Защита подстанции
Показатель грозоупорности подстанций. Требования к защите подстанционного оборудования от перенапряжений, прямых ударов и заземления молниеотводов. Волны, набегающие с линии на подстанцию, возникающие при прямых ударах в провода линии без тросов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 04.07.2013 |
Размер файла | 26,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Показатель грозоупорности подстанций
грозоупорность перенапряжение подстанция заземление
К защите подстанционного оборудования от перенапряжений предъявляются значительно более высокие требования, чем к защите линий. Перекрытие изоляции на подстанции в большинстве случаев означает дуговое КЗ в непосредственной близости от сборных шин, которое даже при современных средствах релейной защиты может привести к системным авариям.
В результате перекрытия внешней изоляции возникает так называемый срез, т.е., практически мгновенный спад напряжения до нуля, являющийся причиной больших градиентных перенапряжений в обмотках трансформаторов, вызывающих в неблагоприятных случаях повреждение продольной изоляции. Пробой внутренней изоляции в отличие от перекрытия внешней - это в большинстве случаев необратимый процесс, приводящий к выходу из строя аппарата в целом.
Подстанции защищаются как от прямых ударов молний, так и от волн напряжения, набегающих с линии.
Повреждения или перекрытия изоляции на подстанции принципиально могут быть обусловлены тремя причинами:
- прорывом молнии мимо молниеотводов;
- возникновением высокого потенциала на заземлении пораженного молниеотвода, приводящего к обратному перекрытию с заземлителя на токоведущие части установки;
- возникновением высоких потенциалов под влиянием волн, приходящих с линии.
Если обозначить число опасных случаев в год, обусловленных перечисленными выше причинами, соответственно 1, 2, 3, то расчетное число лет безаварийной работы подстанции М=1/(1+ 2+ 3), где М носит название показателя грозоупорности подстанции. Для того чтобы обеспечить как можно меньшую вероятность повреждения изоляции подстанции, число М должно более чем на порядок превосходить нормальный срок службы оборудования, т.е. должно измеряться сотнями лет.
2. Защита от прямых ударов и заземление молниеотводов
Оборудование подстанции (ПС) и распределительных устройств (РУ) защищается от прямых ударов молнии стержневыми и тросовыми молниеотводами в соответствии с рекомендациями. Открытые РУ и ПС 20-750 кВ должны быть защищены от прямых ударов молнии. Выполнение защиты от прямых ударов молнии не требуется для ПС 20 и 35 кВ с трансформаторами единичной мощностью 1,6 МВ*А и менее независимо от количества таких трансформаторов и от числа грозовых часов в году, для всех ОРУ ПС 20 и 35 кВ в районах числом грозовых часов в году не более 20, а также для ОРУ и ПС 220 кВ и ниже на площадках с эквивалентным удельным сопротивлением земли в грозовой сезон более 2000 Ом*м при числе грозовых часов в году не более 20.
Здания закрытых РУ и ПС необходимо защищать от прямых ударов молнии в районах с числом грозовых часов в году более 20.
Защиту зданий закрытых РУ и ПС, имеющих металлические покрытия кровли, следует выполнять заземлением этих покрытий. При наличии железобетонной кровли и непрерывной электрической связи отдельных ее элементов защита выполняется заземлением ее арматуры.
Защиту зданий закрытых РУ и ПС, крыша которых не имеет металлических или железобетонных покрытий с непрерывной электрической связью отдельных ее элементов, следует выполнять стержневыми молниеотводами, либо укладкой молниеприемной сетки непосредственно на крыше зданий, которая выполняется в соответствии требованиями к молниезащите зданий и сооружений 3 категории.
При расчете числа обратных перекрытий на опоре следует учитывать увеличение индуктивности опоры пропорционально отношению расстояния по токоотводу от опоры до заземления к расстоянию от заземления до верха опоры.
