Жизнь и деятельность Фарадея Майкла

Жизненный путь М. Фарадея - величайшего ученого, экспериментатора и мыслителя. Детство и юность, начало его научной карьеры. Работа в Королевском институте. Исследования в областях химии. Открытие явления электромагнитной индукции, законов электролиза.

Рубрика Физика и энергетика
Вид биография
Язык русский
Дата добавления 16.05.2013
Размер файла 85,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Фарадей Майкл

Годы жизни: 22 сентября 1791 г. - 25 августа 1867 г.

"Только очень немногие люди, - говорил писатель и ученый сэр Вильям Брэгг, - столь значительно изменили облик мира, как это сделал Фарадей. Он был одним из величайших экспериментаторов и мыслителей нашей страны, а может быть, и всего мира, и среди всех его открытий ни одно не имело таких грандиозных последствий, как сделанное им в 1831 году. На нем основаны те формы применения электричества, которые составляют мускулы и нервы нашей современной жизни". Или, как утверждает другой писатель, "Весь мир электричества берет свое начало с простого опыта, проделанного в Королевском Институте одним из величайших ученых всех времен."

Жизненный путь Майкла Фарадея, ставшего впоследствии гениальным ученым, начинался весьма скромно. Его отец был деревенским кузнецом, кузнецом был и его старший брат Роберт, всячески поощрявший тягу Майкла к знаниям и на первых порах поддерживавший его материально. Мать Фарадея, дочь земледельца-арендатора, трудолюбивая, мудрая, хотя и необразованная женщина, дожила до времени, когда ее сын добился успехов и признания, и по праву гордилась им.

Сначала он жил на севере Англии, а затем переехал в Лондон в поисках заработка. Майкл был третьим ребенком в семье. Он родился в 1791 году в квартире, которую снимала его семья в Лондонском районе Элефант энд Касл. Он рос в перенаселенной квартире на верхнем этаже каретного двора, получил самое скудное образование и большую часть своего детства провел в уличных играх. В период глубокого экономического упадка - особенно во время неурожая зерновых в 1800 - семья жила на пособие для бедных, им в это время доставалось по одной маленькой буханке хлеба в неделю на человека.

Но несмотря на это, семья Фарадеев была счастливой семьей, поскольку у них была общая вера, игравшая в семье очень важную роль. Согласно деревенским записям, прадед Майкла был "каменщиком, черепичным кровельщиком и сепаратистом". Его потомки так же усердно и преданно посещали церковь. В юности Майкл ни разу не пропустил воскресное богослужение в церкви на Аллее св. Павла в Лондонском Сити, где маленькая община верующих христиан твердо верила в Библию, как в непогрешимое Слово Божье. Здесь через простые проповеди Фарадей приобрел ту веру, которая оказала влияние на его жизнь и стала для него самым драгоценным сокровищем в мире.

Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Майклом, был очень узок и ограничивался только обучением чтению, письму и началам счета. «Мое образование было самым заурядным и включало в себя начальные навыки чтения, письма и арифметики, полученные в обычной школе. Свободное время я проводил дома и на улице», - вспоминал Фарадей. Окончив школу, с двенадцати лет он работал разносчиком газет и книг и, вышагивая по Лондонским мостовым начала XIX-го столетия, одетый в обносившийся сюртук старшего брата, он решил стать книготорговцем, а в 1804 г. поступил в ученики к переплетчику Рибо, французскому эмигранту, где ему предстояло пробыть 10 лет. Но когда он стал подмастерьем, в его жизнь пришло совершенно другое увлечение. "Будучи учеником, - вспоминал фарадей, - я любил читать научные книги, которые переплетал. Из них мне нравились "Беседы о химии" Марсе и статьи по электричеству в Британской энциклопедии". Его пытливый ум исследовал десятки книг, проходившие через его стол переплетчика. С большим энтузиазмом он увлекся чтением книги Исаака Уоттса "О разуме", и ему захотелось получить хорошее образование. Переплетая изношенный том Британской Энциклопедии, он буквально впитал его содержание, неоднократно перечитывая при этом статью об электричестве. В свободное время он пробовал повторить опыты, описанные в статье, и стал внимательно следить за всеми популярными книгами и журналами, где публиковались статьи об этой захватывающей новой науке. Чтением и посещением публичных лекций молодой Фарадей стремился пополнить свои знания, причем его влекли главным образом естественные науки - химия и физика.

Братья и сестры Майкла следили за ним в это время со смешанным чувством благоговения и забавы. Для них было очень странным, что выходец из их семьи, живущей в глухой улочке, занимается чтением этих увесистых томов, платит по шиллингу за каждое посещение научной лекции и занимается этими странными опытами с проводами и химикатами. Конечно же, им казалось, что юноша находится в мире иллюзий. Когда ему исполнилось девятнадцать лет, он случайно узнал о лекциях по естествознанию некоего мистера Татума. Посетив 13 лекций, он решил сам заняться наукой. Ему определенно везло. Как-то в переплетную мастерскую, где работал Фарадей, зашел Дэнс, член Королевского института. Поговорив с Фарадеем, Дэнс понял, что имеет дело с незаурядным человеком. Он принес Майклу билеты на цикл лекций по химии, которые читал Дэви. Лекции Дэви явились поворотным пунктом в жизни Фарадея. Вот что вспоминает об этом периоде сам Фарадей:

"...Желание заниматься научной работой, хотя бы самой примитивной, побудило меня, незнакомого со светскими правилами, написать президенту Лондонского Королевского общества сэру Джозефу Бэнксу. Вполне естественно было затем узнать у привратника, что моя просьба оставлена без ответа"

"Когда я был учеником в книжной лавке, я очень увлекся экспериментами, и с неприязнью относился к своему ремеслу. Так случилось, что один джентльмен, член Королевского Института, взял меня послушать лекции сэра Хамфри Дэви на Альбемарл Стрит. Я сделал записи, и позже переписал их в книжку. Желание уйти из торговли, которую я считал порочным и эгоистичным занятием, и посвятить себя служению науке, которая, как я представлял себе, делала своих последователей добрыми и свободными, заставило меня, наконец, сделать смелый и прямой шаг: написать письмо сэру Хамфри Дэви".

Вместе с письмом сэру Хамфри была отослана написанная красивым почерком книга конспектов его лекций в кожаном переплете, и преисполненная юношеского оптимизма просьба предоставить ему работу в лаборатории. Ответ был уклончивым, но тем не менее, не заставил себя долго ждать, потому что сэр Хамфри вскоре уволил своего лаборанта. Здесь он и вспомнил молодого человека по имени Фарадей, а также его письмо и прекрасно написанную книгу лекций.

