Измерения термопарой

Термоэлектрический преобразователь температуры как элемент, применяемый в измерительных и преобразовательных устройствах и системах автоматизации. Принцип действия и способы подключения. Методы контактных электроизмерений средних и высоких температур.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 31.05.2013
Размер файла 164,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

16

1. Термопара

Термопара (термоэлектрический преобразователь температуры) -- термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара -- пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.

Тепловым называется преобразователь, принцип действия которого основан на тепловых процессах и естественной входной величиной которого является температура. К таким преобразователям относятся термопары и терморезисторы, металлические и полупроводниковые. Основным уравнением теплового преобразования является уравнение теплового баланса, физический смысл которого заключается в том, что все тепло, поступающее к преобразователю, идет на повышение его теплосодержания QТС и, следовательно, если теплосодержание преобразователя остается неизменным (не меняется температура и агрегатное состояние), то количество поступающего в единицу времени тепла равно количеству отдаваемого тепла. Тепло, поступающее к преобразователю, является суммой количества тепла Qэл, создаваемого в результате выделения в нем электрической мощности, и количества тепла Qто, поступающего в преобразователь или отдаваемого им в результате теплообмена с окружающей средой.

Явление термоэлектричества было открыто в 1823 г. Зеебеком и заключается в следующем. Если составить цепь из двух различных проводников (или полупроводников) А и В, соединив их между собой концами (рис. 1.), причем температуру 1 одного места соединения сделать отличной от температуры о другого, то в цепи появится э.д.с., называемая термоэлектродвижущей силой (термо-э.д.с.) и представляющая собой разность функций температур, мест соединения проводников.

Подобная цепь называется термоэлектрическим преобразователем или иначе термопарой; проводники, составляющие термопару, - термоэлектродами, а места их соединения - спаями.

При небольшом перепаде температур между спаями термо-э.д.с. можно считать пропорциональной разности температур.

Опыт показывает, что у любой пары однородных проводников подчиняющихся закону Ома, величина термо-э.д.с. зависит только от природы проводников и от температуры спаев и не зависит от распределения температур между спаями.

2. Принцип действия

Рис.1. Конструкция термопары

Действие термопары основано на эффекте Зеебека. Эффект Зеебека основывается на следующих явлениях. Если вдоль проводника существует градиент температур, электроны на горячем конце добывают высшие энергии и скорости, чем на холодном. В итоге возникает поток электронов от горячего конца к холодному, и на холодном конце накапливается негативный заряд, а на горячем остается некомпенсированный позитивный заряд. Поскольку средняя энергия электронов зависит от природы проводника и по-разному растет с температурой, при той же разнице температур термо-ЭДС на концах разных проводников будут отличаться:

e1 = k1(T1 - T2); e2 = k2(T1 - T2)

где Т1 и Т2 - температуры горячего и холодного концов соответственно; k1 и k2 -коэффициенты, что зависят от физических свойств соответственно 1-го и 2-го проводников. Результирующая разница потенциалов называется объемной термо-ЕРС:

eоб = e1 - e2 = (k1 - k2)(T1 - T2).

В местах спайки разнородных проводников появляется контактная разница потенциалов, которая зависит от площади и материалов прилегающих поверхностей и пропорциональная их температуре:

ek1 = kповT1; ek2 = kповT2

где kпов - коэффициент поверхностей касательных металлов. В итоге появляется вторая составляющая исходного напряжения - контактная термо-ЕРС:

ek = ek1 - ek2 = kпов(T1 - T2)

Напряжение на выходе термопары определяется как сумма объемной и контактной термо-ЭДС:

Uвих = eоб + ek = (k1 - k2 + kпов)(T1 - T2) = к(T1 - T2)

где к - коэффициент передачи.

3. Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.

Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

-- Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;

-- Не допускать по возможности механических натяжений и вибраций термопарной проволоки;

-- При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;

-- По возможности избегать резких температурных градиентов по длине термопары;

-- Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;

-- Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;

-- Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

4. Применение термопар

Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

В 1920х--30х годах термопары использовались для питания детекторных приемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т.п) с использованием открытого огня.

