Ионная электрическая проводимость
Электрическая проводимость как одно из наиболее важных свойств вещества. Знакомство с физическими процессами, лежащими в основе сверхпроводимости. Общая характеристика основных параметров механических свойств технического алюминия, анализ особенностей.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.07.2013 |
Размер файла | 212,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
электрический проводимость алюминий физический
В настоящей работе будет рассмотрено такое важное свойство веществ как электрическая проводимость.
Каждое вещество обладает определенными свойствами. В настоящей работе рассмотрена одно из наиболее важных свойств вещества - электрическая проводимость. Это явление описывается большим числом физических законов.
Электрическая проводимость - это способность вещества проводить электрический ток. В данной работе была рассмотрена ионная электрическая проводимость. Этот выбор связан с уникальным механизмом этой проводимости, которая свойственна как растворам и расплавам электролитов, так и удивительным веществам - ионным кристаллам.
Научное знание об электрической проводимости различных веществ позволяет ученым и специалистам грамотно и максимально точно подбирать материалы для изготовления проводов, громоотводов, обширного спектра утилитарной электротехники, в том числе и домашней (утюги, пылесосы), и больших механизмов (электромобиль).
В связи с тем, что человеческое тело является отличным проводником электрического тока, при работе с электрическими приборами надо строго соблюдать технику безопасности, и для защиты участков кожи, контактирующих с используемыми в экспериментах средами, необходимо использовать непроводящие электрический ток материалы (резиновые перчатки).
1. Электрическая проводимость веществ. Зависимость проводимости металлов от температуры. Сверхпроводимость
Электрическая проводимость вещества зависит от концентрации в нём свободных зарядов, их вида, а также от условий внешней среды, в которой вещество находится.
Электрический ток может протекать через все тела - твёрдые, жидкие газообразные и даже через вакуум. Электрической проводимостью вещества называют его способность проводить электрический ток под действием электрического поля. Чем больше концентрация свободных зарядов в веществе, тем меньше величина его удельного сопротивления и тем больше его электрическая проводимость. Вещества, обладающие большой проводимостью называют проводниками, а вещества с малой электрической проводимостью - диэлектриками.
Однако такое деление веществ на проводники и диэлектрики весьма условно, т.к. изменение напряжённости электрического поля, температуры, давления и других факторов может значительно изменять проводимость веществ. Например, воздух, являющийся диэлектриком в обычных условиях, становится проводником, когда между грозовым облаком и землёй напряжённость электрического поля увеличивается до 3000 кВ/м, в результате чего и происходит разряд молнии.
Носителями свободных зарядов в металлах являются свободные электроны, и поэтому такую проводимость называют электронной. Металлы имеют наибольшую проводимость среди проводников. Так как работа тока пропорциональна сопротивлению проводника, то для минимизации потерь при передаче электрической энергии всегда используют металлические провода. По той же причине из металлической проволоки изготовляют обмотки различных электромоторов, генераторов, трансформаторов и электроизмерительных приборов.
Сопротивление металлических проводников увеличивается с ростом температуры. Это явление можно объяснить тем, что при нагреве возрастает амплитуда хаотических (тепловых) колебаний атомов, а значит, увеличивается число столкновений этих атомов со свободными электронами, которые упорядоченно движутся под действием электрического поля. Зависимость сопротивления R проводника от температуры имеет следующий вид (см. рис. 43а):
R = R0.{1+a(T-T0)} , (43.1)
где R и R0 - сопротивление проводника при температурах T и T0, соответственно, а a - постоянная, называемая температурным коэффициентом сопротивления данного вещества. Если в качестве R0 взять сопротивление проводника при T0 =273 К, то у всех чистых металлов a « 1/273 K-1. Например, у вольфрама a = 4,8.10-3 K-1. Это значит, что сопротивление вольфрамовой нити лампы накаливания, раскалённой до 2700 К, более чем в 10 раз превышает её сопротивление при комнатной температуре.
При очень низких температурах наблюдается замечательное явление - сопротивление многих металлов скачком обращается в нуль. Это явление, названное сверхпроводимостью, было открыто голландским физиком Камерлинг-Оннесом в 1911 году, когда он измерял сопротивление ртути при охлаждении её в жидком гелии. Оказалось, что сопротивление ртути при охлаждении сначала плавно уменьшалось, но когда её температура достигала 4 К, сопротивление скачком падало до нуля (рис. 43б). Температура, при которой сопротивление резко падает до нуля, называют критической. В настоящее время известно много сверхпроводников с самыми разными критическими температурами - от долей градуса К до примерно 100 К.
Объяснение физических процессов, лежащих в основе сверхпроводимости, было дано советским учёным Н.Н. Боголюбовым и американскими учёными Д. Бардиным, Л. Купером и Д. Шриффером на основе квантовой теории. Большой вклад в развитие теории сверхпроводников внесли также российские учёные А.А. Абрикосов и В.Л. Гинзбург.