При вводе в закрытые РУ и ПС ВЛ через проходные изоляторы, расположенные на расстоянии менее 10 м от токопроводов и других связанных с ним токоведущих частей, указанные вводы должны быть защищены РВ или соответствующими ОПН. При присоединении к магистралям заземления ПС на расстоянии менее 15 м от силовых трансформаторов, а также на трансформаторных порталах, порталах шунтирующих реакторов и конструкциях ОРУ, удаленных от трансформаторов или реакторов по магистралям заземления на расстоянии менее 15 м, молниеотводы могут устанавливаться при эквивалентном удельном сопротивлении земли в грозовой сезон не более 350 Ом*м и при соблюдении следующих условий:
1) непосредственно на всех выводах обмоток 3-35 кВ трансформаторов или на расстоянии не более 5 м от них по ошиновке, включая ответвления к защитным аппаратам, должны быть установлены соответствующие ОПН 3-35 кВ или РВ;
2) должно быть обеспечено растекание тока молнии от стойки конструкции с молниеотводом по трем - четырем направлениям с углом не менее 90° между ними;
3) на каждом направлении, на расстоянии 3-5 м от стойки с молниеотводом, должно быть установлено по одному вертикальному электроду длиной 5 м;
4) на ПС с высшим напряжением 20 и 35 кВ при установке молниеотвода на трансформаторном портале сопротивление заземляющего устройства не должно превышать 4 Ом без учета заземлителей, расположенных вне контура заземления ОРУ;
5) заземляющие проводники РВ или ОПН и силовых трансформаторов рекомендуется присоединять к заземляющему устройству ПС поблизости один от другого или выполнять их так, чтобы место присоединения РВ или ОПН к заземляющему устройству находилось между точками присоединения заземляющих проводников портала с молниеотводом и трансформатора.
Заземляющие проводники измерительных трансформаторов тока необходимо присоединить к заземляющему устройству РУ в наиболее удаленных от заземления РВ или ОПН местах.
Защита ОРУ 35 кВ и выше от прямых ударов молнии должна быть выполнена отдельно стоящими или установленными на конструкциях стержневыми молниеотводами. Рекомендуется использовать защитное действие высоких объектов, которые являются молниеприемниками (опоры ВЛ, прожекторные мачты, радиомачты и т.п.).
На конструкциях ОРУ 110 кВ и выше стержневые молниеотводы могут устанавливаться при эквивалентном удельном сопротивлении земли в грозовой сезон: до 1000 Ом*м - независимо от площади заземляющего устройства ПС; более 1000 до 2000 Ом*м - при площади заземляющего устройства ПС 10000 м кв. и более.
Установка молниеотводов на конструкциях ОРУ 35 кВ допускается при эквивалентном удельном сопротивлении земли в грозовой сезон: до 500 Ом*м - независимо от площади заземляющего контура ПС, более 500 Ом*м - при площади заземляющего контура ПС 10000 м кв. и более.
От стоек конструкций ОРУ 35 кВ и выше с молниеотводами должно быть обеспечено растекание тока молнии по магистралям заземления не менее чем в двух направлениях с углом не менее 90° между соседними. Кроме того, должно быть установлено не менее одного вертикального электрода длиной 3-5 м на каждом направлении, на расстоянии не менее длины электрода от места присоединения к магистрали заземления стойки с молниеотводом.
Если зоны защиты стержневых молниеотводов не закрывают всю территорию ОРУ, дополнительно используют тросовые молниеотводы, расположенные над ошиновкой.
Место присоединения конструкции со стержневым или тросовым молниеотводом к заземляющему устройству ПС должно быть расположено на расстоянии не менее 15 м по магистралям заземления от места присоединения к нему трансформаторов (реакторов) и конструкций КРУН 6-10 кВ.
Расстояние в земле между точкой заземления молниеотвода и точкой заземления нейтрали или бака трансформатора должно быть не менее 3 м.
Защиту от прямых ударов молнии ОРУ, на конструкциях которых установка молниеотводов не допускается или нецелесообразна по конструктивным соображениям, следует выполнять отдельно стоящими молниеотводами, имеющими обособленные заземлители с сопротивлением не более 80 Ом.