5. Преимущества термопар

· Высокая точность измерения значений температуры (вплоть до ±0,01 °С)

· Большой температурный диапазон измерения: от ?200 °C до 2500 °C

· Простота

· Дешевизна

· Надежность

6. Недостатки

· Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.

· На показания влияет температура свободных концов, на которую необходимо вносить поправку.

· В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.

· Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).

· Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.

· Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.

· На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

7. Погрешности и поправки измерений термопарой

температура термопара измерительный преобразовательный

Измерительный прибор или электронную измерительную систему подключают либо к концам термоэлектродов (рис. 2,а), либо в разрыв одного из них (рис. 2,б).

Рис.2 Подключение измерительного прибора к термопаре

Погрешность, обусловленная изменением температуры нерабочих спаев термопары. Градуировка термопар осуществляется при температуре нерабочих спаев, равной нулю. Если при практическом использовании термоэлектрического пирометра температура нерабочих спаев будет отличаться от 0° С на величину 0, то необходимо ввести соответствующую поправку в показания термометра.

Однако следует иметь в виду, что из-за нелинейной зависимости между э.д.с. термопары и температурой рабочего спая величина поправки к показаниям указателя, градуированного непосредственно в градусах, не будет равна разности температур 0 свободных концов.

Величина поправки связана с разностью температур свободных концов через коэффициент k называемый поправочным коэффициентом на температуру нерабочих концов. Величина k различна для каждого участка кривой, поэтому градировочную кривую разделяют на участки по 100° С и для каждого участка определяют значение k.

Недостатком подобных устройств является необходимость в источнике тока для питания моста и появление дополнительной погрешности, обусловленной изменением напряжения этого источника.

Погрешность, обусловленная изменением температуры линии, термопары и указателя. В термоэлектрических термометрах для измерения термо-э.д.с. применяют как обычные милливольтметры, так и низкоомные компенсаторы с ручным или автоматическим уравновешиванием на предел измерения до 100 мВ.

В тех случаях, когда термо-э.д.с. измеряется компенсатором, сопротивление цепи термо-э.д.с., как известно, роли не играет. В тех же случаях, когда термо-э.д.с. измеряется милливольтметром, может возникнуть погрешность, обусловленная изменением сопротивлений всех элементов, составляющих цепь термо-э.д.с.; поэтому необходимо стремиться к постоянному значению сопротивления проводов и самой термопары

8. Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

· платинородий-платиновые -- ТПП13 -- Тип R

· платинородий-платиновые -- ТПП10 -- Тип S

· платинородий-платинородиевые -- ТПР -- Тип B

· железо-константановые (железо-медьникелевые) ТЖК -- Тип J

· медь-константановые (медь-медьникелевые) ТМКн -- Тип Т

· нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН -- Тип N.

· хромель-алюмелевые -- ТХА -- Тип K

· хромель-константановые ТХКн -- Тип E

· хромель-копелевые -- ТХК -- Тип L

· медь-копелевые -- ТМК -- Тип М

· сильх-силиновые -- ТСС -- Тип I

· вольфрам и рений -- вольфрамрениевые -- ТВР -- Тип А-1, А-2, А-3

Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

9. Сравнение термопар

Таблица1 ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия.

Например, термопара с точностью В±0.0025Г--T имела бы точность В±2.5 В°C в 1000 В°C.

Таблица1

Тип термопары МЭК

Температурный диапазон °C (длительно)

Температурный диапазон °C (кратковре-менно)

Класс точности 1 (°C)

Класс точности 2 (°C)