Очевидно, что в будущем применение сверхпроводников позволит передавать электроэнергию на большие расстояния с гораздо меньшими потерями или вообще без них. Кроме того, использование сверхпроводящих материалов даст возможность создавать огромные магнитные поля в генераторах и электромоторах, благодаря чему эти устройства станут значительно более мощными, чем сейчас. Колоссальные магнитные поля, созданные с помощью сверхпроводников, позволят конструировать поезда на магнитной подвеске, двигающиеся плавно, без трения и с огромными скоростями.
Рис. 43. (а) - зависимость сопротивления металлического проводника от температуры; (б) - зависимость сопротивления ртути вблизи критической температуры.
1.1 Электрические свойства металлов при 20 °С
Таблица
Свойства |
|||||||||
р, мкОм * м ар. С- |
0,006 0,004 |
0,017 0,004 |
0,022 0,004 |
0,028 0,004 |
0,098 0,006 |
0,120 0,004 |
0,059 0,004 |
0,055 0,005 |
Cопротивления и применения
Проводниковые материалы подразделяют на следующие группы:
1) металлы и сплавы высокой проводимости;
2) припои;
3) сверхпроводники;
4) контактные материалы;
5) сплавы с повышенным электрическим сопротивлением.
Металлы и сплавы высокой проводимости. Проводниковые металлы кроме высокой электрической проводимости (малое электрическое сопротивление) должны иметь достаточную прочность, пластичность, которая определяет технологичность, а также коррозионную стойкость в атмосферных условиях и в некоторых случаях высокую износостойкость. Кроме того, металл должен хорошо свариваться и подвергаться пайке для получения соединения высокой надежности и электрической проводимости.
Практическое применение имеют химически чистые металлы: Си, А1, Fe.
Эти металлы обладают высокой электрической проводимостью при минимальном содержании примесей и дефектов кристаллической решетки. В связи с этим такие металлы (табл. 17.1) используют в технически чистом виде и, для достижения максимальной электрической проводимости, в отожженном состоянии.
Медь проводниковый материал
Наиболее чистая бескислородная медь МООб имеет суммарное содержание примесей 0,01%, МОб - 0,03% и Ml-0,1%.
Наиболее вредная примесь в меди- кислород. Помимо ухудшения проводимости кислород при отжиге полуфабрикатов и изделий из чистой меди в водороде вызывает растрескивание и потерю прочности, поэтому содержание кислорода в меди строго ограничено.
Наибольшей электрической проводимостью обладает бескислородная медь МООб. Электрическое сопротивление такой меди близко к значению, приведенному в табл. 17.1. Такую медь получают переплавом электролитически очищенной меди в вакууме или переработкой катодной меди методами порошковой металлургии.
Медь указанных марок используют в виде проката: проволок разных диаметров, шин, полос и прутков.
Прокат из меди Ml поставляется либо в отожженном , либо нагартованном состоянии. Отожженная медь имеет более высокую проводимость, нагартованная большую прочность (табл. 17.2).
Механические свойства меди зависят от диаметра провода. Малым диаметрам соответствуют большая прочность и меньшая пластичность как в нагартованном, так и в отожженном состояниях. Отожженную медь используют для обмоточных проводов и кабельных изделий, нагартованную медь для подвесных токонесущих и контактных проводов, коллекторных пластин.
ТАБЛИЦА 17.2. Механические свойства и удельное электрическое сопротивление меди и алюминия
Свойства |
Медь |
Алюминий |
|||
отожженная |
нагарто-ванная |
отожженный |
нагарто-ваниый |
||
р. мкОмм |
0,0175 |
0,0182 |
0,0295 |
0,0295 |
|
С7в, МПа |
250- |
340- |
|||
б, % |
20-30 |
0,5-2,0 |
Для изделий, от которых требуется прочность выше 400 МПа, используются латуни и бронзы с кадмием и бериллием, обеспечивающими большие прочность и износостойкость, чем медь, при некоторой потере электрической проводимости.
Алюминий высокой чистоты АДОч, в котором общее содержание примесей составляет 0,02%, и алюминий технической чистоты АДООО, АДОО, АДО, в котором примесей соответственно 0,2; 0,3; 0,5%, используют в электротехнике (ГОСТ 4784-74).
Все примеси, так же как и в меди, снижают проводимость алюминия, которая несколько ниже, чем у меди (см. табл. 17.1).
Алюминий высокой чистоты обладает хорошей пластичностью, поэтому из него изготовляют конденсаторную фольгу толщиной 6-7 мкм. Технически чистый алюминий используют в виде проволоки в производстве кабелей и токонесущих проводов.