Заземлители отдельно стоящих молниеотводов в ОРУ могут быть присоединены к заземляющему устройству ОРУ (ПС) при соблюдении условий установки молниеотводов на конструкциях ОРУ. Место присоединения заземлителя отдельно стоящего молниеотвода к заземляющему устройству ПС должно быть удалено по магистралям заземления на расстояние не менее 15 м от места присоединения к нему трансформатора (реактора). В месте присоединения заземлителя отдельно стоящего молниеотвода к заземляющему устройству ОРУ 35-150 кВ магистрали заземления должны быть выполнены по двум-трем направлениям с углом не менее 90° между ними.
Заземлители молниеотводов, установленных на прожекторных мачтах, должны быть присоединены к заземляющему устройству ПС.
В целях экономии металла и упрощения устройства открытых распределительных устройств (ОРУ) целесообразно устанавливать молниеотводы на крышах зданий, прожекторных мачтах и конструкциях (порталах). При этом молниеотводы вместе с соответствующими конструкциями оказываются присоединенными к заземлителю подстанции. При ударе молнии в вершину молниеотвода ток молнии, стекающий в землю, создает на сопротивлении заземлителя потенциал. Этот потенциал (или его значительная часть) оказывается приложенным к корпусам аппаратов, расположенных поблизости от пораженного молниеотвода, что может вызвать обратное перекрытие или пробой изоляции между корпусом и токоведущими частями.
Возможны также перекрытия гирлянд на порталах, где установлены молниеотводы. Напряжение в верхней части портала складывается из падения напряжения на заземлителе и индуктивного падения напряжения на портале. Но так как разрядное напряжение гирлянды выше разрядного напряжения аппаратной и подстанционной изоляции, то показатели грозоупорности определяются условиями воздействия на изоляцию аппаратов.
Для уменьшения вероятности повреждения изоляции трансформаторов в ряде случаев ограничивается возможность установки молниеотводов на трансформаторных порталах. Корпус трансформатора должен заземляться на расстоянии не менее 15 м (вдоль заземлителя) от заземления молниеотвода. При необходимости установки молниеотводов на трансформаторных порталах следует защищать обмотки низших напряжений вентильными разрядниками, включенными непосредственно у выводов обмоток 6-15 кВ, или на расстоянии не более 5-10 м от выводов обмоток 20-35 кВ. Однако эта мера недопустима, если трансформаторные обмотки присоединены открытыми шинопроводами к обмоткам вращающихся машин, так как возникает опасность заноса высокого потенциала при срабатывании РВ. В случае применения закрытых или кабельных шинопроводов с заземленной оболочкой (клетка Фарадея) необходимость в установке разрядников отпадает.
Для подстанций 35 кВ приемлемый показатель грозоупорности не может быть обеспечен при высоком удельном сопротивлении грунта. В этом случае подстанция должна быть защищена от прямых ударов отдельно стоящими молниеотводами, которые присоединяются к обособленным заземлителям, электрически не связанным с заземлителем подстанции. Потенциал на таком обособленном заземлителе молниеотвода может быть выше, чем на заземлителе подстанции, так как он не ограничивается импульсной прочностью изоляции оборудования. Но в то же время потенциал не должен превышать пробивного напряжения в земле между заземлителем молниеотвода и заземлителем ОРУ подстанции, а также пробивного напряжения воздуха между молниеотводом и ближайшим оборудованием ОРУ.
Для заземления отдельно стоящего молниеотвода следует использовать сосредоточенный заземлитель, наиболее эффективно отводящий ток молнии и занимающий наименьшую площадь, что позволяет лучше использовать зону молниеотвода. Максимальный потенциал на таком заземлителе определяется только максимальным значением тока молнии, а потенциал в точке молниеотвода на расстоянии от земли - максимальным значением и крутизной.
При использовании отдельно стоящих молниеотводов не рекомендуется присоединять тросы к порталам подстанции, а защита последнего пролета производится стержневыми молниеотводами.