K

0 до +1100

?180 до +1300

±1.5 от ?40 °C до 375 °C

±0.004ЧT от 375 °C до 1000 °C

±2.5 от ?40 °C до 333 °C

±0.0075ЧT от 333 °C до 1200 °C

J

0 до +700

?180 to +800

±1.5 от ?40 °C до 375 °C

±0.004ЧT от 375 °C до 750 °C

±2.5 от ?40 °C до 333 °C

±0.0075ЧT от 333 °C до 750 °C

N

0 до +1100

?270 to +1300

±1.5 от ?40 °C до 375 °C

±0.004ЧT от 375 °C до 1000 °C

±2.5 от ?40 °C до 333 °C

±0.0075ЧT от 333 °C до 1200 °C

R

0 до +1600

?50 to +1700

±1.0 от 0 °C до 1100 °C

±[1 + 0.003Ч(T ? 1100)] от 1100 °C до 1600 °C

±1.5 от 0 °C до 600 °C

±0.0025ЧT от 600 °C до 1600 °C

S

0 до 1600

?50 до +1750

±1.0 от 0 °C до 1100 °C

±[1 + 0.003Ч(T ? 1100)] от 1100 °C до 1600 °C

±1.5 от 0 °C до 600 °C

±0.0025ЧT от 600 °C до 1600 °C

B

+200 до +1700

0 до +1820

±0.0025ЧT от 600 °C до 1700 °C

T

?185 до +300

?250 до +400

±0.5 от ?40 °C до 125 °C

±0.004ЧT от 125 °C до 350 °C

±1.0 от ?40 °C до 133 °C

±0.0075ЧT от 133 °C до 350 °C

E

0 до +800

?40 до +900

±1.5 от ?40 °C до 375 °C

±0.004ЧT от 375 °C до 800 °C

±2.5 от ?40 °C до 333 °C

±0.0075ЧT от 333 °C до 900 °C

10. Промышленные термопары

Основные параметры термопар промышленного типа:

Таблица 2

Обозначение термопары

Обозначение термоэлектродов

Материалы

Пределы измерения при длительном применении

Верхний предел измерений при кратковременном применении

ТПП

ПП-1

Платинородий (10% родия) платина

От -20 до 1300

1600

ТПР

ПР-30

Платинородий (30% родия)

300-1600

1800

ТХА

ХА

Хромель-алюмель

-50-1000

1300

ТХК

ХК

Хромель-копель

-50-600

800

Для измерения температур ниже -- 50° С могут найти применение специальные термопары, например медь -- константан (до ~- 270° С), медь -- копель (до -- 200° С) и т. д. Для измерения температур выше 1300--1800° С изготавливаются термопары на основе тугоплавких металлов: иридий--ренийиридий (до 2100° С), вольфрам--рений (до 2500° С), на основе карбидов переходных металлов -- титана, циркония, ниобия, талия, гафния

(теоретически до 3000--3500° С), на основе углеродистых и графитовых волокон.

Градуировочные характеристики термопар основных типов приведены в табл. 3. В этой таблице указана температура рабочего спая в градусах

Цельсия и приведены величины термо-э.д.с. соответствующих термопар в милливольтах при температуре свободных концов 0° С.

Таблица 3

Обозначение градуировки

Температура рабочего спая

ХА

12.2, 16.40, 20.65, 24.91, 33.32, 41.26, 48.87

ПП-1

2.31, 3.249, 4.128, 5.220, 7.325, 9.564, 11.92, 14.33, 16.71

ПР-30

4.913, 6.902, 9.109, 11.47, 13.92

Допускаются отклонения реальных термо-э.д.с. от значений, приведенных в табл. 3, на величины, указанные в табл. 4.

Таблица 4

Обозначение градуировки

Диапазон температур

Наибольшее отклонение температур

ПП-1

-20 до +300

0,01

ПР-30

+300 до +1800

0,01

ХА

-50 до +300

0,16

ХК

-50 до +300

0,20

11. Конструкция термопары промышленного типа

Это термопара с термоэлектродами из неблагородных металлов, расположенными в составной защитной трубе с подвижным фланцем для ее крепления. Рабочий спай термопары изолирован наконечником. Термоэлектроды изолированы брусами. Защитная труба состоит из рабочего и нерабочего участков. Передвижной фланец крепится к трубе винтом. Головка термопары имеет литой корпус с крышкой, закрепленной винтами; В головке укреплены фарфоровые колодки (винтами) плавающими (незакрепленными) зажимами, которые позволяют термоэлектродам удлиняться под воздействием температуры без возникновения механических напряжений, ведущих к быстрому разрушению термоэлектродов. Термоэлектроды крепятся к этим зажимам винтами, а соединительные провода -- винтами. Эти провода проходят через штуцер с асбестовым уплотнением. Для термопар из благородных металлов часто применяют неметаллические трубы (кварцевые, фарфоровые и т. д.), однако такие трубы механически непрочны и дороги. Фарфоровые трубы надлежащего состава можно использовать при температурах до 1300-- 1400°С.