Алюминий уступает меди в электрической проводимости и прочности, но он значительно легче, больше распространен в природе. При замене медного провода алюминиевым последний должен иметь диаметр в 1,3 раза больше, но масса его и в этом случае будет в 2 раза меньше. Так же, как и медь, алюминий используют или в отожженном, или нагартованном состоянии (см. табл. 17.2).
Для токонесущих проводов воздушных линий электропередачи с большими расстояниями между опорами используют алюминиевые сплавы (Al-Mg-Si) более прочные, чем чистый алюминий (см. п. 12.1).
Легирование алюминия магнием и кремнием в небольших количествах (менее 1% каждого) несколько ухудшает электрическую проводимость, но упрочняет сплав, практически не ухудшая пластичность и коррозионную стойкость: ав = 350 МПа при р = = 0,032 мкОмм.
Алюминий обладает высокой коррозионной стойкостью вследствие образования на поверхности защитной оксидной пленки AI2O3. Эта пленка затрудняет пайку алюминиевых проводов обычными методами. Необходим специальный припой или ультразвуковые паяльники. Места контакта алюминиевого провода с медным следует покрывать лаком для защиты от атмосферной коррозии. Во влажной атмосфере алюминий в контакте с медью быстро разрушается вследствие электрохимической коррозии.
Железо значительно уступает меди и алюминию по проводимости, но имеет большую прочность; что в некоторых случаях оправдывает его применение как проводникового материала.
В таких случаях используют низкоуглеродистые качественные стали с содержанием углерода 0,1-0,15%, а также стали обыкновенного качества (см. п. 8.3). Эти стали обеспечивают достаточно высокую прочность ав = = 300-:-700 МПа и идут на изготовление шин, трамвайных рельсов, рельсов метро и железных дорог с электрической тягой. Сечение провода определяется не электрической проводимостью, а механической прочностью материала.
Биметаллический провод (стальной провод, покрытый медью) используют при передаче переменных токов повышенной частоты. Такая конструкция позволяет уменьшить электрические потери, связанные с ферромагнетизмом железа, и расход дефицитной меди. Проводимость определяет металл наружного слоя, так как токи повышенной частоты вследствие скин-эффекта распространяются по наружному слою провода. Сердцевина из стали воспринимает силовую нагрузку. Покрытие создается гальваническим способом или плакированием. Наружный медный слой предохраняет железо от атмосферной коррозии.
Биметаллический провод используют в линиях связи и электропередачи. Кроме этого, из биметаллического материала изготовляют шины для распределительных устройств, различные токопроводящие части электрических аппаратов.
Припои. Сплавы, используемые при пайке металлов высокой проводимости, - припои должны обеспечивать небольшое переходное сопротивление (сопротивление контакта).
Различают припои двух типов: для низкотемпературной пайки, имеющие температуру плавления до 400 °С, и для высокотемпературной пайки с более высокой температурой плавления. Для получения хорошего соединения припой должен иметь более низкую температуру плавления, чем металл, подвергающийся пайке; в расплавленном состоянии припой должен хорошо смачивать поверхности. Температурные коэффициенты линейного расширения металла и припоя должны быть близки.
Для этих целей используют припои на основе Sn, Pb, Zn, Ag, имеющих хорошую электрическую проводимость. Сплавы этих металлов образуют эвтектические смеси, электрическое сопротивление которых мало отличается от металлов, образующих сплав.
В приборостроении для низкотемпературной пайки применяют оловянно-свинцовые и оловянно-цинковые (ГОСТ 21931 76) припои.
у 30 элементов и около 1000 сплавов. Сверхпроводящие свойства обнаруживают многие сплавы со структурой упорядоченных твердых растворов и промежуточных фаз (о-фаза, фаза Лавеса и др.). При обычных температурах эти
Рис. 17.7. Изменение электрического сопротивления в металлах (Л/) и сверхпроводниках (Л/св) в области низких температур вещества не обладают высокой проводимостью
Переход металла в сверхпроводящее состояние связывают с фазовым превращением. Новое фазовое состояние характеризуется тем, что свободные электроны перестают взаимодействовать с ионами кристаллической решетки, но вступают во взаимодействие между собой. В результате этого электроны с противоположно направленными спинами спариваются. Результирующий спиновый момент становится равным нулю, и сверхпроводник превращается в диамагнетик. Все электронные пары располагаются на низких энергетических уровнях, где они перестают испытывать тепловые рассеяния, так как энергия, которую пара может получить от взаимодействия с ионами решетки, слишком мала, чтобы вызвать это рассеяние.
Сверхпроводящее состояние разрушается не только в результате нагрева, но также в сильных магнитных полях и при пропускании электрического тока большой силы (критические значения поля и тока).