Однажды вечером, когда Фарадей был дома и готовился ко сну, раздался резкий стук в дверь. Выглянув во двор, он увидел шикарный экипаж и лакея с письмом. Это было именно то письмо, о котором он мечтал - сэр Хамфри приглашал его на собеседование. Это собеседование стало началом блестящей научной карьеры Фарадея. Он был зачислен штатным лаборантом в Королевский Институт, и ему было выделено скромное жалованье, а также две комнаты на чердаке.

Благодаря своему воспитанию Фарадей верил, что люди, хотя и могут делать много хорошего, по своей сути порочны и грешны. Он верил в то объяснение, которое давала Библия, что род человеческий возмутился против своего Создателя и находится в разобщении с Ним. Фарадей верил в то, что люди могут примириться с Богом только тогда, когда просят у Него прощения и веруют в Спасителя, Который заплатил за вину греха всех тех, кто любит Его. Фарадей также знал о необходимости личного обращения, которое изменяет жизнь человека. Эти убеждения составляли основу его веры с самых юных лет. Но к тому времени, когда ему исполнилось двадцать два года, Фарадей мучился многими сомнениями. Находясь под обаянием сэра Хамфри Дэви, его сомнения переросли в открытое неверие. Он стал считать, что сэр Хамфри является живым доказательством того, что человек может быть добрым и великим без веры в Христа.

Сэр Хамфри был кумиром нации. Он был блестящим ученым, превосходным лектором и в то же время казался образцом учтивости, благородства и доброты. Но он не был христианином. Создавалось впечатление, что наука и христианство могут дать своим последователям одинаково высокие качества разума и характера. Но Фарадею не пришлось слишком долго сомневаться в библейском учении об испорченности человеческой природы, так как чем ближе он знакомился с этим "идеальным" человеком, тем меньше ему хотелось быть на него похожим. В 1813-1815 гг., путешествуя вместе с Дэви по Европе, Фарадей посетил лаборатории Франции и Италии. Это путешествие имело для Фарадея большое значение: он вместе с Дэви посетил ряд лабораторий, познакомился с такими учеными, как А. Ампер, М. Шеврель, Ж.Л. Гей-Люссак, которые в свою очередь обратили внимание на блестящие способности молодого англичанина.

После возвращения в 1815 в Королевский институт Майкл Фарадей приступил к интенсивной работе, в которой все большее место занимали самостоятельные научные исследования. В 1816 он начал читать публичный курс лекций по физике и химии в Обществе для самообразования. В этом же году появляется и его первая печатная работа.

В 1821 в жизни Фарадея произошло несколько важных событий. Он получил место надзирателя за зданием и лабораториями Королевского института (т. е. технического смотрителя) и опубликовал две значительные научные работы (о вращениях тока вокруг магнита и магнита вокруг тока и о сжижении хлора).

Вернувшись домой, он все еще питал чувство уважения к сэру Хамфри как к человеку науки, но теперь личные качества его характера не вызывали у него восторга. Во время путешествия великий ученый вел себя очень несдержанно, совершал опрометчивые поступки, проявлял тщеславие, нечестность и злость. Фарадей с радостью вернулся в родной семейный круг, где он чувствовал теплоту сердец, а также посетил свою старую церковь, чтобы поучиться мудрости у простых и добродушных старцев.

По возвращении он не забывал своего долга по отношению к родным, и через день отказывался от обеда, чтобы оплатить обучение своей младшей сестры. Затем он начал читать лекции, не прерывая работу с экспериментами для сэра Хамфри. Шли годы, и передовые ученые начали понимать, что этот незаметный, спокойный молодой человек, работавший под покровительством Дэви, был не простым ассистентом. К тридцати годам он сделал много важных открытий: Фарадей осуществил сжижение хлора и некоторых других газов, получил бензол. В 1821 г. он впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя.

Без сомнения, самой примечательной чертой Фарадея-ученого являлось то, что он был мыслителем. Его наставник, сэр Хамфри Дэви, славился своими вспышками вдохновения, энергичностью и непрерывными экспериментами, в то время как Фарадей сначала садился, читал о том или ином предмете, размышлял над проблемой, потом еще раз размышлял, делал опыты, а затем снова размышлял. Он считал себя больше философом, чем просто химиком, и старался прежде всего объяснить суть, а не произвести эффект.

Когда Фарадей просил руки Сарры Бернард, двадцатилетней дочери одного из церковных старейшин, она сказала ему, что смотрит с некоторым опасением на его "ум с человеком придачу". Тем не менее, их брак оказался одним из самых счастливых союзов среди знаменитых супружеских пар. До самой его смерти, который наступил спустя сорок семь лет после свадьбы, они были связаны узами редкого взаимопонимания, преданности и любви.

Через месяц после радостного дня бракосочетания Фарадей открыто заявил о решении стать христианином, засвидетельствовав перед церковным собранием о желании стать членом церкви. Он рассказал собравшимся братьям и сестрам о том, что получил от Господа прощение грехов через молитву покаяния, и что посвятил Ему целиком всю жизнь. Он рассказал о своей уверенности, что Бог услышал его молитву, изменил его сердце и сделал его истинным христианином. Еще с детства он с радостью посещал церковь, однако до тридцати лет, пока не преодолел бурное море сомнений и не испытал на личном опыте реальность Христа, он не решался присоединился к церкви.

Через три года после брака Фарадей приступил к поискам получения электроэнергии без химических батарей. Пытаясь найти объяснение загадкам электричества, он провел бесчисленное множество экспериментов с магнитами работая в своей уединенной лаборатории. В период до 1821 Майкл Фарадей опубликовал около 40 научных работ, главным образом по химии. Постепенно его экспериментальные исследования все более переключались в область электромагнетизма. После открытия в 1820 Гансом Эрстедом магнитного действия электрического тока Фарадея увлекла проблема связи между электричеством и магнетизмом. В 1822 в его лабораторном дневнике появилась запись: «Превратить магнетизм в электричество». Однако Фарадей продолжал и другие исследования, в том числе в области химии. Так, в 1824 ему первому удалось получить хлор в жидком состоянии, он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты. Тогда же, в 1824 г., он был избран членом Королевского Общества, несмотря на неожиданную мелочную оппозицию со стороны сэра Хамфри (но в то же время Дэви любил повторять, что из всех его открытий самым значительным было «открытие Фарадея». Последний также воздавал должное Дэви, называя его «великим человеком»), претендовавшего на открытия своего ассистента, и таким образом смог заняться самыми передовыми на то время исследованиями в области электричества. А после смерти сэра Хамфри в 1825 г. Фарадей беспрепятственно взял под свой контроль всю исследовательскую деятельность Королевского института.

