с S= 3/2 при наложении постоянного магнитным поля образуются 2S + 1 = 4 подуровня, расстояния между к-рыми для своб. иона одинаковы, и при поглощении кванта должен наблюдаться один резонансный пик. В ионных кристаллах за счет неоднородности кристаллич. поля интервалы между подуровнями спиновой системы оказываются разными. В результате этого поглощение электромагнитным излучения происходит при разл. значениях поля Я, что приводит к появлению в спектре трех резонансных линий.

Сверхтонкая структура. Наиб. ценную информацию дает анализ СТС спектров ЭПР, обусловленной взаимодействия магнитным момента неспаренного электрона с магнитным моментами ядер. В простейшем случае атома водорода неспаренный электрон находится в поле Н и локальном поле, созданном ядерным спином протона (I=1/2); при этом имеются две возможные ориентации ядерных спинов относительно поля H: в направлении этого поля и в противоположном, что приводит к расщеплению каждого зеемановского уровня на два). Т. обр., вместо одной линии резонансного поглощения при фиксированной частоте возникают две линии.

Расстояние между ними наз. константой сверхтонкого взаимодействия (СТВ); для атома водорода ан = 5,12 x 10-2 Тл. В общем виде при наличии СТВ неспаренного электрона с ядром, обладающим спином I, линия поглощения ЭПР расщепляется на (21+ 1) компонент СТС равной интенсивности. В случае СТВ с и эквивалентными ядрами в спектре возникают n + 1 эквидистантно расположенных линий с отношением интенсивностей, пропорциональным коэффициентам биномиального разложения (1 + x)n. Мультиплетность и интенсивность линий определяется ориентацией ядерных спинов в каждом конкретном случае, что видно на примере спектра ЭПР метильного радикала (рис. 4). Следует подчеркнуть, что каждая линия спектра отвечает совокупности частиц, имеющих одну и ту же комбинацию ядерных спинов, создающих одно и то же локальное магнитным поле, а весь спектр -это статистическое среднее по всему ансамблю спиновой системы.

Уровни сверхтонкой структуры и ориентации ядерных спинов для трех эквивалентных ядер со спином V, (протонов) в переменном магнитном поле. Интенсивность линий в спектре ЭПР отражает вырождение по ориентациям ядерных спинов (показаны справа).

Электронный парамагнитный резонанс.

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР, электронный спиновый резонанс), явление резонансного поглощения электромагнитным излучения парамагнитным частицами, помещенными в постоянное магнитным поле; один из методов радиоспектроскопии. Используется для изучения систем с ненулевым электронным спиновым магнитным моментом (т. е. обладающих одним или неск. неспаренными электронами): атомов, свободных радикалов в газовой, жидкой и твердой фазах, точечных дефектов в твердых телах, систем в триплетном состоянии, ионов переходных металлов.

Физика явления. В отсутствие постоянного магнитным поля Н магнитным моменты неспаренных электронов направлены произвольно, состояние системы таких частиц вырождено по энергии. При наложении поля Н проекции магнитным моментов на направление поля принимают определенные значения и вырождение снимается (см. Зеемана эффект), т. е. происходит расщепление уровня энергии электронов E0. Расстояние между возникшими подуровнями зависит от напряженности поля Н и равно (рис. 1), где g - фактор спектроскопич. расщепления (см. ниже), - магнетон Бора, равный 9,274 x 10-24 Дж/Тл; в системе единиц СИ вместо Н следует использовать магнитным индукцию где - магнитным проницаемость своб. пространства, равная 1,257 x 10-6 Гн/м. Распределение электронов по подуровням подчиняется закону Больцмана, согласно к-рому отношение заселенностей подуровней определяется выражением где k - постоянная Больцмана, Т - абс. т-ра. Если на образец подействовать переменным магнитным полем с частотой v, такой, что (h - постоянная Планка), и направленным перпендикулярно H, то индуцируются переходы между соседними подуровнями, причем переходы с поглощением и испусканием кванта hv равновероятны. Т.к. на нижнем уровне число электронов больше в соответствии с распределением Больцмана, то преим. будет происходить резонансное поглощение энергии переменного магнитным поля (его магнитным составляющей).