Способность сверхпроводников, являющихся диамагнетиками, выталкивать магнитное поле, используют в магнитных насосах, позволяющих генерировать магнитные поля колоссальной напряженности, а также в криогенных гироскопах.
1.2 Материалы с высокой проводимостью
Материалы с высокой проводимостью. К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение при разрыве); способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость.
Основным является требование максимальной удельной проводимости материала. Однако электропроводность металла может снижаться из-за загрязняющих примесей, деформации металла, возникающей при штамповке или волочении, что приводит к разрушению отдельных зерен металла. Влияние деформаций металла на ею электропроводность устраняется при отжиге, во время которого уменьшается число дефектов в металле и увеличиваются средние размеры кристаллов металла. В связи с этим проводниковые материалы используют в основном в отожженном (мягком) состоянии.
Наиболее распространенными современными материалами высокой проводимости, применяемыми в радиоэлектронике, являются цветные металлы (медь, алюминий, цинк, олово, магний, свинец) и черные металлы (железо), которые применяются в чистом виде. Еще шире используют сплавы этих металлов, так как они обладают лучшими свойствами и более дешевы по сравнению с чистыми металлами. Однако цветные металлы и их сплавы экономически целесообразно использовать в тех случаях, когда необходимые свойства изделий нельзя получить, применяя черные металлы, чугун и сталь.
2. Электрическая проводимость меди
Электрическая проводимость меди зависит от содержания примесей. При наличии даже небольшого количества примесей электрическая проводимость резко падает.
Электрическая проводимость меди заметно не изменяется под влиянием висмута, свинца, серы, селена и теллура, сильно снижается под влиянием незначительных количеств мышьяка, а также сурьмы.
Оказывается, что проводимость плазмы много меньше проводимости меди. Поэтому стенки канала и приходится набирать из изолированных друг от друга медных шайб.
В зависимости от чистоты электрическая проводимость технического алюминия составляет 62 - 65 % от электрической проводимости меди, но алюминий легче меди в 3 раза и поэтому для изготовления проводников одинаковой электрической проводимости потребуется алюминия в 2 16 раза меньше, чем меди.
Проводниковую медь получают из слитков путем гальванической очистки в электролитических ваннах. Даже ничтожное количество примесей резко снижает электрическую проводимость меди. Почти все изделия из меди для электротехнической промышленности изготовляются путем проката, прессовки и волочения. Волочением получаются провода диаметром до 0 005 мм, ленты толщиной до 0 1 мм и фольга толщиной до 0 008 мм. При механических деформациях медь подвергается наклепу, который устраняется при термообработке.
Удельный вес никеля, наносимого гальваническим путем, равен 8 9; точка плавления 1455 С. Электрическая проводимость никеля составляет лишь 15 % электрической проводимости меди. При высокой температуре на никеле появляются цвета побежалости, однако в окисляющей атмосфере при температуре до 800 С никель не изменяет своих свойств. В щелочах и органических кислотах никель не растворяется, в серной и соляной кислотах он растворяется медленно, в азотной кислоте хорошо. Он очень пластичен, легко прокатывается в фольгу и протягивается в проволоку. Прекрасный проводник электрического тока - его электрическая проводимость сравнима с электрической проводимостью меди.
В виде чистого металла алюминий используется для изготовления химической аппаратуры, электрических проводов, конденсаторов. Хотя электрическая проводимость алюминия меньше, чем у меди ( около 60 % электрической проводимости меди), но это компенсируется легкостью алюминия, позволяющей делать провода более толстыми: при одинаковой электрической проводимости масса алюминиевого провода вдвое меньше медного.
Он очень пластичен, легко прокатывается в фольгу к протягивается в проволоку. Прекрасный проводник электрического тока - его электрическая проводимость сравнима с электрической проводимостью меди.
Кадмий сильно поглощает медленные нейтроны. Поэтому его используют в виде стержней в ядерных реакторах для регулирования скорости цепной реакции. Сплавы меди, содержащие - 1 % Cd, служат для изготовления проводов, подвергающихся трению от скольжения контактов; не снижая электрической проводимости меди, кадмий улучшает ее механические свойства. Кадмирование стальных изделий лучше, чем цинковое покрытие, предохраняет железо и сталь от ржавления. Из солей кадмия наибольшее применение имеет сульфид. Сульфид кадмия применяется для изготовления краски и цветных стекол.
3. Электропроводность, теплопроводность, механические свойства и другие физические свойства Алюминия
Электропроводность
Важнейшее свойство алюминия - высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.
На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.
Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.
Величина удельного электрического сопротивления при температуре 20 С составляет Ом*мм2/м или мкОм*м :
0.0277 - отожженная проволока из алюминия марки А7Е
0.0280 - отожженная проволока из алюминия марки А5Е
0.0290 - после прессования, без термообработки из алюминия марки АД0
Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.
Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.
Теплопроводность
Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.
Другие физические свойства.
Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди - 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения - у меди и железа эта величина составляет примерно 41-49 кал/г.
Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэффициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%
Механические свойства
Модуль упругости E = 7000-7100 кгс/мм2 для технического алюминия при 20 С. При повышении чистоты алюминия его величина уменьшается (6700 для А99).
Модуль сдвига G = 2700 кгс/мм2.
Основные параметры механических свойств технического алюминия приведены ниже:
Таблица
Параметр |
Ед. изм. |
Деформированный |
Отожженный |
|
Предел текучести у0.2 |
кгс/мм2 |
8 - 12 |
4 - 8 |
|
Предел прочности при растяжении ув |
кгс/мм2 |
13 - 16 |
8 |
|
Относительное удлинение при разрывед |
% |
5 - 10 |
30 - 40 |
|
Относительное сужение при разрыве |
% |
50 - 60 |
70 - 90 |
|
Предел прочности при срезе |
кгс/мм2 |
10 |
6 |
|
Твердость |
НВ |
30 - 35 |
20 |
Приведенные показатели очень ориентировочны:
1) Для отожженного и литого алюминия эти значения зависят от марки технического алюминия. Чем больше примесей, тем больше прочность и твердость и ниже пластичность. Например твердость литого алюминия составляет: для А0 - 25НВ, для А5 - 20НВ, а для алюминия высокой чистоты А995 - 15НВ. Предел прочности при растяжении для этих случаев составляет: 8,5; 7.5 и 5 кгс/мм2, а относительное удлинение 20; 30 и 45% соответственно.
2) Для деформированного алюминия механические свойства зависят от степени деформации, вида проката и его размеров. Например предел прочности при растяжении составляет не менее 15-16 кгс/мм2для проволоки и 8 - 11 кгс/мм2 для труб.
Однако, в любом случае, технический алюминий это мягкий и непрочный металл. Низкий предел текучести (даже для нагартованного проката он не превышает 12 кгс/мм2) ограничивает применение алюминия по допустимым нагрузкам.
Алюминий имеет низкий предел ползучести: при 20 С - 5 кгс/мм2, а при 200 С - 0.7 кгс/мм2. Для сравнения: у меди эти показатели равны 7 и 5 кгс/мм2 соответственно.
Низкая температура плавления и температура начала рекристаллизации (для технического алюминия примерно 150 С), низкий предел ползучести ограничивают температурный диапазон эксплуатации алюминия со стороны высоких температур.
Пластичность алюминия не ухудшается при низких температурах, вплоть до гелиевых. При понижении температуры от +20 С до - 269 С, предел прочности возрастает в 4 раза у технического алюминия и в 7 раз у высокочистого. Предел упругости при этом возрастает в 1.5 раза.
Морозостойкость алюминия позволяет использовать его в криогенных устройствах и конструкциях.
4. Электропроводность электролитов
ЭЛЕКТРОПРОВОДНОСТЬ ЭЛЕКТРОЛИТОВ - это способность электролитов проводить электрич. ток при приложении электрич. напряжения. Носителями тока являются положительно и отрицательно заряженные ионы - катионы и анионы, к-рые существуют в р-ре вследствие электролитич. диссоциации.
Ионная Э. э., в отличие от электронной, характерной для металлов, сопровождается переносом в-ва к электродам с образованием вблизи них новых хим. соед. (см. Электролиз). Общая (суммарная) проводимость состоит из проводимости катионов и анионов, к-рые под действием внешнего электрич. поля движутся в противоположных направлениях.
Доля общего кол-ва электричества, переносимого отд. ионами, наз. числами переноса, суммак-рых для всех видов ионов, участвующих в переносе, равна единице. Количественно Э. э. характеризуют эквивалентной электропроводностью - проводящей способностью всех ионов, образующихся в 1 грамм-эквиваленте электролита. Величина связана с уд. электропроводностью соотношением:
где с - концентрация р-ра в г-экв/л. Эквивалентная электропроводность зависит от природы растворенного в-ва и р-рителя, структуры р-ра, а также от концентрации, т-ры, давления. Предельно разбавленному р-ру, в к-ром все молекулы диссоциированы на ионы, соответствует предельное значение
В соответствии с Кольрауша законом равна сумме эквивалентных электропроводностей катионов и анионов. Эквивалентная электропроводность отд. иона пропорциональна скорости его движения в р-ре и характеризует подвижность иона в р-ре. Описание концентрац. зависимости как и других св-в р-ров электролитов (см. Растворы электролитов), обычно базируется на ионном подходе, в рамках к-рого р-ритель рассматривается как бесструктурная диэлектрич. среда, в к-рой ионы движутся в соответствии с законами гидродинамики и характером межионного взаимодействия. Простейшей моделью является модель заряженных твердых сфер, движущихся в вязком р-рителе под влиянием силы, обусловленной градиентом потенциала.