Жизнь Фарадея с тех пор, как он вступил в Королевский институт, сосредоточивалась, главным образом, на лаборатории и научных занятиях. В этих открытиях, в приводивших к ним научных занятиях и состояла жизнь Фарадея. Он весь отдавался научным занятиям, и вне их у него не было жизни. Он отправлялся рано утром в свою лабораторию и возвращался в лоно семьи лишь поздно вечером, проводя все время среди своих приборов. И так он провел всю деятельную часть своей жизни, решительно ничем не отвлекаясь от своих научных занятий. Это была жизнь настоящего анахорета науки, и в этом, быть может, кроется секрет многочисленности сделанных Фарадеем открытий.

Возможность всецело отдаться научным занятиям для Фарадея обусловливалась, однако, не только известной материальной обеспеченностью, но еще более тем, что все внешние жизненные заботы были сняты с него женою, его настоящим ангелом-хранителем. Любящая жена приняла на себя все тяготы жизни, чтобы дать возможность мужу всецело отдаться науке. Никогда в течение продолжительной совместной жизни Фарадей не чувствовал затруднений материального свойства, которые ведала лишь жена и которые не отвлекали ум неутомимого исследователя от его великих работ. Семейное счастье служило для Фарадея и лучшим утешением в неприятностях, выпадавших на его долю в первые годы его научной деятельности. Ученый, переживший свою жену, писал о своей семейной жизни, упоминая о себе в третьем лице, следующее:

«12 июня 1821 года он женился; это обстоятельство более всякого другого содействовало его земному счастью и здоровью его ума. Союз этот продолжался 28 лет, ни в чем не изменившись, разве только взаимная привязанность с течением времени стала глубже и сильнее». Немногие люди могут дать о себе подобную автобиографическую справку.

В течение последующих 10 лет Фарадей занимался исследованием связи между электрическими и магнитными явлениями. Его исследования увенчались открытием в 1831 г. явления электромагнитной индукции. Фарадей детально изучил это явление, вывел его основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; это явление лежит, например, в основе работы всех генераторов постоянного и переменного тока. Его авторитет быстро поднимался.

В то время электрический ток получали в лабораториях с помощью простейших устройств с трущимися пластинами, либо с помощью громоздких дорогостоящих химических батарей. В 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям. И вот - 29 августа 1831 года - Фарадей сделал свое великое открытие.

По своему обыкновению Фарадей начал ряд опытов, долженствовавших выяснить суть дела. На одну и ту же деревянную скалку Майкл намотал параллельно друг другу две изолированные проволоки; концы одной проволоки он соединил с батареей из десяти элементов, а концы другой -- с чувствительным гальванометром. Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение. Эти вторичные мгновенные токи, вызываемые влиянием первичных индукцией, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе.

Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке. Благодаря этому во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), -- индукция, и новый вид этой энергии -- индукционное электричество.

Как-то раз, придя в лабораторию, Фарадей на листках бумаги написал вопросы, относящиеся к химическому действию тока и подлежащие разрешению. На первом листке значилось: "тождество электричеств". Фарадей так всегда приступал к изучению какой-либо проблемы: составлял список вопросов в том порядке, в каком намеревался проводить опыты. По ходу выполнения опытов он делал пометки на листках и откладывал их в сторону. В этот день, как он писал потом, ход исследований по электричеству привел его "к такому моменту, когда для продолжения исследований стало существенно, чтобы не оставалось никаких сомнений относительно того, тождественны или различны отдельные виды электричества, возбуждаемые различными способами". Видов было уже пять. Человечеству издавна было знакомо "животное электричество", присущее некоторым рыбам и морским животным. Фарадей даже держал в лаборатории живого ската, показывая желающим этот источник тока. Столь же давно люди наблюдали искры, получающиеся благодаря трению изоляторов. Во времена Фарадея это делалось в электростатических машинах. Со времен благодаря Гальвани и Вольту стал известен гальванизм. Он действовал на лапку лягушки, вызывал нагревание проводников, разлагал соли, кислоты и щелочи, действовал на магнитную стрелку. Недавно Зеебек открыл термоэлектричество - четвертый источник способ получения тока - магнитоэлектричество тока. И вот теперь сам Фарадей открыл пятый.

Открытие электромагнитной индукции принесло Фарадею известность. Но Майкл по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835. Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея.

В 1831 году Майкл Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел трактат Фарадея «О вибрирующих пластинках».

Эти открытия повлекли за собой новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа? Сперва результаты эксперимента сильно разочаровали Фарадея. Машина работала, но не так, как он ожидал. Эксперимент был удачным лишь в том смысле, что показал Фарадею, что он на верном пути, однако до успеха было еще очень далеко. Фарадей понял, что ему еще предстояло проделать большую исследовательскую работу. Через десять дней непрерывного поиска он добился полного успеха и изобрел первую в мире действующую динамо-машину. Он проводит опыт такого рода: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая -- вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи -- на этот раз уже под влиянием магнетизма. Таким образом, здесь впервые магнетизм был превращен в электричество. Великий мыслитель заметил то, чего не замечали другие: он обратил внимание на пространство около магнита, и таким образом увидел возможность существования магнитного поля и силовых линий. Именно эта идея привела его к историческому изобретению динамо-машины.

Но что же такое электричество? В чем его сущность? Одни ученые, например Вольта, Риттер, Волластон, Страхов, считали все известные им виды электричества тождественными, другие, в частности Дэви, - различными. Некоторым казалось: то, что вырабатывает вольтов столб, электричеством назвать нельзя - в этом случае надо говорить о гальванизме. В учебных пособиях по физике в начале XIX в. можно было встретить независимые разделы "Электричество" и "Гальванизм". И вот теперь пять видов электричества. Одна у них природа или нет? Разнородные явления гальванизм и магнитоэлектричество или однородные?

