Изучение закона сохранения энергии с помощью маятника Максвелла

Взаимодействие тел, образующих систему. Принцип работы консервативных (потенциальных) сил. Полная механическая энергия системы тел. Ускорение поступательного движения центра масс маятника. Кинетическая энергия поступательного и вращательного движения.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 28.06.2013
Размер файла 68,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лабораторная работа

Изучение закона сохранения энергии с помощью маятника Максвелла

Цель работы

Изучение закона сохранения энергии на примере движения маятника Максвелла.

Теория метода

Закон сохранения энергии

Совокупность тел, выделенных для рассмотрения, называют механической системой (системой). Тела, образующие систему, могут взаимодействовать как между собой, так и с телами, не принадлежащими данной системе. В соответствии с этим силы, действующие на тела системы, подразделяют на внутренние и внешние. Внутренними называют силы, с которыми на данное тело действуют остальные тела системы; внешними - силы, обусловленные воздействием тел, не принадлежащих системе. Силы также делят на консервативные и диссипативные. Консервативными (потенциальными) называют силы, работа которых определяется только начальным и конечным положением тел и не зависит от траектории. Диссипативными называют силы, всегда направленные противоположно скоростям и совершающие отрицательную суммарную работу при любых перемещениях тел.

Рассмотрим систему из N частиц (тел) с массами m1, m2, …, mN. Пусть частицы системы взаимодействуют друг с другом с консервативными силами . Предположим, что кроме внутренних сил, на i - ю частицу действует внешняя консервативная сила и внешняя диссипативная сила . Уравнение движения i - той частицы будет иметь вид

механический энергия маятник поступательный

. (2.1)

Умножив данное уравнение на

получим

. (2.2)

Но

, (2.3)

где - приращение кинетической энергии i - той частицы;

, , , (2.4)

где , , - работа соответственно внутренних, внешних консервативных и внешних диссипативных сил, действующих на i - ю частицу.

С учетом (2.3) и (2.4) уравнение (2.2) запишем в виде

++. (2.5)

Записав уравнение (2.5) для всех N частиц и сложив их, получим

,

,

, (2.6)

где , , - суммарная работа соответственно внутренних консервативных, внешних консервативных и внешних диссипативных сил.

Работа внутренних консервативных сил равна убыли потенциальной энергии взаимодействия частиц

. (2.7)

Работа внешних консервативных сил равна убыли потенциальной энергии во внешнем поле консервативных сил

. (2.8)

Приняв во внимание (2.7) и (2.8), представим (2.6) в виде

. (2.9)

Величина

есть полная механическая энергия системы.

Если внешние диссипативные силы отсутствуют то и, следовательно, полная механическая энергия системы остается постоянной

. (2.10)

Таким образом, полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной. Данное утверждение называют законом сохранения механической энергии.

Для замкнутой системы соотношение (2.9) имеет вид

. (2.11)

В этом случае закон сохранения энергии можно сформулировать следующим образом: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной.

Если в замкнутой системе действуют консервативные и диссипативные силы, то полная механическая энергия не сохраняется, работа диссипативных сил (Адис) равна изменению механической энергии системы

. (2.12)

Маятник Максвелла

Маятник Максвелла представляет собой диск (1), туго насаженный на стержень (2), на который намотаны нити (3) (рис. 1). Диск маятника представляет собой непосредственно сам диск и сменные кольца, которые закрепляются на диске.

Размещено на http://www.allbest.ru/

Рис. 1

При освобождении маятника диск начинает движение: поступательное вниз и вращательное вокруг своей оси симметрии. Вращение, продолжаясь по инерции в низшей точке движения (когда нити уже размотаны), приводить вновь к наматыванию нитей на стержень, а, следовательно, и к подъему маятника. Движение маятника после этого снова замедляется, маятник останавливается и снова начинает свое движение вниз и т.д.

Ускорение поступательного движения центра масс маятника (а) может быть получено по измеренному времени t и проходимому маятником расстоянию h из уравнения

(2.13)

Масса маятника m является суммой масс его частей (оси m0, диска mд и кольца mк):

.

Момент инерции маятника J также является аддитивной величиной и определяется по формуле

, (2.14)

где , , - соответственно моменты инерции оси, диска и кольца маятника.

Момент инерции оси маятника равен

, (2.15)

где r - радиус оси, m0 = 0,018 кг - масса оси.

Моменты инерции диска может быть найден как

, (2.16)

где Rд- радиус диска, mд = 0,018 кг - масса диска.

Момент инерции кольца рассчитывается по формуле

, (2.17)

где - средний радиус кольца, - масса кольца, b - ширина кольца.

Зная линейное ускорение а и угловое ускорение е (е · r), можно найти угловую скорость его вращения (щ):

, . (2.18)

Полная кинетическая энергия маятника складывается из энергии поступательного перемещения центра масс и из энергии вращения маятника вокруг оси:

. (2.19)

Приборы и принадлежности:

а) специальная лабораторная установка;

б) блок электронный ФМ-1/1;

в) набор сменных колец;

г) линейка.