Основные характеристики ядер. Магнитный момент ядра

За более чем 70 лет исследования атомных ядер физикой ядра накоплен громадный объем экспериментальных данных. Интерпретация этих данных является задачей теории ядра. Перечислим основные характеристики ядер, которые будут обсуждаться далее:

Размеры ядер.

Энергия связи нуклонов в ядре и энергии отделения нуклонов и кластеров от ядра.

Спин, четность и изоспин ядер в основных и возбужденных состояниях.

Спектры ядер

Электромагнитные моменты ядра и нуклонов

Размеры ядер

Распределение заряда и массы в атомных ядрах исследуется в экспериментах по упругому рассеянию на ядрах альфа-частиц (исторически это первые эксперименты Резерфорда), электронов и протонов. Выяснилось, что как плотность распределения заряда, так и плотность распределения массы ядра приближенно выражаются распределением Ферми

Величину R называют радиусом ядра. Отметим, что поскольку распределение плотности заряда и массы близки, но не совпадают друг с другом, отличаются также и зарядовый и массовый радиусы. В приближенных расчетах можно считать эти величины совпадающими и полагать, что радиус ядра

Распределение удельных энергий связи = Eсв/A как функция числа нуклонов А является наиболее важным для приложений экспериментальным результатом физики ядра (Рис.1.2) .

Экспериментально установленное распределение удельных энергий связи ядер по значениям чисел нуклонов в ядре А имеет следующие характерные черты:

В широкой области ядер удельная энергия связи очень слабо зависит от А; для ядер с малыми А удельная энергия имеет “спад”.

Для тяжелых ядер средняя удельная энергия связи меньше, чем для средних, причем с ростом А наблюдается снижение ее величины.

Для ядер с Z = N удельная энергия выше, чем для других ядер с тем же значением А.

Четно-четные (по Z и N) ядра имеют в среднем большие значения , чем нечетно-четные, а нечетно-нечетные - меньшие.

Теоретическое объяснение этого распределения дает модель заряженной жидкой капли и соответствующая этой модели формула Вайцзеккера.

Первая из перечисленных (и главная) особенность распределения удельных энергий связи ядер - следствие насыщения ядерных сил. Вторая связана с тем, что связи нуклонов, находящихся на поверхности ядра, с другими нуклонами ядра не полностью насыщены. Чем больший процент нуклонов находится на поверхности ядра, тем больше “убыль” энергии насыщения. (Этими особенностями ядерные силы оказываются подобны силам, действующим между молекулами жидкости). Третья особенность распределения удельной энергии связи объясняется тем, что протоны ядер участвуют не только в сильном (ядерном), но и в электромагнитном взаимодействии. Чем больше протонов, тем выше энергия кулоновского отталкивания. Четвертая и пятая особенности распределения - следствия оболочечной структуры ядра и симметрий, связанных с реализацией в ядре принципа Паули.

На схемах спектров ядер указывают энергии уровней ядра в МэВ или в кэВ, а также спин и четность состояний. На современных схемах указывают также изоспин состояний. (Поскольку на схемах спектров даны энергии возбуждения уровней, энергия основного состояния принимается за начало отсчета). В области энергий возбуждения E < Eотд - т.е. при энергиях, меньших, чем энергия отделения нуклона, спектры ядер - дискретные. Это означает, что ширины спектральных уровней меньше расстояния между уровнями Г < E.