3. Принципы защиты подстанции от набегающих волн
Волны, набегающие с линии на подстанцию, возникают при прямых ударах в провода линии без тросов, при обратных перекрытиях с троса или опоры или прорывах молнии мимо троса линии с тросами. Максимальные значения волн, набегающих на подстанцию, не могут превышать разрядного напряжения изоляции линии относительно земли. Действительно, если на линии возникнет волна с более высоким максимальным значением, то она при своем распространении по линии будет вызывать перекрытие изоляции опор до тех пор, пока заземления опор, на которых произошло перекрытие, не снизят максимальное значение волны до разрядного напряжения линейной изоляции.
Уровень подстанционной изоляции ниже уровня изоляции линии, что обусловлено экономическими соображениями. Поэтому набегающие волны представляют опасность для изоляции подстанционного оборудования и их максимальное значение должно быть ограничено.
4. Защитное действие вентильного разрядника
Основными аппаратами защиты от набегающих волн являются вентильный разрядник (РВ) и нелинейный ограничитель перенапряжений (ОПН). У вентильного разрядника разрядное напряжение искрового промежутка и остающееся напряжение при токах координации не менее чем на 10% ниже гарантированной прочности защищаемой изоляции при полном импульсе. Искровые промежутки РВ обладают пологой и стабильной вольт-секундной характеристикой; вследствие наличия нелинейного резистора срабатывание РВ не приводит к глубокому срезу, т.е. не вызывает больших градиентных перенапряжений на продольной изоляции трансформаторов.
Для того чтобы защита с помощью вентильных разрядников была эффективной, необходимо выполнить два условия:
- ограничить ток через разрядник величиной тока координации (от 5 до 14 кА в зависимости от номинального напряжения и типа разрядника);
- ограничить крутизну волны, набегающей на разрядник. Если ток, проходящий через разрядник, превысит ток координации, то остающееся напряжение разрядника окажется выше нормированного и интервал между остающимся напряжением разрядника и электрической прочностью изоляции уменьшится.
Если волна приходит «издалека», т.е. многократные отражения волн на участке между местом удара и шинами подстанции можно не учитывать вследствие большого времени пробега волны по этому участку.
При ударе молнии в непосредственной близости от разрядника, например у ближайшей опоры с последующим перекрытием на сопротивление заземления пораженной опоры, на разряднике весьма быстро устанавливается большее напряжение.
Если принять (с преувеличением), что при больших токах остающееся напряжение разрядника РВС-110 равно 400 кВ, 10 Ом, максимальное значение тока молнии равно100 кА, то через разрядник пройдет недопустимо большой ток, максимальное значение которого равно 100-400/10=60 кА. При одном и том же токе молнии доля тока, ответвляющегося в разрядник, растет с уменьшением номинального напряжения, так как сопротивление разрядника при этом падает. Таким образом, близкие удары особенно опасны при относительно невысоких номинальных напряжениях.
При некотором удалении места удара от шин подстанции в пределах 1-2 км максимум тока через разрядник достигается после многократных отражений от сопротивления в точке удара и сопротивления разрядника, т.е. в течение времени, соизмеримого с длительностью волны; вследствие этого к моменту максимума тока мгновенное значение тока молнии падает по сравнению с его максимальным значением. Ток через разрядник при прочих равных условиях уменьшается с увеличением расстояния между местом удара и шинами подстанции.
Следовательно, для того чтобы ограничить ток через вентильный разрядник и тем самым обеспечить его успешную работу, необходимо исключить прямые удары в провода линии вблизи подстанции или резко уменьшить вероятность таких ударов. С этой целью участки линий длиной 1-3 км, примыкающие к подстанциям (подходы), должны защищаться от прямых ударов тросовыми молниеотводами. Если линия защищена тросами по всей длине, то на прилегающих к подстанции участках (подходах) особенно тщательно выполняются требования грозозащиты (низкие сопротивления заземления опор, малые углы защиты тросов). Такие подходы называются защищенными.