Общий вид установки показан на рисунке 2. Основание (1) оснащено регулируемыми ножками (2), которые позволяют произвести выравнивание прибора. В основании закреплена колонка (3) со шкалой, к которой прикреплены неподвижный верхний кронштейн (4) и подвижный нижний кронштейн с фотоэлектрическим датчиком (5). На верхнем кронштейне находится электромагнит (6) и вороток (7) для закрепления и регулирования длины бифилярной подвески маятника (8). На кронштейнах находятся разъемы (9, 10) для подключения электронного блока ФМ-1/1.

Маятник с наложенным кольцом удерживается в верхнем положении электромагнитом. Длина маятника определяется по миллиметровой шкале на колонке прибора. С целью облегчения этого измерения на колонке (3) находится красный указатель, который располагают на высоте оси кольца в нижнем положении маятника.

Требования по технике безопасности

Прежде чем приступить к работе, внимательно ознакомьтесь с заданием и оборудованием.

О замеченных неисправностях немедленно сообщите лаборанту или преподавателю.

Не загромождайте рабочее место предметами, не относящимися к выполняемой работе.

Тщательно закрепляйте сменные кольца на диске, чтобы они не слетали при раскручивании маятника.

Следите за равномерной намоткой нити на стержень.

По окончании работы обесточьте прибор, приведите в порядок свое рабочее место.

Размещено на http://www.allbest.ru/

Рис. 2

Порядок выполнения работы

Проверить устойчивость прибора. Произвести регулировку положения основания установки при помощи регулировочных опор и регулировку нижнего кронштейна так, чтобы диск на бифилярном подвесе находится в центре окна фотодатчика.

Установить необходимую длину бифилярного подвеса, чтобы нижний край диска маятника находился на 4-5 мм ниже оптической оси фотодатчика; при этом ось маятника должна занять горизонтальное положение.

Наложить на диск кольцо.

Подключить фотодатчик и электромагнит к блоку электронному ФМ-1/1. Нажать кнопку «СЕТЬ». При этом должно включиться табло индикации.

Аккуратно вращая маятник зафиксировать его в верхнем положении при помощи электромагнита, при этом необходимо следить за тем, чтобы нить наматывалась на ось виток к витку. В зафиксированном положении нити подвеса должны быть прослаблены.

Нажать на кнопку «сброс» для того, чтобы убедиться, что на индикаторах установились нули.

Нажать на кнопку «пуск» блока. Происходит растормаживание электромагнита, маятник начинает опускаться, и таймер блока начинает отсчет времени. При первом пересечении маятником оптической оси фотодатчика отсчет времени прекратится. Записать показания таймера, т.е. время движения груза t. Нажать клавишу сброс.

По шкале стойки определить ход маятника h.

При фиксированном значении h повторить опыт до 5-6 раз.

Вычислить среднее время по формуле

.

Используя формулы (2.13) и (2.18) вычислить а, , .

С помощью линейки измерить радиусы оси маятника r, диска Rд, кольца Rк и ширину кольца b. По формулам (2.14) - (2.17) рассчитать момент инерции маятника.

По формуле (2.19) найти кинетическую энергию маятника Максвелла, сравнить ее с начальной потенциальной энергией Епот = mgh. По разности этих энергий найти работу сил трения (Атр).

Результаты измерений и вычислений занести в таблицу 1.

15. Вычислить погрешности определения кинетической и потенциальной энергий, работы сил трения.

Таблица 1

m, кг

h,м

t, с

tср с

а, м/с

м/с

, рад/с

J, кг.м2

Ек

Дж

ДЕкДж

Еn Дж

ДЕп

Дж

Атр

Дж

ДАтрДж

Требования к отчету

Отчет к лабораторной работе должен содержать:

название лабораторной работы, цель работы;

перечень приборов и принадлежностей;

краткую теорию и основные формулы для выполнения расчетов;

таблицу с результатами измерений и вычислений;

расчет погрешностей;

выводы к работе.

Контрольные вопросы

1. Что такое энергия? Какие виды энергии вы знаете?

2. Какие системы отсчета называются замкнутыми?

3. Какие силы называют консервативными и диссипативными? Приведите примеры таких сил.

4. Как формулируется закон сохранения механической энергии?

5. Как рассчитать работу сил трения, действующих в замкнутой системе?

6. Что представляет собой маятник Максвелла? Какое движение он совершает?

7. Как определяется кинетическая энергия поступательного и вращательного движения? Запишите формулы, раскройте смысл величин, входящих в них.

Список литературы

1. Савельев И.В. Курс физики. Т.1. - М.: Наука, 1998.

2. Трофимова Т.И. Курс физики. - М.: Высшая школа, 2003.

3. Детлаф А.А., Яворский Б.М. Курс физики. - М.: Высшая школа, 2002.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.

    методичка [1,3 M], добавлен 10.03.2007

  • Законы вращательного движения. Экспериментальное определение моментов инерции сменных колец с помощью маятника Максвелла. Установка с маятником Максвелла со встроенным миллисекундомером. Набор сменных колец. Устройство регулировки бифилярного подвеса.