Спонтанные переходы ядер из более высоких возбужденных состояний дискретного спектра ядра в более низкие ( в том числе в основное состояние) реализуются, как правило, путем излучения гамма-квантов, т.е. за счет электромагнитных взаимодействий. В области больших энергий возбуждения, когда E > Eотд, ширины уровней возбужденного ядра резко возрастают. Дело в том, что в отделении нуклона от ядра главную роль играют ядерные силы- т.е. сильные взаимодействия. Вероятность сильных взаимодействий на порядки выше вероятности электромагнитных, поэтому ширины распада по сильным взаимодействиям велики и уровни ядерных спектров в области E > Eотд перекрываются - спектр ядра становится непрерывным. Главным механизмом распада высоковозбужденных состояний с этой области энергий является испускание нуклонов и кластеров (альфа-частиц и дейтронов). Излучение гамма-квантов в этой области высоких энергий возбуждения E > Eотд происходит с меньшей вероятностью, чем испускание нуклонов. Возбужденное ядро имеет, как правило, несколько путей, или каналов, распада. На рис. 1.3 показан спектр ядра 12С. Спектр выше 16 МэВ - непрерывный.

Ядерный магнитный резонанс

Ядерный магнитный резонанс (ЯМР) -- избирательное поглощение веществом электромагнитного излучения, обусловленное переориентацией магнитных моментов атомных ядер, находящихся в постоянном магнитном поле. На явлении ЯМР основан метод изучения структуры и молекулярного движения в различных веществах, в т.ч. в биологических объектах.

Ядра атомов большинства химических элементов (за исключением ядер с четным числом протонов и нейтронов) обладают так называемым спином, т.е. моментом количества движения и обусловленным им постоянным магнитным моментом. При помещении в постоянное магнитное поле магнитный момент системы ядер, подобно вращающемуся волчку, выведенному из вертикального положения, движется по поверхности конуса вращения вокруг оси направления поля (прецессионное движение). Воздействие внешнего переменного электромагнитного излучения с данной частотой на ядра, находящиеся в постоянном магнитном поле, приводит к избирательному (резонансному) поглощению энергии электромагнитного излучения и появлению сигнала ЯМР. Разным ядрам соответствуют различные частоты резонанса. Для изучения биологических систем обычно используют ЯМР ядер водорода -- протонов (протонный магнитный резонанс) и дейтерия углерода , и др.

Применение ЯМР для структурных исследований основано на том, что помимо внешнего магнитного поля на ядро в веществе действуют различные внутренние поля. Они приводят к сдвигу частоты резонанса, расщеплению на несколько или множество резонансных линий, т.е. к образованию спектра ЯМР, к изменению формы линий, времени релаксации. Изучение спектров ЯМР позволяет сделать вывод о химической и пространственной структуре различных веществ без проведения химического анализа.

В медико-биологических исследованиях метод ЯМР используют для установления структуры биологически активных веществ и изучения механизмов их действия. Важной особенностью метода, особенно для биологии и медицины, является низкая энергия используемых в ЯМР излучений, что существенно снижает их вредное воздействие на организм.

ЯМР-интроскопия

Картину пространственного распределения отдельных видов молекул в организме получают методом ЯМР-интроскопии (ЯМР-томографии). В его основе лежит создание с помощью последовательно приложенных градиентов магнитного поля по различным направлениям такого распределения магнитного поля, чтобы в данный момент различным элементам объема в пределах изучаемого сечения соответствовали свои, определенные для их местоположения частоты резонанса. Изменение градиентов во времени и обработка результатов измерений с помощью ЭВМ позволяют получить пространственную картину распределения молекул, содержащих, например, атомы водорода или фосфора (при наблюдении магнитного резонанса от протонов или ядер фосфора) в пределах изучаемого сечения.

При регистрации ЯМР-изображения амплитуда резонанса в каждом элементе объема может быть выражена через интенсивность освещения или в цветовой шкале. Так, кровеносные сосуды в ЯМР-изображении выглядят темными вследствие оттока крови из исследуемого объема за время измерения. Для магнитных моментов ядер в различных элементах объема может быть измерено время релаксации, в частности по уменьшению амплитуды резонанса, не успевающей полностью восстановиться при достаточно большой частоте следования импульсов. Это увеличивает контрастность в изображении различных тканей, что используют, например, чтобы различить изображения серого и белого вещества мозга, опухолевых клеток от здоровых. Достоинством метода ЯМР-интроскопии является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность (рис. 1, 2).