Наличие защищенного подхода способствует также выполнению второго требования, обеспечивающего надежную защиту, т.е. позволяет ограничить вероятность набегания на подстанцию волн с большой крутизной. Это важно по следующим соображениям. Разрядники не могут быть установлены у всех аппаратов подстанции; обычно они присоединяются к каждой системе шин или к трансформаторам. Поэтому часть аппаратов удалена от разрядников на расстояния, которые могут достигать нескольких десятков метров. Ошиновка подстанции (распределенная индуктивность и емкость подстанции) вместе с емкостью аппаратуры образует сложный многочастотный колебательный контур. При падении на подстанцию волны с крутым фронтом в отдаленных от разрядника точках подстанции возникают высокочастотные затухающие колебания относительно остающегося напряжения разрядника, максимальное значение которых тем больше, чем больше крутизна набегающей волны и расстояние от разрядника до защищаемой аппаратуры.
Для защиты всей подстанции с помощью небольшого количества разрядников необходимо ограничить крутизну набегающей волны.
При движении волны по линии ее крутизна уменьшается под действием короны, поэтому отдаленные удары приводят к набеганию на подстанцию волн с пологим фронтом, которые не создают опасных для изоляции напряжений в удаленных от разрядника точках подстанции. Наличие защищенного подхода резко уменьшает вероятность прихода на подстанцию волн с большой крутизной; это обстоятельство особенно важно для подстанций высокого напряжения, имеющих большие размеры.
На первой опоре подхода ВЛ 35-220 кВ к ПС, считая со стороны линии, должен быть установлен комплект трубчатых разрядников (РТ1) или соответствующих защитных аппаратов в следующих случаях:
1) линия по всей длине, включая подход, построена на деревянных опорах;
2) линия построена на деревянных опорах, подход линии - на металлических или железобетонных опорах;
3) на подходах ВЛ 35 кВ на деревянных опорах к ПС 35 кВ защита выполняется по упрощенной схеме, включающей:
* разрядники вентильные; устанавливаются на ПС на расстоянии от силового трансформатора не более 10 м при использовании РВ III группы и не более 15 м при использовании РВ II группы. При этом расстояние от РВ до остального оборудования не должно превышать соответственно 50 и 75 м.
* тросовые молниеотводы подхода к ПС на всей длине ответвления; при длине ответвления менее 150 м следует дополнительно защищать тросовыми или стержневыми молниеотводами по одному пролету действующей ВЛ в обе стороны от ответвления;
* комплекты защитных аппаратов РТ1, РТ2 с сопротивлением заземлителя не более 10 Ом, устанавливаемые на деревянных опорах: РТ2 - на первой опоре с тросом со стороны ВЛ или на границе участка, защищаемого стержневыми молниеотводами; РТ1 - на незащищенном участке ВЛ на расстоянии 150-200 м от РТ2.
Установка РТ1 в начале подходов ВЛ, построенных по всей длине на металлических или железобетонных опорах, не требуется.
На ВЛ 35-110 кВ, которые имеют защиту тросом не по всей длине и в грозовой сезон могут быть длительно отключены с одной стороны, как правило, следует устанавливать комплект трубчатых разрядников (РТ2) или соответствующих защитных аппаратов на входных порталах или на первой от ПС опоре того конца ВЛ, который может быть отключен. При наличии на отключенном конце ВЛ трансформаторов напряжения вместо РТ2 должны быть установлены РВ или соответствующие ОПН.
Расстояние от РТ2 до отключенного конца линии (аппарата) должно быть не более 60 м для ВЛ 110 кВ и не более 40 м для ВЛ 35 кВ.
На ВЛ, работающих на пониженном относительно класса изоляции напряжении, на первой опоре защищенного подхода ее к ПС, считая со стороны линии, т.е. на расстоянии от ПС должны быть установлены РТ или ИП класса напряжения, соответствующего рабочему напряжению линии.
Допускается устанавливать защитные промежутки или шунтировать перемычками часть изоляторов в гирляндах на нескольких смежных опорах (при отсутствии загрязнения изоляции промышленными, солончаковыми, морскими и другими уносами). Число изоляторов в гирляндах, оставшихся незашунтированными, должно соответствовать рабочему напряжению.