    контрольная работа [47,8 K], добавлен 17.11.2010

  • Два основных вида вращательного движения твердого тела. Динамические характеристики поступательного движения. Момент силы как мера воздействия на вращающееся тело. Моменты инерции некоторых тел. Теорема Штейнера. Кинетическая энергия вращающегося тела.

    презентация [258,7 K], добавлен 05.12.2014

  • Нахождение тангенциального ускорения камня через секунду после начала движения. Закон сохранения механической энергии. Задача на нахождение силы торможения, натяжения нити. Уравнение второго закона Ньютона. Коэффициент трения соприкасающихся поверхностей.

    контрольная работа [537,9 K], добавлен 29.11.2013

  • Механика твёрдого тела, динамика поступательного и вращательного движения. Определение момента инерции тела с помощью маятника Обербека. Сущность кинематики и динамики колебательного движения. Зависимость углового ускорения от момента внешней силы.

    контрольная работа [1,7 M], добавлен 28.01.2010

  • Законы изменения и сохранения момента импульса и полной механической энергии системы. Измерение скорости пули с помощью баллистического маятника. Период колебаний физического маятника. Расчет погрешности прямых и косвенных измерений и вычислений.

    лабораторная работа [39,7 K], добавлен 25.03.2013

  • Виды механической энергии. Кинетическая и потенциальная энергии, их превращение друг в друга. Сущность закона сохранения механической энергии. Переход механической энергии от одного тела к другому. Примеры действия законов сохранения, превращения энергии.

    презентация [712,0 K], добавлен 04.05.2014

  • Законы динамики вращательного движения и определение скорости полета пули. Расчет угла поворота и периода колебаний крутильно-баллистического маятника. Определение момента инерции маятника, прямопропорционального расстоянию от центра масс до оси качания.

    контрольная работа [139,2 K], добавлен 24.10.2013

  • Сущность механического, поступательного и вращательного движения твердого тела. Использование угловых величин для кинематического описания вращения. Определение моментов инерции и импульса, центра масс, кинематической энергии и динамики вращающегося тела.

    лабораторная работа [491,8 K], добавлен 31.03.2014

  • Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.

    лабораторная работа [213,9 K], добавлен 07.02.2011

  • Определение поступательного и вращательного движения твердого тела. Кинематический анализ плоского механизма. Применение теоремы об изменении кинетической энергии к изучению движения механической системы. Применение общего управления динамики к движению.

    контрольная работа [415,5 K], добавлен 21.03.2011

  • Характеристики форм движения материи. Механическая и электростатическая энергия. Теорема о кинетической энергии. Физический смысл кинетической энергии. Потенциальная энергия поднятого над Землей тела. Потенциальная энергия гравитационного взаимодействия.

    презентация [3,7 M], добавлен 19.12.2016

  • Теоремы об изменении кинетической энергии для материальной точки и системы; закон сохранения механической энергии. Динамика поступательного и вращательного движения твердого тела. Уравнение Лагранжа; вариационный принцип Гамильтона-Остроградского.

    презентация [1,5 M], добавлен 28.09.2013

  • История рождения энергетики и ее роль для человечества. Характеристика кинетической и потенциальной энергии как части механической системы. Изменения энергии при взаимодействиях тел, образующих замкнутую систему, на которую не действуют внешние силы.

    презентация [496,3 K], добавлен 17.08.2011

  • Практические формы уравнений движения. Коэффициент инерции вращающихся частей поезда. Упрощенная кинематическая схема передачи вращающего момента с вала на обод движущего колеса. Кинетическая энергия, физхическая масса и скорость поступательного движения.

    лекция [129,5 K], добавлен 27.09.2013

  • Экспериментальное изучение динамики вращательного движения твердого тела и определение на этой основе его момента инерции. Расчет моментов инерции маятника и грузов на стержне маятника. Схема установки для определения момента инерции, ее параметры.

    лабораторная работа [203,7 K], добавлен 24.10.2013

  • Динамика вращательного движения твердого тела относительно точки, оси. Расчет моментов инерции некоторых простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.

    презентация [913,5 K], добавлен 26.10.2016

  • Количество движения системы. Главный момент количеств движения (кинетический момент). Кинетическая энергия системы. Теорема об изменении количества движения, кинетического момента и кинетической энергии. Дифференциальные уравнения движения системы.

    реферат [130,1 K], добавлен 06.01.2012

  • Изучение законов колебательного движения на примере физического маятника. Определение механических, электромагнитных и электромеханических колебательных процессов. Уравнение классического гармонического осциллятора и длины математического маятника.

    контрольная работа [44,6 K], добавлен 25.12.2010

  • Момент количества движения, пространственное квантование. Магнитный момент в магнитном поле. Спин и собственный магнитный момент электрона. G-фактор, принцип запрета Паули. Обменная энергия и обменное взаимодействие. Энергия обменного взаимодействия.

    реферат [2,2 M], добавлен 19.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.