При этом сила сопротивления движению иона в р-ре определяется ур-нием Стокса (см. Вискозиметрия). В рамках применимости этого ур-ния выполняется правило Вальдена-Писаржевского, в соответствии с к-рым для одного и того же электролита в любых р-рителях произведение предельного значения эквивалентной электропроводности на вязкость р-рителя является постоянной величиной, к-рая не зависит от природы р-рителя, но является ф-цией т-ры. Сравнительно хорошо это правило выполняется только для слабо сольватир. ионов, в частности ионов, имеющих большие размеры в кристаллич. фазе. С увеличением концентрации значение уменьшается в осн. в р-рах слабых электролитов и в области малых концентраций удовлетворительно описывается законом разведения Оствальда (см. Электролитическая диссоциация).
В р-рах сильных электролитов концентрац. зависимость определяется межионным взаимодействием. В области применимости Дебая-Хюккеля теории имеются две причины для торможения ионов вследствие межионного взаимодействия. Первая из них связана с тем, что движение иона тормозится ионной атмосферой, к-рая имеет заряд, противоположный центральному иону, и под влиянием поля движется в направлении, противоположном перемещению иона (электрофоретич. эффект).
Вторая причина связана с тем, что при движении иона под действием электрич. поля его ионная атмосфера деформируется и теряет сферич. симметрию, причем большая часть заряда ионной атмосферы концентрируется позади центрального иона (релаксац. эффект).
Учет обоих эффектов приводит кур-нию Онсагера:
где Аи В - эмпирич. постоянные, являющиеся ф-циями т-ры, вязкости и диэлектрич. проницаемости р-рителя.
Как и теория Дебая-Хюккеля, ур-ние Онсагера ограничено областью умеренно разбавленных р-ров. Для описания концентрир. р-ров возникает необходимость в учете некулоновской части межионного взаимод., в частности в учете ионных размеров. Для этой цели применяют методы кинетич. теории ионных систем. К дополнит. уменьшению приводит образование ионных ассоциатов - пар, тройников и т. п., к-рое, как и эффект неполной диссоциации, сокращает общее число своб. ионов в р-ре. Для учета этого эффекта в ур-нии Онсагера заменяют общую концентрацию ионов концентрацией своб. ионов (- степень электролитич. диссоциации), что приводит к ур-нию Фуосса-Онсагера:
В переменных электрич. полях при достаточно высокой частоте ион не уходит далеко от центра ионной атмосферы, вследствие чего она не деформируется. Обусловленный деформацией релаксац. эффект не возникает, что приводит к увеличению -т. наз. эффект Дебая-Фалькенхагена. Величина возрастает также в постоянных электрич. полях достаточно высокой напряженности (104-105 В/см). В этих условиях ионы движутся настолько быстро, что ионная атмосфера не успевает образоваться, вследствие чего практически отсутствуют и релаксац. и электрофоретич. эффекты. В результате стремится к предельному значению (т. наз. эффект Вина). В слабых электролитах эффект Вина вызывается также смещением диссоциативного равновесия в сильном электрич. поле в сторону образования ионов.
Механизм - электрическая проводимость
Механизм электрической проводимости у большого числа пирополимеров изучен недостаточно; у этих веществ не удается наблюдать эффект Холла, поскольку подвижность носителей очень мала.
Механизм электрической проводимости полупроводников определяется их структурой (химическим строением макромолекулы и надмолекулярной структурой, определяющей уровень взаимодействия между молекулами) Так, для полупроводников с сопряженными связями вдоль макромолекулы наиболее характерен механизм перескоков, согласно которому ток переносится путем активационных перескоков из одной полнсонря-жснной области в другую над диэлектрическим барьером, создаваемым неупорядоченными ( не имеющими сопряженных связей) участками Переход электрона внутри полисопряженной области осуществляется практически безактивационно. С ростом температуры повышается подвижность носителей и электрическая проводимость увеличивается. Ом 1 см 1), следует думать, что механизм электрической проводимости в растворах электролитов по мере укрепления концентрации не меняется.
Измерение удельного электросопротивления позволяет получить большую информацию об электронной структуре, механизме электрической проводимости и об изменениях в атомной структуре сплавов в аморфном состоянии.
Близкие значения W и 6 во всех исследованных кристаллах позволяют предполагать одинаковый с КДР механизм электрической проводимости во всем изоморфном ряду. Чаще всего одной из контактирующих фаз является металл, другой - раствор электролита. Механизм электрической проводимости в этих фазах неодинаков. Металл - проводник первого рода, носителями электричества в нем служат электроны. Электрическая проводимость раствора электролита обеспечивается движением ионов.