На ВЛ с изоляцией, усиленной по условию загрязнения атмосферы, если начало защищенного подхода к ПС находится в зоне усиленной изоляции, на первой опоре защищенного подхода должен устанавливаться комплект защитных аппаратов, соответствующих рабочему напряжению ВЛ.
В РУ 35 кВ и выше, к которым присоединены ВЛ, должны быть установлены РВ или ОПН.
Разрядники вентильные или ОПН следует выбирать с учетом координа-ции их защитных характеристик с изоляцией защищаемого оборудования, соответствия наибольшего рабочего напряжения наибольшему рабочему напряжению сети с учетом высших гармоник и неравномерности распределения напряжения по поверхности, а также допустимых повышений напряжения в течение времени действия резервных релейных защит при однофазном замыкании на землю, при одностороннем включении линии или переходном резонансе на высших гармониках.
При увеличенных расстояниях от защитных аппаратов до защищаемого оборудования с целью сокращения числа устанавливаемых аппаратов могут быть применены РВ или ОПН с более низким уровнем остающихся напряжений, чем это требуется по условиям координации изоляции.
Для защиты нейтралей обмоток 110-150 кВ силовых трансформаторов, имеющих изоляцию, пониженную относительно изоляции линейного конца обмотки и допускающую работу с разземленной нейтралью, следует устанавливать ОПН, обеспечивающие защиту их изоляции и выдерживающие в течение нескольких часов квазиустановившиеся перенапряжения при обрыве фазы линии.
В нейтрали трансформатора, изоляция которой не допускает разземления, установка разъединителей не допускается.
Распредустройства 3-20 кВ, к которым присоединены ВЛ, должны быть защищены РВ или ОПН, установленными на шинах или у трансформаторов. В обоснованных случаях могут быть дополнительно установлены защитные емкости. Вентильный разрядник или ОПН в одной ячейке с трансформатором напряжения должен быть присоединен до его предохранителя.
5. Влияние расстояния между разрядниками и защищаемой изоляцией на защитное действие РВ
При применении воздушной связи трансформаторов с шинами РУ 3-20 кВ расстояния от РВ и ОПН до защищаемого оборудования не должны превышать 60 м при ВЛ на деревянных опорах и 90 м при ВЛ на металлических опорах.
При присоединении трансформаторов к шинам кабелями расстояния от установленных на шинах РВ или ОПН до трансформаторов не ограничиваются.
Защита подходов ВЛ 3-20 кВ к ПС молниеотводами по условиям грозозащиты не требуется.
На подходах ВЛ 3-20 кВ с деревянными опорами к ПС на расстоянии 200-300 м от ПС должен быть установлен комплект защитных аппаратов (РТ1). На ВЛ 3-20 кВ, которые в грозовой сезон могут быть длительно отключены с одной стороны, следует устанавливать защитные аппараты (РТ2) на конструкции ПС или на концевой опоре того конца ВЛ, который может быть длительно отключен. Расстояние от РТ2 до отключенного выключателя по ошиновке должно быть не более 10 м. При мощности трансформатора до 0,63 МВ*А допускается не устанавливать трубчатые разрядники на подходах ВЛ 3-20 кВ с деревянными опорами.
При невозможности выдержать указанные расстояния, а также при наличии на отключенном конце ВЛ трансформаторов напряжения вместо РТ2 должны быть установлены РВ или ОПН. Расстояние от РВ до защищаемого оборудования должно быть при этом не более 10 м, для ОПН - увеличенное пропорционально разности испытательного напряжения ТН и остающегося напряжения ОПН. При установке РВ или ОПН на всех вводах ВЛ в ПС и их удалении от подстанционного оборудования в пределах допустимых значений по условиям грозозащиты защитные аппараты на шинах ПС могут не устанавливаться. Сопротивление заземления разрядников РТ1 и РТ2 не должны превышать 10 Ом при удельном сопротивлении земли до 1000 Ом*м и 15 Ом при более высоком удельном напряжении.