ЯМР-интроскопия делает пока первые шаги в медицине. Чтобы добиться эффективности этого метода при обнаружении патологических изменений в различных частях тела, необходимо собрать большое количество систематических сведений. На основе ранних клинических результатов, полученных в Массачусетской больнице общего типа на двух приборах фирмы Technicare, можно предположить, что метод ЯМР может быть полезен для обнаружения некрозов (омертвевших участков) в тканях, ишемии (локальной анемии, вызванной механическим нарушением кровообращения), злокачественных образований и других видов перерождения тканей.

Перспективным представляется метод "ЯМР-меток", т.е. введение в организм контрастных материалов приемом внутрь или в инъекциях. Например, такие парамагнитные ионы, как Mn++, с неспаренными электронами имеют магнитный момент и стремятся ориентироваться в соответствии с постоянным магнитным полем ЯМР-системы.

Они слегка усиливают локальные магнитные поля, но значительно изменяют время релаксации чувствительных к ЯМР ядер.

Используемая литература:

излучение лазер интроскопия магнитный

1.Ремизов А.Н., Максина А.Г., Потапенко А.Я., Медицинская и биологическая физика: учеб.для вузов,-9-е издание., Дрофа 2010 и более ранние издания.

2.Антонов В.Ф., Физика и биофизика. Практикум: учебное пособие для студентов мед. и фарм. вузов.

3.Лазерные биомедицинские технологии (часть1) .Учебное пособие Беликов А.В., Скрипкин А.В., СПб: СПбГУ ИТМО 2008

Размещено на http://www.allbest.ru

...

Подобные документы

  • Происхождение спектров ядерного магнитного резонанса. Угловой момент и магнитный момент ядра. Магнитно-резонансная томография, ее назначение и функции, применение. Электронный парамагнитный резонанс. Расщепление энергетических уровней, эффект Зеемана.

    презентация [397,0 K], добавлен 15.05.2014

  • Понятие волоконного лазера как оптического квантового генератора, в котором активная среда и резонатор построены на базе оптического волокна. Состав волоконного лазера, принцип его работы и основные преимущества. Область применения волоконного лазера.

    презентация [2,0 M], добавлен 23.12.2014

  • Создание оптического квантового генератора или лазера - великое открытие физики. Принцип работы лазеров. Вынужденное и спонтанное излучение. Газовый, полупроводниковый непрерывного действия, газодинамический, рубиновый лазер. Сферы применения лазеров.

    презентация [4,4 M], добавлен 13.09.2016

  • Явление вынужденного (индуцированного) излучения как физическая основа работы лазера. Строение лазера (источник энергии, рабочее тело и система зеркал). Характеристика дополнительных устройств в лазерной системе для получения различных эффектов.

    презентация [673,0 K], добавлен 17.12.2014

  • Общая характеристика уровней легирования и схема энергетических уровней кристалла Nd: YAG. Сущность эффекта Штарка. Особенности работы непрерывного Nd: YAG-лазера. Методика расчета средней выходной мощности лазера, работающего в режиме одной моды ТЕМ00.

    реферат [800,8 K], добавлен 28.12.2010

  • Строение атома. Атом как целое. Структура атома: опыты Резерфорда, планетарная модель атома Резерфорда, квантовые постулаты Бора. Лазеры: история создания, устройство, свойства, применение лазера в ювелирной отрасли, в медицине.

    реферат [481,9 K], добавлен 13.04.2003

  • История открытия сверхпроводников, отличие их от идеальных проводников. Эффект Мейснера. Применение макроскопического квантового явления. Свойства и применение магнитов. Использование в медицине медико-диагностической процедуры как электронной томографии.