Если Фарадей направлял свой интерес на какую-нибудь проблему, он уже не прекращался думать о ней и работал до тех пор, пока не находил ответа. Биограф Фарадея английский физик Джон Тиндаль писал о нем: "Он раздражался, когда ему приходилось опираться на факты, хотя бы слегка подверженные сомнению. Он ненавидел так называемое сомнительное знание и всегда старался превратить его в знание несомненное или в совершенное незнание". Прежде всего, Фарадей отмечает виды воздействия электрического тока. Их он находит восемь: физиологическое действие, отклонение магнитной стрелки, способность к намагничиванию, искра, нагревательная способность, химическое действие, притяжение и отталкивание, разряд через нагретый воздух. "Моя задача, - пишет Фарадей, - состоит в сравнении электричества от различных источников в отношении способности производить эти действия".

Осуществляя простые, но тщательно продуманные опыты, сопоставляя обычное и гальваническое электричество, Фарадей приходит к выводу, что способность обычного электричества разряжаться через воздух, в особенности нагретый, обусловлена его высоким напряжением. Напряжение между полюсами вольтовой батареи мало. Но если напряжение увеличить, сделав батарею из 140 пластин и подогреть воздух пламенем спиртовки (а еще лучше сделать его разреженным), разряд произойдет легко. Подобные опыты Фарадей делает и с другими видами электричества. Результаты опытов записываются в таблицу. Общий вывод формулируется в работе "Экспериментальные исследования по электричеству": "...Отдельные виды электричества тождественны по своей природе, каков бы ни был их источник. Явления, присущие пяти перечисленным типам или видам электричества, различаются друг от друга не по своей природе, а лишь количественно".

15 декабря 1832г. Фарадей представляет Королевскому обществу пробную статью о своих опытах и выводах. В январе 1833г. он докладывает Обществу о своих экспериментах, которые привели его к выводу о единой природе всех видов электричества, каково бы ни было их происхождение. Ибо все они могут производить все присущие электричеству действия - химические, физиологические, магнитные, световые, механические.

Фарадей был твердо убежден в единстве сил природы. Эта теоретическая предпосылка и побудила его добиваться "превращения магнетизма в электричество". Той же мыслью он руководствовался и в последующих своих исследованиях. Он как-то сказал: "Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать ее ответы". Сам Фарадей владел этим искусством в совершенстве.

Начав изучать какой-либо вопрос, Фарадей с гениальной способностью определял ключевые направления поиска. Методичность и трезвость его экспериментальной техники удивляют и заслуживают подражания. Фарадея называли "королем эксперимента". Простой опыт часто служил для него исходным пунктом, отправляясь от которого его мысль доходила до познания тайны явления. Даже когда он, казалось бы, повторял опыты других, его работы приобретали фундаментальное значение для науки. Он никогда не предвосхищал результата эксперимента, он говорил: "Я не знаю". Фарадей доверял только фактам.

С лета 1832 г. Фарадей все больше и больше размышлял над химическим действием электрического тока. Фарадей чувствовал, что здесь должно быть заключено нечто глубокое, и решил во что бы то ни стало докопаться до этих глубин. Первые опыты были простыми, но они позволили Фарадею определить программу и последовательность исследований.

11 июля 1832г. он устанавливает, что бумага, смоченная раствором йодистого калия и крахмала, весьма чувствительна к направлению электрического тока от вольтова столба.

6 и 8 сентября. Под действием тока на индикаторные бумажки концы их, близкие к "входу и выходу тока", окрашиваются...

Но не сам факт химического действия интересует Фарадея. Существующие теории электролиза не предсказывают химического действия в определенных зонах.

Гротгус, выдвинув замечательную мысль о полярности молекулы воды, предположил, что отдельные ионы существуют лишь короткое время, в течение которого молекулы ими обмениваются. Если бы это было так, индикаторная бумага окрашивалась бы вся, так как в растворе, через который пропускали ток, существует как кислород, так и водород. Дэви вслед за Гротгусом предполагал, что кислород притягивается положительным электродом, а водород - отрицательным. Но и тогда бумажка окрашивалась бы по всей своей длине. А тут - только у электродов! Поразительно! Что это значит? Где же все-таки происходит химическое изменение под влиянием тока - в объеме раствора или на электродах? Когда-то, еще в 1806г., Дэви провел электролиз сульфата калия в двух агатовых чашках, соединенных бумажкой, смоченной этими же растворами. Через некоторое время он обнаружил в одной чашке едкое кали, а в другой - серную кислоту. Фарадей понимает, что он должен радикально изменить опыт Дэви и выяснить, где, в каком месте происходит образование кислоты и щелочи, где происходит химическое превращение под действием тока и на основе полученного результата построить теорию явления. Только после этого станет ясно, что делать дальше.

Электрохимический прибор Фарадея, показывавший, что электрохимическое действие наблюдается только у электродов: 1 - электрод; 2 - лакмусовая бумага; 3 - чистый гель; 4 - гель, содержащий соль; 5 - куркумовая бумага.

22 октября был осуществлен решающий эксперимент. Фарадей изготовил электролитическую ячейку. У электродов располагались влажные индикаторные бумажки. Такие же бумажки находились у геля - твердообразной системы, образованной при коагуляции коллоидного раствора, содержащего соль - сульфат калия. Все это прокладывалось чистым гелем, который проводит ток как обыкновенный раствор. Пропуская ток через такую ячейку, Фарадей увидел, что индикаторные бумажки окрашивались только у электродов. "После сорока или пятидесяти оборотов машины конец бумажки, обращенный к острию, был окрашен благодаря присутствию свободной щелочи", - отметил он. Причем лакмусовая бумажка показывала, что у рядом расположенного электрода образуется кислота, а куркумовая - что у другого электрода образуется щелочь. Фарадей записывает: "Кислота собирается около отрицательного конца, а щелочь - около положительного". Бумажки, находившиеся у геля, содержащего соль, которая при разложении дает продукты кислого и щелочного характера, и расположенные в середине ячейки, не окрашивались. Это значило, что электрохимическое действие происходит только у электродов. Вот разница между электрохимическими реакциями и просто химическими, идущими в объеме раствора.

В том же году Фарадей высказал мысль о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий с конечной скоростью. Стремление выявить природу электрического тока привело Фарадея к экспериментам по прохождению тока через растворы кислот, солей и щелочей. Результатом этих исследований стало открытие законов электролиза (законы Фарадея).