На подходах к подстанциям ВЛ 3-20 кВ с металлическими и железобетонными опорами установка защитных аппаратов не требуется. Однако при применении на ВЛ 3-20 кВ изоляции, усиленной более чем на 30% (например, из-за загрязнения атмосферы), на расстоянии 200-300 м от ПС и на ее вводе должны быть установлены ИП.
Металлические и железобетонные опоры на протяжении 200-300 м подхода к ПС должны быть заземлены.
Защита ПС 3-20 кВ с низшим напряжением до 1 кВ, присоединенных к ВЛ 3-20 кВ, должна выполняться РВ или ОПН, устанавливаемыми со стороны высокого и низкого напряжения ПС.
В случае присоединения ВЛ 3-20 кВ к ПС с помощью кабельной вставки в месте присоединения кабеля к ВЛ должен быть установлен комплект РВ или ОПН. В этом случае заземляющий зажим разрядника, металлические оболочки кабеля, а также корпус кабельной муфты должны быть соединены между собой по кратчайшему пути. Заземляющий зажим разрядника должен быть соединен с заземлителем отдельным спуском. Если ВЛ выполнена на деревянных опорах, на расстоянии 200-300 м от конца кабеля следует устанавливать комплект защитных аппаратов. При длине кабельной вставки более 50 м установка РВ или ОПН на ПС не требуется.
Молниезащита токопроводов 3-20 кВ осуществляется как молниезащита ВЛ соответствующего класса напряжения.
Кабельные вставки 35-220 кВ при их длине менее 1,5 км должны быть защищены с обеих сторон защитными аппаратами. Кабели 35-110 кВ защищаются РВС III группы или РТ, а кабели напряжением 220 кВ - РВ II группы или соответствующими ОПН. При длине кабеля 1,5 км и более на ВЛ с металлическими и железобетонными опорами установка разрядников или ограничителей по концам кабеля не требуется.
Так как на деревянных опорах спуски от тросов к заземлителям располагаются на стойках, прочность изоляции относительно земли опоры с тросами существенно снижается. Например, для линии 110 кВ изоляция (гирлянда и участок траверсы длиной 2 м) имеет прочность около 850-900 кВ, что приблизительно в 3 раза меньше среднего разрядного напряжения обычных деревянных опор, т.е. защищенный подход является местом с ослабленной изоляцией, поэтому в его начале на каждой фазе устанав-ливаются трубчатые разрядники РТ1. На вводе подстанции иногда устанавливается второй комплект трубчатых разрядников PT2 или РВ, который принципиальной роли в грозозащите подстанции не играет и служит для защиты линейного выключателя в тех случаях, когда разомкнут, а линия находится под напряжением.
Схема грозозащиты линий на металлических опорах, защищенных тросами по всей длине, отличается от следующей схемы только тем, что отпадает необходимость в установке разрядников РТ.
Заключение
В результате работы были выделены основные проблемы, имеющие место в теории и практике построения системы защиты от грозовых перенапряжений высоковольтного оборудования подстанций высокого напряжения, а также выявлены недостатки применяемых в настоящее время директивных документов.
К основным вопросам можно отнести следующие:
1. Уточнение параметров воздействия импульсов тока молнии, а именно построение подробных карт интенсивности грозовой деятельности. Установление более четкой связи между числом грозовых дней и грозовых часов в год, а также числом ударов молнии в единицу площади земной поверхности в год. Необходимо получение данных по количеству одно- и многокомпонентных разрядов молнии в общем числе ударов.
2. Уточнение физико-математических моделей линии электропередачи, ошиновки подстанций и высоковольтного оборудования при импульсных воздействиях, в том числе: входных емкостей электрооборудования, динамических характеристик ОПН, характеристик заземлений опор и контуров заземления подстанций в микросекундном диапазоне времен, величин допустимых напряжений. Это требует не только дальнейшего развития расчетных методов и моделей, но и выполнения экспериментальных исследований, в том числе импульсного обмера подстанций. Необходимость уточнения допустимых напряжений определяется тем, что для современного оборудования характерно развитие перенапряжений с большой крутизной фронта и существенными колебательными компонентами. Это особенно важно при определении допустимых напряжений для современных силовых трансформаторов, характеризующихся относительно малыми запасами в продольной изоляции. Кроме того, необходимо адекватно учитывать изменение допустимых напряжений для оборудования, находящегося в эксплуатации длительное время.