    презентация [7,4 M], добавлен 18.04.2016

  • Изучение история открытия, назначения и механизмов работы лазеров - источников когерентного оптического излучения, принцип действия которых основан на использовании явления индуцированного излучения. Лазеры в технологии, в авиации, в медицине и науке.

    реферат [121,0 K], добавлен 20.12.2010

  • Квантово-механическая картина строения атома. Квантовые числа. Пространственное квантование. Спин электрона. Суть опыта Штерна и Герлаха. Эффект Зеемана. Расщепление энергетических уровней в магнитном поле. Орбитальный магнитный момент. Проекция спина.

    презентация [3,7 M], добавлен 07.03.2016

  • Исследование и описание метода магнитно-резонансной томографии (МРТ). Устройство МР томографа. Физические основы явления ядерного магнитного резонанса. Диаграммы энергетических уровней. Статистика Больцмана. Спиновые пакеты. Импульсные магнитные поля.

    реферат [7,7 M], добавлен 11.03.2011

  • Принцип работы газодинамического лазера, его конструктивные особенности, энергетический баланс, кинетическая модель. Анализ и диагностика лазерного излучения. Текст расчета параметров газодинамического лазера, специфика их промышленного применения.

    реферат [3,9 M], добавлен 26.11.2012

  • Теория атомно-абсорбционных измерений: излучение и поглощения света, понятие линии поглощения и коэффициента поглощения, контур линии поглощения. Принцип работы лазера. Описание работы гелий-неонового лазера. Лазеры на органических красителях.

    реферат [392,9 K], добавлен 03.10.2007

  • Электромагнитное излучение, которое занимает спектральный диапазон между концом красного света и коротковолновым радиоизлучением. История открытия инфракрасного излучения, его основные свойства. Применение в медицине. Воздействие на организм человека.

    презентация [1,5 M], добавлен 20.02.2013

  • История открытия, физические и химические свойства. Поведение титана и его сплавов в различных агрессивных средах. Основные диаграммы состояния. Перспективы применения в медицине. Биологически и механически совместимые имплантаты из никелида титана.

    курсовая работа [1,9 M], добавлен 07.01.2015

  • Источники инфракрасного, ультрафиолетового и оптического излучений, методы их обнаружения и измерения, определение оптических свойств и применение. Лазеры и лазерные световые пучки. Поляризационные и энергетические характеристики световых пучков.

    курсовая работа [587,2 K], добавлен 20.09.2013

  • Основные законы оптических явлений. Законы прямолинейного распространения, отражения и преломления света, независимости световых пучков. Физические принципы применения лазеров. Физические явления и принципы квантового генератора когерентного света.

    презентация [125,6 K], добавлен 18.04.2014

  • Объединение изолированных атомов в кристалл. Схема локальных энергетических уровней электронов. Основные элементы зонной теории. Особенность состояний электронов в кристаллах. Уменьшение сопротивления металлов. Физические основы квантовой электроники.

    контрольная работа [1,9 M], добавлен 09.01.2012

  • Генератор - машина, преобразующая механическую энергию в электрическую. Принцип действия генератора. Индуктирование ЭДС в пелеобразном проводнике, вращающемся в магнитном поле. График изменения индуктированного тока. Устройство простейшего генератора.

    конспект урока [385,8 K], добавлен 23.01.2014

  • Теплопередача как совокупность необратимых процессов переноса тепла, виды теплообмена: теплопроводность, конвекция, тепловое излучение. Основные термодинамические процессы и законы. Устройство энергетических установок тепловых и атомных электростанций.

    реферат [224,0 K], добавлен 12.07.2015

  • Инфракрасное излучение: понятие, свойства, источник. Особенности стерилизации пищевых продуктов. Ультрафиолетовое излучение, отрицательное действие. Рентгеновские лучи: общее понятие, применение в медицине. Свойства рентгенотелевизионных интроскопов.

    презентация [428,5 K], добавлен 04.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.