Часть самых первых измерений l / f - шума была проведена на поликристаллических материалах [10], и с тех пор выполнено значительное число исследований этого явления в различных аморфных и поликристаллических веществах. Механизмы электрической проводимости в таких материалах включают прыжковую проводимость носителей между проводящими зернами и локальными состояниями в структуре стекла и туннелирование электронов между близлежащими соседними зернами.
В заключение раздела о полимерных полупроводниках следует отметить, что в настоящее время синтезированы тысячи полимерных веществ, включая КПЗ, с полупроводниковыми свойствами. Все это открывает возможности практического использования полимерных полупроводников. Однако механизм электрической проводимости, особенности строения этих веществ изучены еще недостаточно.
Многими исследователями предложены различные выражения, описывающие электропроводность глинистых песчаников, которые можно подразделить на две группы. К первой группе относятся такие уравнения, в которых глинистый материал в пласте рассматривается как компонент породы, характеризующийся объемным содержанием Сгл. В этих формулах не раскрывается в явном виде механизм электрической проводимости глинистых частиц. Ко второй группе относятся уравнения, в которые включают поверхностную проводимость.
В водных растворах числа переноса различных ионов близки друг другу. Это объясняется тем, что кроме переноса электричества путем непосредственного движения этих ионов значительно большую роль играет механизм электрической проводимости, называемый эстафетным. При этом происходит перескок протона от иона гидроксония НэО к определенным образом ориентированной соседней молекуле воды. Затем протон передается дальше, к следующим молекулам воды. Такие перескоки происходят значительно быстрее, чем простое движение иона гидроксония, что обеспечивает высокую подвижность и увеличение числа переноса иона гидроксония.
В водных растворах числа переноса различных ионов близки друг другу. Это объясняется тем, что кроме переноса электричества путем непосредственного движения этих ионов значительно большую роль играет механизм электрической проводимости, называемый эстафетным. При этом происходит перескок протона от иона гидроксония НзО к определенным образом ориентированной соседней молекуле воды. Затем протон передается дальше, к следующим молекулам воды. Такие перескоки происходят значительно быстрее, чем простое движение иона гидроксония, что обеспечивает высокую подвижность и увеличение числа переноса иона гидроксония.
Этот электрон очень слабо связан за счет уменьшения электростатического взаимодействия с ядром примесного атома под влиянием диэлектрической постоянной кристалла. При небольшом термическом возбуждении электрон легко отрывается и становится способным участвовать в электрической проводимости. Примесный атом при ионизации заряжается положительно. Такой механизм электрической проводимости не связан с появлением дырки в валентной зоне. Уровень энергии, определяющий состояние слабо связанного электрона примеси, находится вблизи дна зоны проводимости, так как последний обладает значительно большей энергией, чем электроны в валентной зоне, участвующие в образовании ковалентных связей. Примесные атомы, которые имеют лишние электроны по сравнению с основными атомами кристалла и способны легко ионизироваться в кристалле, называются донорами, а примесный энергетический уровень, образуемый ими в запрещенной зоне, называется донорным уровнем.
В заключение раздела о полимерных полупроводниках следует отметить, что в настоящее время синтезированы тысячи полимерных веществ, включая КПЗ, с полупроводниковыми свойствами. Все это открывает возможности практического использования полимерных полупроводников. Однако механизм электрической проводимости, особенности строения этих веществ изучены еще недостаточно.
По-видимому, наиболее экономичным является создание алмазных пленок методами газофазного осаждения с одновременным легированием их бором. При осаждении таких пленок возникает ряд проблем. Одна из них связана с тем, что алмазная пленка - поликристаллическая, что приводит к неоднородности растущей поверхности, дополнительному рассеянию света гранями, гетерированию дефектов поверхностью микрокристаллов. Последнее, в свою очередь, может привести к изменению механизма электрической проводимости.
Список использованной литературы
1.Журовлева Л.В., Электроматериаловедение: Учебник для начального профессионального образования. М.: Изд. Центр «Академия»; ИРПО, 2000. -312 с.
2.Электропроводность (физич -- статья из Большой советской энциклопедии
3.Кухлинг Х. Справочник по физике. Пер. с нем., М.: Мир, 1982, стр. 475 (табл. 39); значения удельной проводимости вычислены из удельного сопротивления и округлены до 3 значащих цифр.
Размещено на Allbest.ru
...Подобные документы
Ионный обмен в стеклах, керамике, порошках. Изучение ионообменной селективности сурьмяной кислоты. Получение электродного материала литий-ионного аккумулятора. Ионная проводимость и числа переноса. Оценка электронной проводимости поляризационным методом.