14 сентября Фарадей доказывает, что количество электричества не зависит от напряжения. Несколько раз он повторял опыты с батареей, состоящей то из семи, то из пятнадцати лейденских банок, каждую из которых он заряжал тридцатью оборотами машины, а затем подключал батарею к электрометру. Стрелка электрометра через определенное время всегда отклонялась на пять с половиной делений. Из чего следовало, что "отклоняющая сила электрического тока прямо пропорциональна

На другой день Фарадей собирает маленький, или, как он его называет, "стандартный" вольтов столб. Точно как всегда регламентирует все условия эксперимента: диаметр платиновой и цинковой проволочек, глубину их погружения в раствор, концентрацию серной кислоты в растворе. При работе с такой батареей он определяет, что при ее разряде стрелка электрометра отклоняется на пять с половиной делений за восемь отсчетов промежутков времени по хронометру. Так он определяет одинаковые количества электричества от разных источников.

Далее Фарадей обратил внимание, что величина бурого пятна, расплывающегося на пропитанной раствором йодистого калия фильтровальной бумаге вокруг прижатой к ней платиновой проволоки, одинакова, если пропускать одно и то же количество электричества от разных источников. В этот день он убедился, что величины пятна (то есть величина химического действия тока) прямо пропорциональны времени пропускания тока, иначе говоря, количеству электричества. Вот она, та закономерность, которую он искал. Но пока Фарадей записывает ее как результат опыта. По его мнению, сделанного еще недостаточно. Химическое действие тока может проявляться не в одном лишь изменении цвета индикаторной бумажки. Под воздействием тока происходит разложение воды, водных растворов, ток осаждает и растворяет металлы. Как же будет обстоять дело в этих случаях?

Более двух месяцев Фарадей не делает никаких опытов. Он размышляет. Наконец, 10 декабря Фарадей записывает закон электрохимического разложения, первый закон электролиза: "... Химическая сила... прямо пропорциональна абсолютному количеству прошедшего электричества".

После этого дня еще полтора года Фарадей посвящает электрохимии. Его мысли сосредоточиваются на выяснении суммарной закономерности при химическом действии, сопровождающем прохождение тока. Он начинает эксперименты с различными соединениями, чтобы проверить закон, который, как он теперь уверен, должен выполняться всегда и везде. Весной 1833 г. Фарадей разрабатывает более десятка различных модификаций нового прибора, названного им вольтаметром. Такой прибор позволяет измерять количество выделяющегося при электрохимической реакции газа, а также потерю или увеличение массы электрода.

Фарадей погружает две платиновые проволочки в слегка подкисленную воду, соединяет их с полюсами батареи и пропускает через них электрический ток. На положительном электроде выделяется кислород, на отрицательном - водород. Как же собрать и измерить объемы этих газов? Фарадей помещает проволочки в опрокинутые и заполненные раствором трубки. Часть газа, выделяющаяся на проволочках вне трубок, не попадает в них. Это приводит к довольно большой ошибке при измерениях. Поэтому Фарадей делает еще один довольно простой и удачный вариант вольтаметра. Это стеклянная трубка, в которую впаян платиновый электрод. Весь выделившийся газ собирается в верхней части трубки. Трубка предварительно проградуирована, и поэтому количество образовавшегося газа можно сопоставить с количеством электричества. Фарадей опускает в чашку два таких вольтаметра и проводит электролиз воды, собирая в одной трубке кислород, а в другой - водород. Далее он устанавливает, что на аноде, то есть на положительном электроде, почти всегда выделяется кислород. А на катоде, отрицательном электроде, - водород, если раствором служит кислота или, скажем, азотнокислая соль натрия. Когда в раствор входят азотнокислые соли других металлов, например ртути, меди или серебра, то на аноде тоже образуется кислород, а на катоде - соответственно ртуть, медь либо серебро. Чтобы определить количество выделившихся на отрицательном электроде ртути, меди, серебра или другого металла, Фарадей создает другие вольтаметры. В сосуд помещался металлический электрод, который предварительно взвешивался, или маленькая чашечка, куда капала ртуть с металлического электрода и которую можно было потом взвесить. Так определялось количество ртути, меди, серебра или другого металла, выделявшегося на отрицательном электроде. В качестве анода брался тот же "газовый" вольтаметр. Он заполнялся раствором и погружался в сосуд.

Один из вольтаметров Фарадея

фарадей ученый электромагнитный электролиз

До конца сентября 1833 г. Фарадей работал с вольтаметрами. Он уже выполнил более трехсот опытов. Он изучил электрохимическое поведение и продукты разложения при электролизе 130 различных веществ. И все же необходимо выяснить, влияют ли размеры электрода на процесс электрохимического разложения.

Еще весной Фарадей последовательно соединил два вольтаметра с разными по площади электродами. Количество продуктов разложения в обоих сосудах оказалось одинаковым. "Напряжение не оказывает влияния на результаты, - записывает он, - если количество электричества остается одинаковым". В августе Фарадей поместил два платиновых электрода в одну трубку и начал электролиз. В трубке стала собираться смесь водорода и кислорода. После отключения тока объем газов вдруг начал уменьшаться и вскоре газы полностью исчезли. Так была открыта способность платины вызывать соединение кислорода и водорода при комнатной температуре.

10 и 17 января 1833г. Фарадей докладывает Королевскому обществу результаты своей работы по установлению тождества различных видов электричества. Спустя пять месяцев, 20 июня, он знакомит своих коллег с предварительными результатами исследований по электрохимическому разложению. "Для одного и того же количества электричества, - говорит он, - сумма электрохимических действий есть также величина постоянная, то есть она всегда эквивалентна стандартному химическому действию, основанному на обычном химическом сродстве".

Определение количественных соотношений при электролизе имело большие теоретические и практические последствия для науки. Оно имело и мировоззренческое значение. Все меряется мерой и числом, говорили древние. "Фарадей, - писал химик Дюма, - добавил к этой античной формуле новое: все вещества, какова бы ни была их природа, вес, свойства, требуют одного и того же количества силы, чтобы связать или разорвать цепи, удерживающие их в соединении".

В середине 1833г. Фарадей почти не отвлекался на решение других проблем. Электричеству принадлежит будущее, часто говорил он, то, над чем я работаю, важнее всего. 19 сентября он записал результаты опыта (запись № 732) и окинул взглядом итоги последних экспериментов. Полностью, без всяких сомнений подтверждается ранее открытый закон: химическое действие электрического тока, то есть количество выделившихся веществ, прямо пропорционально силе тока и времени его прохождения, то есть количеству электричества. Этот первый закон электролиза потом был назван первым законом Фарадея.