В качестве изоляции термоэлектродов друг от друга применяют асбест до 300° С, кварцевые трубки или бусы до 1000° С, фарфоровые трубы 1300 С. Для лабораторных термопар, используемых при измерении низких температур, применяют также теплостойкую резину до 150° С, шелк до 100--120°С, эмаль до 150--200 °С.

12. Методы контактных электроизмерений средних и высоких температур с помощью термопар

Средними в термометрии считаются температуры от 500 (начало свечения) до 1600 °С (белое каление), а высокими-- от 1600 до 2500°С, до которых удается распространить термоэлектрический метод с использованием высокотемпературных, жаростойких материалов.

Принцип термоэлектрического метода и основные свойства термоэлектродов были рассмотрены выше в п. 1. Основным вопросом при использовании этого метода для измерения средних и высоких температур является защита термоэлектродов от разрушающего химического и термического воздействия среды. Для этого термопары снабжаются защитной арматурой в виде чехлов, трубок или колпачков из огнеупорных материалов. Главное требование к защитной оболочке -- высокая плотность строения и температурная стойкость.

При измерении температур ниже 1300 °С используются фарфоровые чехлы, при более высоких температурах -- колпачки из тугоплавких материалов (такие, как корунд, окиси алюминия, бериллия или тория), заполненные инертным газом.

13. Зависимость срока службы термопар от пористости защитной оболочки

При измерении температуры поверхности тел особенную трудность составляет контакт рабочего спая термопары с поверхностью нагретого тела.

Для улучшения контакта используются термопары, рабочий спай которых выполнен в виде ленты или пластины. Такая конфигурация рабочего спая при деформации позволяет воспроизводить поверхность объекта измерения.

Для измерения температур до 2000--2500 °С используются вольфрамовые или иридиевые термопары. Особенностью их применения является измерение в вакууме, в инертной или восстановительной средах, так как на воздухе они окисляются. Чувствительность вольфрамомолибденовой термопары составляет 7 мкВ/К, а вольфрамо-рениевой 13 мкВ/К.

В условиях высоких температур применяются термопары из огнеупорных материалов (пары карбид титана -- графит, карбид циркония -- борид циркония и дисилицид молибдена -- дисилицид вольфрама). В таких термопарах внутри цилиндрического электрода (диаметр около 15 мм) имеется второй электрод--стержень, соединенный с первым электродом на одном конце трубки.

Чувствительность термопар из огнеупорных материалов достигает 70 мкВ/К, однако их применение ограничено инертными и восстановительными средами.

Для измерения температуры расплавленного металла термопарами из благородных металлов используется метод, заключающийся в погружении термопары в металл на время, безопасное для ее работоспособности. При этом термопара на короткое время (0,4--0,6 с) погружается в контролируемую среду, и измеряется скорость нарастания температуры рабочего спая. Зная зависимость между скоростью нагрева термопары (ее тепловую инерционность) и температурной среды, можно рассчитать значение измеряемой температуры. Этот метод применяется для измерения расплавленного металла (2000-2500 С) и газового потока (1800 С).

Размещено на Allbest.ru

...

Подобные документы

  • Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа [476,6 K], добавлен 07.06.2014

  • Понятие термодинамической температуры. Способы получения низких температур. Принцип работы холодильника. История изобретения холодильных аппаратов и достижений в получении низких температур. Метод получения сверхнизких температур, магнитное охлаждение.

    реферат [21,8 K], добавлен 10.07.2013

  • Понятие и источники теплового излучения, его закономерности. Классификация пирометрических методов и приборов измерения температур. Устройство и принцип работы пирометра типа ОППИР-09, методика проведения его поверки, возможные поломки и их ремонт.

    курсовая работа [794,4 K], добавлен 02.12.2012

  • Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.

    курсовая работа [224,1 K], добавлен 24.03.2008

  • Основные типы, устройство, принцип действия датчиков, применяемых для измерения давления. Их достоинства и недостатки. Разработка пьезоэлектрического преобразователя. Элементы его структурной схемы. Расчет функций преобразования, чувствительности прибора.