реферат [123,8 K], добавлен 19.08.2015Анализ основных положений теории электрических цепей, основ промышленной электроники и электрических измерений. Описание устройства и рабочих свойств трансформаторов, электрических машин постоянного и переменного тока. Электрическая энергия и мощность.
курс лекций [1,5 M], добавлен 12.11.2010Описание полупроводников, характеристика их основных свойств. Физические основы электронной проводимости. Строение кристалла кремния. Направленное движение электронов и дырок под действием электрического поля, p-n переход. Устройство транзисторов.
презентация [2,4 M], добавлен 20.04.2016Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.
реферат [42,2 K], добавлен 01.12.2010Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.
презентация [2,7 M], добавлен 11.04.2015Физика полупроводников. Примесная проводимость. Устройство и принцип действия полупроводниковых приборов. Способы экспериментального определения основных характеристик полупроводниковых приборов. Выпрямление тока. Стабилизация тока.
реферат [703,1 K], добавлен 09.03.2007Строение полупроводников - материалов, которые по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Электронная проводимость, обусловливаемая наличием у полупроводника свободных электронов. Донорные примеси.
дипломная работа [676,6 K], добавлен 24.09.2015Способность диэлектриков проводить электрический ток, характер движения электронов, переходы. Определения механизма проводимости — наблюдение тока в магнитном поле, определение знака термоэлектродвижущей силы. Проводимость первого и второго порядка.
реферат [18,4 K], добавлен 20.09.2009Анализ свойств цепей, методов их расчета применительно к линейным цепям с постоянными источниками. Доказательство свойств линейных цепей с помощью законов Кирхгофа. Принцип эквивалентного генератора. Метод эквивалентного преобразования электрических схем.
презентация [433,3 K], добавлен 16.10.2013Анализ физических свойств перовскитов, в которых сосуществуют электрическая и магнитная дипольные структуры. Общая характеристика пленок феррита висмута BiFeO3. Особенности взаимодействия электромагнитной волны и спиновой подсистемой магнитного кристалла.
реферат [512,3 K], добавлен 20.06.2010Определение параметров схемы замещения электрической системы. Формирование матрицы узловых проводимостей. Схемы замещения элементов электрической системы и ее расчет. Диагональная матрица проводимостей ветвей. Нелинейные уравнения установившегося режима.
курсовая работа [698,6 K], добавлен 16.11.2009Фазами называют однородные различные части физико-химических систем. Фазовые переходы первого и второго рода. Идеальные и реальный газы. Молекулярно – кинетическая теория критических явлений. Характеристика сверхтекучести и сверхпроводимости элементов.
реферат [32,3 K], добавлен 13.06.2008Зонная теория твердого тела. Теорема Блоха. Методы приближения сильной и слабой связи. Образование зон. Собственная и примесная проводимость. Квазичастицы: електрон проводимости, дырка, экситон Френкеля и Ванье-Мотта, полярон. Экситонные уровни и зоны.
презентация [538,5 K], добавлен 15.10.2013Аккумуляция энергии в ячейке с МЖ. Анизотропия электропроводности МЖ, наведенная внешним воздействием. Действие электрического и магнитного полей на структурные элементы МЖ. Математическая теория проводимости МЖ. Результаты эксперимента.
дипломная работа [309,6 K], добавлен 12.03.2007Ураган как атмосферный вихрь с пониженным атмосферным давлением в центре: знакомство с причинами и географией возникновения, анализ электрических и магнитных свойств. Общая характеристика наиболее эффективных электрических методов управления ураганами.
реферат [71,2 K], добавлен 05.04.2016Баланс мощности в проектируемой сети, расчёт мощности компенсирующих устройств. Совместный выбор схемы, номинального напряжения, номинальных параметров линий и трансформаторов проектируемой сети. Расчет основных режимов работы, затрат электрической сети.
дипломная работа [353,6 K], добавлен 18.07.2014Принцип действия вентильного электропривода. Формирование вращающего момента, результирующей намагничивающей силы. Электрическая схема переключения полюсов вентильного электропривода. Моделирование переходных процессов. Суммарный момент возмущения.
курсовая работа [3,5 M], добавлен 15.03.2010Растворение разнообразных веществ как одно из основных свойств воды на планете, его значение. Сущность физического процесса несмачивания и смачивания поверхностей. Отличительные черты поведения молекул воды на смачиваемых и несмачиваемых поверхностях.
презентация [569,6 K], добавлен 19.05.2014Понятие электрического тока. Закон Ома для участка цепи. Особенности протекания тока в металлах, явление сверхпроводимости. Термоэлектронная эмиссия в вакуумных диодах. Диэлектрические, электролитические и полупроводниковые жидкости; закон электролиза.
презентация [237,4 K], добавлен 03.01.2011Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".
презентация [471,0 K], добавлен 22.11.2010