Фарадея теперь занимало в электролизе другое. Электрический ток выделяет вещества и растворяет металлы, являющиеся частью химических соединений, растворы или расплавы которых подвергались электролизу. Состав же этих веществ и их количество в соединении точно известны. В любом соединении элементы содержатся в строго определенных весовых количествах, соответствующих их эквивалентам. Давно ли известный немецкий философ Иммануил Кант не признавал химию наукой, так как в его время считалось невозможным подвергать математической обработке результаты химических реакций. Но еще при жизни Канта его соотечественник Карл Венцель и шведский ученый Торберн Бергман начали разрабатывать методы весового анализа веществ. Тогда же немецкий химик Иеремия Рихтер (1762-1807) в своей докторской диссертации "О применении математики в химии" продемонстрировал количественный состав различных веществ, а в 1793г. на основе понятия эквивалента, введенного Кавендишем, вывел закон эквивалентов. Под эквивалентом понималось такое количество вещества, которое соединяется с одной частью другого. Количественными анализами веществ занимались и французские химики Жозеф Пруст, Гей-Люссак, Клод Бертолле. Исходя из закона постоянства состава и полагая, что каждое качественно определенное вещество имеет строго определенный количественный состав, соотечественник Фарадея, преподаватель физики и математики из Манчестера Джон Дальтон (1766-1844) в 1803г. установил один из основных законов химии - закон кратных отношений. Берцелиус показал, что и органические вещества подчиняются этому закону. Дальтон сделал первую попытку составить таблицу "атомных весов" элементов и сложных соединений. И снова Берцелиус продолжил его работу.

Определить числовые значения химических эквивалентов не трудно, если известен процентный состав данного вещества в соединении и эквивалент другого вещества. Так, если эквивалентный вес водорода принять за 1, то эквивалентный вес кислорода будет равен 8, меди - 32 и так далее. Химический эквивалент, таким образом, численно равен отношению атомного веса элемента к его валентности в данном соединении.

Что же происходит при разложении химических веществ электрическим током? Последние месяцы Фарадей посвятил количественному изучению продуктов электролиза воды, различных кислот, растворов солеи и расплавов. Оказалось, что одно и то же количество электричества выделяет кислорода в 8 раз больше, чем водорода (по массе). Но такое соотношение равно соотношению химических эквивалентов водорода и кислорода. То же самое получалось и с другими соединениями и элементами. Весовой состав продуктов реакции Фарадей проверял в самых разных условиях - изменял концентрацию растворов, полярность, материал электродов. Результаты оставались неизменными: "химическое действие было вполне определенным".

Фарадей ставит еще одну серию опытов - он исследует химические реакции в гальваническом элементе и доказывает, что количество электричества, получаемое от вольтова столба, соответствует эквивалентному количеству растворившегося в нем самом цинка. Из этого Фарадей заключает, что "электричество, которое разлагает определенное количество вещества, равно тому, которое выделяется при разложении того же количества вещества".

23 сентября он, наконец, записывает: "Числа, соответствующие весовым количествам вещества, в которых они выделяются, надо назвать электрохимическими эквивалентами..." Он считает, что эти эквиваленты "совпадают с обычными химическими эквивалентами и тождественны им". Сейчас мы говорим - пропорциональны. Так, для ионов водорода, кислорода, хлора, олова, свинца, йода Фарадей устанавливает следующие величины электрохимических эквивалентов: 1, 8, 36, 58, 104, 125.

Фарадей в трудном положении: электростатическая единица заряда еще не установлена, и он не может назвать количество электричества, "соединенного с частицами или атомами материи". Поэтому за единицу электричества Фарадей вынужден принять "абсолютное количество электричества". Он понимает, что это довольно большая величина. После сотен опытов он делает расчеты и устанавливает, что в одном гране (66,4 миллилитра) воды "содержится" столько электричества, сколько нужно, чтобы 800 тысяч раз зарядить его лейденскую батарею из 15 банок 30 оборотами машины, и что это количество равносильно "весьма мощной вспышке молнии". Это было все, что в то время он мог сказать об "абсолютном количестве электричества".

Фарадей составляет таблицу электрохимических эквивалентов, называя ее "таблицей ионов", для 18 анионов и 36 катионов. Эти значения, считает он, "очень полезны для выяснения химического эквивалента или атомного веса вещества".

В январе 1834 г. он представляет Королевскому обществу свои работы по электролизу и делает о них доклады на трех заседаниях. Члены Общества удивлены работоспособностью и талантом своего коллеги. Ведь, кажется, совсем недавно (не прошло и двух с половиной лет) мир узнал об открытии индукционного тока и "получении электричества из магнетизма". И вот следующие открытия - законы электролиза!

Начав работать, Фарадей непременно доводил работу до конца. Его девиз был: "работать, заканчивать, публиковать". Своими успехами в науке он обязан не только таланту, но и волевой целеустремленности. Когда его спросили, в чем секрет его успехов, он ответил: "Очень просто: я всю жизнь учился и работал, работал и учился".

Работам Фарадея суждено было стать важнейшим звеном в цепи событий, сделавших нашим достоянием технические достижения в области электрохимии и электричества. Если работы других ученых того времени представляли собой отдельные пики, то Фарадей воздвиг целые горные цепи из взаимосвязанных и очень важных работ.

На языке современных представлений об атомах и молекулах законы электролиза Фарадея можно сформулировать так:

1. Пропускание одного и того же электрического заряда через электролитическую ячейку всегда приводит к количественно одинаковому химическому превращению в данной реакции. Масса вещества, выделяемого на электроде, пропорциональна количеству электричества, пропущенному через ячейку.

2. Для выделения на электроде одного моля вещества, которое в процессе электрохимической реакции приобретает либо теряет один электрон, необходимо пропустить через ячейку 96 485 кулонов электричества.

Эти законы имели большое значение для развития теории строения материи: они указывали на существование "атомов" электричества, связанных с атомами вещества. Так как в них отражалась количественная связь между массой вещества, выделяемого при электролизе, и необходимым для этого количеством электричества, стало возможным количественно предсказать ход определенных электрохимических процессов и экспериментально определить эквивалентные массы химических элементов. Исходя из эквивалентных масс веществ, можно рассчитать их молекулярные массы. Связав свои исследования электрических явлений с атомистическими представлениями в химии, Фарадей стал предвестником современного учения о строении атома.