    курсовая работа [782,1 K], добавлен 16.12.2012

  • Две основные группы методов измерения, различаемые в зависимости от диапазона измеряемых температур. Термодинамическая шкала Кельвина. Манометрический термометр, его устройство. Поправка на температуру свободных концов термоэлектрического преобразователя.

    презентация [4,3 M], добавлен 22.07.2015

  • Сущность и типы тепловых преобразователей, принцип их действия и назначение, сферы практического использования, этапы изготовления. Характеристика стандартных общепринятых типов подключения термопары к измерительным и преобразовательным приборам.

    презентация [331,6 K], добавлен 27.06.2014

  • Характеристика принципов действия, области применения и условий эксплуатации измерительных преобразователей. Технология построения акселерометров - датчиков для измерения ускорения. Осуществление подбора газотурбинного двигателя с заданными параметрами.

    курсовая работа [1,7 M], добавлен 13.12.2011

  • Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие [1,3 M], добавлен 18.05.2014

  • Измерение высоких напряжений шаровыми разрядниками, электростатическим киловольтметром. Омические делители для измерения импульсного напряжения. Порядок проведения калибровки киловольтметра. Измерение амплитудного значения переменного напряжения.

    реферат [1,1 M], добавлен 30.03.2015

  • Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.

    курс лекций [1,1 M], добавлен 18.04.2013

  • История изобретения термометра. Ртутные и спиртовые термометры. Теплоизоляция в жизни человека и животных. Увеличение и уменьшение потерь тепла у человека. Температура тела человека, тепловой баланс. Способы регулирования температуры в животном мире.

    доклад [15,1 K], добавлен 28.11.2010

  • Сущность, конструкции и принцип действий преобразователей сигналов, обозначение их параметров. Строение и назначение манометра САПФИР – 22ДИ, а также особенности поступления электрического сигнала к нему. Принцип действия различных видов преобразователей.

    лабораторная работа [106,5 K], добавлен 12.01.2010

  • Принцип действия электродинамических измерительных приборов. Поперечность световых волн как следствие теории Максвелла. Способы поляризации света. Поляриметр П161-М портативный и полярископ ПКС-250 М. Закон Малюса и Брюстера. Схема действия призмы Николя.

    контрольная работа [79,9 K], добавлен 22.04.2010

  • Измерение температуры с помощью мостовой схемы. Разработка функциональной схемы измерения температуры с применением термометра сопротивления. Реализация математической модели четырехпроводной схемы измерения температуры с использованием источника тока.

    курсовая работа [1,4 M], добавлен 19.09.2019

  • Баланс тепла, коэффициент полезного действия котельного агрегата. Конструирование пароперегревателей, особенности работы, принцип действия. Условия работы пароперегревателей и методы повышения надежности. Методы регулирования температуры перегретого пара.

    реферат [42,6 K], добавлен 02.08.2012

  • Методика и основные этапы проведения расчета обмоток заданного трансформатора низких и высоких напряжений. Определение потерь короткого замыкания. Тепловой расчет трансформатора. Определение средних температур обмоток, по нормативам и фактических.

    контрольная работа [339,9 K], добавлен 18.04.2014

  • Изучение метрологии как наука об измерениях, методах и средствах обеспечения их единства и точности. Характеристика и сущность преобразователей термоэлектрических. Общие технические требования термопары. Методика поверки. Расчет методом прямых измерений.

    курсовая работа [143,9 K], добавлен 29.06.2015

  • Понятие термоэлектрического эффекта; технические термопары, их типы. Характеристика и конструкция ТЭП, исполнение, назначение, условия эксплуатации, недостатки. Измерение температуры, пределы допускаемых отклонений термоЭДС от номинального значения.

    контрольная работа [138,8 K], добавлен 30.01.2013

  • Измерение поглощаемой мощности как наиболее распространенный вид измерения СВЧ мощности. Приемные преобразователи ваттметров проходящей мощности. Обзор основных методов для измерения импульсной мощности, характеристика их преимуществ и недостатков.

    реферат [814,2 K], добавлен 10.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.