Используя огромный экспериментальный материал, Фарадей доказал тождественность известных тогда «видов» электричества: «животного», «магнитного», термоэлектричества, гальванического электричества и т.д. В 1840 г., ещё до открытия закона сохранения энергии, Фарадей высказал мысль о единстве «сил» природы (различных видов энергии) и их взаимном превращении. Он ввёл представления о силовых линиях, которые считал физически существующими. Постоянное огромное умственное напряжение подорвало здоровье Фарадея и вынудило его в 1840 прервать на пять лет научную работу. В 1841 году друзья убедили Фарадея поехать в Швейцарию, чтобы основательным отдыхом восстановить силы для новых работ. Это был первый настоящий отдых за долгое время. В Швейцарии Фарадей пробыл около года. Здесь он, кроме переписки с друзьями и ведения дневника, не имел никаких других занятий.

В 1845 г. Фарадей обнаружил явление вращения плоскости поляризации света в магнитном поле (эффект Фарадея). По-видимому, сам Фарадей (взволнованно написавший, что он «намагнитил свет и осветил магнитную силовую линию») придавал этому открытию большое значение. И действительно, оно явилось первым указанием на существование связи между оптикой и электромагнетизмом. Убежденность в глубокой взаимосвязи электрических, магнитных, оптических и других физических и химических явлений стала основой всего научного миропонимания Фарадея. В том же году он открыл диамагнетизм, впервые употребил термин «магнитное поле».

Не удивительно, что Фарадей в сорок четыре года был признан ведущим ученым. Он был удостоен докторской степени в Оксфордском университете. Кроме того, он получил от государства поддержку для своей научной деятельности. Однако сам Фарадей получал более чем скромное жалованье в Королевском Институте, а возможности зарабатывать дополнительно частным образом он был лишен, поскольку посвятил себя научным исследованиям. Прагматичные бизнесмены того времени не могли его понять. Хотя он был величайшим ученым своего времени, у него не было ни малейшего интереса к прелестям богатой жизни. Человек с его способностями, конечно же, мог бы использовать свое открытие, чтобы заработать побольше денег, если бы занялся изобретением полезных технических устройств с его использованием. Но вместо этого Фарадей попусту тратил время на "игру" с проводами и магнитами!

"Ну и какой в этом толк?" - спрашивали с насмешкой собравшиеся вокруг лекционного стола после того, как Фарадей закончил публичную демонстрацию одного из своих новых экспериментов. "А какой толк в младенце? - убежденно отвечал Фарадей, - Когда-нибудь он вырастет!" Однажды канцлер казначейства посетил Институт и в сопровождении Фарадея совершал по лабораториям экскурсию, которая завершилась демонстрацией классического эксперимента по электричеству. Конечно же, он задал вопрос: "Но Фарадей, мой дорогой, какая от всего этого польза?" Ученый тут же сказал в ответ свои знаменитые слова: "Сэр, вполне вероятно, что Вы в скором времени сможете обложить это налогом!"

В 1846 году Фарадей пришел к пониманию природы света, намного опередив свое время. Позже его идеями воспользовался Джеймс Кларк Максвелл, а затем и Альберт Эйнштейн. Обладая гениальным предвидением, Фарадей писал: "Моя точка зрения, которую я высказываю со всей уверенностью, заключается в том, что световое излучение представляет собой разновидность высокочастотных колебаний силовых линий, связывающих частицы, а также материю, обладающую массой".

От магнитов исследователь перешел к электрическим токам. Во время этих опытов Майкл Фарадей сделал новое великое открытие. Речь идет о «магнитном трении». Вторую половину сороковых годов заняли работы над магнетизмом кристаллов. Затем Фарадей обратился к только что открытым тогда Банкаляри магнитным явлениям пламени. И, наконец. Фарадей обращается к вопросам чисто философского характера. Он старается выяснить природу вещества, определить отношения между атомом и пространством, между пространством и силами, останавливается на вопросе о гипотетическом эфире как носителе сил и так далее.

Фарадея мало интересовали повадки великосветского общества. Его личная жизнь была сосредоточена вокруг церкви и семьи. Церковное здание на Аллее св. Павла было типичным для нонконформистов "молитвенным домом". Это было простое прямоугольное здание, напротив входной двери возвышалась массивная деревянная кафедра, а по обеим сторонам и у входа в зал был расположен балкон. Двадцать с небольшим семей, входивших в церковный список, избрали Фарадея одним из своих служителей, когда ему было почти пятьдесят лет. Каждую неделю, с неизменным постоянством он проповедовал в церкви, пользуясь конспектами, написанными на небольших листках бумаги. Его друзья ученые часто заходили в церковь, чтобы посмотреть на то, во что верил Фарадея и что делало его человеком, столь высоко почитаемым в научных кругах.

Один из посетителей записал свои впечатления так: "Он прочитал длинный отрывок из Евангелия, медленно, благоговейно, и с таким глубоким чувством, что мне показалось, как будто я в первый раз слышу такое превосходное чтение." Другой посетитель сказал, что целью Фарадея было как можно более полно преподать Писание, и его проповеди говорили о доскональном знании Библии, так как он цитировал ее много и точно. Временами его проповеди были похожи на пеструю мозаику цитат из Писания.

"Всю свою жизнь, - сказал Лорд Кельвин, его коллега по науке, - Фарадей твердо держался своей веры. Я хорошо помню, как во время конференции Британской Ассоциации в Абердине и Глазго он искал место, где собиралась его церковь".

Говоря о Фарадее, нельзя не упомянуть его замечательные лекции в Королевском Институте. Всем запомнились яркие примеры, выражения, жесты и юмор, которые делали его лекции, по словам наблюдателя, "увлекательными, и в то же время глубоко поучительными". Не удивительно, что даже супруг королевы часто посещал эти лекции со своими двумя мальчиками, принцем Альбертом и принцем Эдуардом. Еще более увлекательными были знаменитые лекции Фарадея для подростков, которые он читал каждый год на Рождество. Дети с увлечением наблюдали за демонстрацией серьезных научных опытов, а через мгновение покатывались от смеха, слушая его остроумные шутки. И поскольку в характере Фарадея было что-то мальчишеское, он нигде не чувствовал себя так уютно, как среди детей, посещавших эти лекции.

Говорили, что если кому посчастливилось подружиться с Фарадеем, тот имел настоящего друга. Те, кто принадлежал к семейному кругу Фарадея, были предметом его попечения, заботы, внимания и ежедневных молитв. Те, кто находился в его компании, видели в нем "нравственный стимулятор".

Наиболее известные лекции Фарадея часто были украшены размышлениями о христианской вере. Читая лекцию перед супругом королевы в 1954 году, Фарадей произнес следующие слова: "Хотя человек стоит выше окружающих его созданий, в него вложено стремление к еще более высокому и благородному положению. Бесчисленное множество страхов, надежд и ожиданий наполняет ум человека, когда он думает о потусторонней жизни. Я уверен в том, что невозможно открыть для себя истину о той жизни, напрягая силу ума, каким бы великим он ни был. Эта истина открывается людям через изучение чего-то другого, чем их собственные познания, - ее получают через простую веру в данное нам свидетельство. Пусть никто ни на миг не допустит мысли, что столь важное для этой жизни самообразование, в похвалу которого я намерен сейчас говорить, имеет какое-либо отношение к надежде на вечную жизнь, или что с помощью умозаключений можно познать Бога".

...

Подобные документы

  • Детство и юность Майкла Фарадея. Начало работы в Королевском институте. Первые самостоятельные исследования М. Фарадея. Закон электромагнитной индукции, электролиз. Болезнь Фарадея, последние экспериментальные работы. Значение открытий М. Фарадея.

    реферат [20,8 K], добавлен 07.06.2012

  • Период школьного обучения Майкла Фарадея, его первые самостоятельные исследования (опыты по выплавке сталей, содержащих никель). Создание английским физиком первой модели электродвигателя, открытие электромагнитной индукции и законов электролиза.

    презентация [383,0 K], добавлен 22.10.2013

  • Краткий очерк жизни, личностного и творческого становления великого английского физика Майкла Фарадея. Исследования Фарадея в области электромагнетизма и открытие им явления электромагнитной индукции, формулировка закона. Эксперименты с электричеством.

    реферат [151,9 K], добавлен 23.04.2009

  • Изучение биографии Майкла Фарадея. Изобретения английского физика-экспериментатора и химика. Открытие ученым бензина и сжижения газов, электромагнитной индукции, исследование индукционных токов и конструирование совершенных электротехнических устройств.

    презентация [3,6 M], добавлен 26.03.2015

  • Жизнь и деятельность выдающегося ученого Майкла Фарадея. Первый закон, установленный Фарадеем, в сфере электрохимических явлений. Основные законы, открытые ученым, их значение для радиотехники и связи. Экспериментальные исследования по электричеству.

    реферат [193,0 K], добавлен 23.05.2012

  • Работа по перемещению проводника с током в магнитном поле. Изучение явления электромагнитной индукции. Способы получения индукционного тока в постоянном и переменном магнитном поле. Природа электродвижущей силы электромагнитной индукции. Закон Фарадея.

    презентация [339,8 K], добавлен 24.09.2013

  • Научная деятельность М. Фарадея - основоположника учения об электромагнитном поле. Обнаружение химического действия электрического тока, взаимосвязи между электричеством и магнетизмом, магнетизмом и светом. Открытие явления электромагнитной индукции.

    презентация [94,8 K], добавлен 06.04.2010

  • Развитие электродинамики до Фарадея. Работы Фарадея по постоянному току и его идеи о существовании электрического и магнитного полей. Вклад Фарадея в развитие электродинамики и электромагнетизма. Современный взгляд на электродинамику Фарадея-Максвелла.

    дипломная работа [1,8 M], добавлен 21.10.2010

  • Труды Фарадея по постоянному току. Исследование положений Фарадея о существовании и взаимном превращении электрического и магнитного полей. Модельное представление об электромагнитных процессах. Современный взгляд на электродинамику Фарадея и Максвелла.

    дипломная работа [1,8 M], добавлен 28.10.2010

  • История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.

    реферат [699,1 K], добавлен 15.11.2009

  • Уравнения Максвелла. Идея о существовании электромагнитного поля. Магнитные явления, закон электромагнитной индукции Фарадея. Следствия уравнения непрерывности. Закон сохранения энергии, сила Лоренца. Дипольное, квадрупольное, магнито-дипольное излучение.

    курс лекций [3,9 M], добавлен 07.08.2015

  • Описание явления электромагнитной индукции. Сущность опыта Фарадея и его применение в металлургии. Выплавка стали в индукционных печах. Индукционные печи промышленной частоты. Плавка в печи с кислой футеровкой. Плавка в вакуумных индукционных печах.

    реферат [239,8 K], добавлен 01.12.2008

  • Детство Джеймса Максвелла. Учеба в Эдинбургском университете. Работа в должности профессора колледжа в Шотландском городе Абердине. Изучение экспериментальных работ Фарадея по магнетизму. Открытие электромагнитных волн. Электромагнитная природа света.

    презентация [110,4 K], добавлен 18.02.2011

  • Происхождение и юность Джеймса Прескотта Джоуля. Исследование законов электромагнетизма. Работа с Уильямом Томсоном, научная деятельность Джоуля. Опыты ученого, его открытия в области физики. Установка для измерения механического эквивалента тепла.

    презентация [710,5 K], добавлен 26.05.2012

  • Краткие биографические сведения о великом физике, внесшем огромный вклад в развитие науки М. Фарадее. Первые самостоятельные исследования, научные публикации. Открытие ученым явления электромагнитной индукции, явления вращения плоскости поляризации света.

    реферат [27,0 K], добавлен 18.01.2011

  • Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.

    лекция [322,3 K], добавлен 10.10.2011

  • Метод осаждения определяемого элемента путем электролиза на предварительно взвешенном электроде. Требования к электродам, применяемым в электрогравиметрии. Подчинение законам Фарадея. Электрохимическая поляризация. Электролиз в кулонометрической ячейке.

    реферат [68,3 K], добавлен 24.01.2009

  • Значение А.Г. Столетова как ученого для русской и мировой науки. Детские годы ученого. Учеба в гимназии и Московском университете. Начало научной и преподавательской деятельности. Работа ученого "Исследование о функции намагничивания мягкого железа".

    реферат [218,1 K], добавлен 29.04.2016

  • Электромагнитная индукция - явление порождения вихревого электрического поля переменным магнитным полем. История открытия Майклом Фарадеем данного явления. Индукционный генератор переменного тока. Формула для определения электродвижущей силы индукции.

    реферат [634,5 K], добавлен 13.12.2011

  • Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.

    отчет по практике [5,0 M], добавлен 21.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.