Определение импульсных характеристик заземлений опор и контуров заземления подстанций позволит более обоснованно подходить к выбору комплекса защитных мероприятий. Особенное внимание следует уделить выполнению заземления защитных аппаратов - нелинейных ограничителей напряжения, поскольку это может приводить к существенному снижению их защитных свойств.
3. Определение вольт-секундных характеристик линейной изоляции не только для широкого диапазона изменения крутизны фронтов и амплитуды импульсов тока молний, но и с учетом реальной формы перенапряжений - частично срезанных импульсов и импульсов с колебательной компонентой.
4. Определение принципов выполнения грозозащитных мероприятий для подстанций, включающих помимо обычных элементов ОРУ протяженные кабельные вставки и КРУЭ. Это особенно существенно для схем, когда между КРУЭ и силовыми трансформаторами используются достаточно длинные участки КЛ и воздушной ошиновки. Особое внимание следует уделить способам эквивалентирования КРУЭ, учитывая, что практически все такие устройства, используемые в настоящее время, имеют зарубежное исполнение.
5. Определение понятия «показатель надежности грозозащиты подстанции» и соотнесение его с общими требованиями по надежности работы высоковольтного оборудования энергосистемы. Показатель должен быть понятным и проектировщикам, и эксплуатации. Возможно, наиболее удобным будет введение вероятности появления опасных воздействий за срок службы основного оборудования и далее показателя надежности функционирования оборудования при грозовых воздействиях.
6. Переработка директивных документов, в том числе переработка ПУЭ с учетом модернизации схем и оборудования подстанций и определение границ его применения, поскольку в ПУЭ невозможно отобразить весь диапазон возможных характеристик воздействий окружающей среды и самих подстанций.
Следует отметить, что большая часть отмеченных вопросов уже решается в ряде научных организаций, в интересах различных проектных и эксплуатирующих организаций электроэнергетического профиля. Однако практически отсутствует координация этой деятельности. Большинство проектных и эксплуатирующих организаций решают свои конкретные задачи и не имеют правовых и финансовых возможностей для постановки вопроса о кардинальном решении указанных проблем.
Библиография
1. Техника высоких напряжений (В.В. Базуткин, В.П. Ларионов, Ю.С. Пинталь; Москва Энергоатомиздат 1986 г.)
2. Основы техники безопасности в элелектроустановках (П.А. Долин; Москва «Знак» 2000 г.)
3. Степанчук К.Ф., Тиняков Н.А. Техника высоких напряжений: (Учеб. Пособие для электроэнерг. Спец вузов). - 2-е изд. - Мн.: Выш. Школа, 1982.
4. Справочник по электрическим установкам высокого напряжения (Баумштейна И.А., С.А. Бажанова; «Энергия» 1974 год)
5. Справочник по проектированию электроэнергетических систем (Под редакцией Рокотяна С.С. и И.М. Шапиро; Москва Энергоатомиздат 1985 г.)
6. Лабораторные работы по технике высоких напряжений (Авторы: М.А. Аронов, В.В. Базуткин и т.д.; Москва Энергоатомиздат 1982 г.)
Размещено на Allbest.ru
...Подобные документы
Выбор проводов линии, числа и места расположения трансформаторных подстанций. Расчет сечения проводов линии по методу экономических интервалов мощностей, токов короткого замыкания, аппаратов защиты, заземления. Мероприятия по защите от перенапряжений.
курсовая работа [608,4 K], добавлен 18.11.2010Проектирование потребительской высоковольтной линии (ВЛ) и трансформаторной подстанции (ТП), питающих поселок. Суммарные электрические нагрузки по населенному пункту. Расчет ВЛ и выбор оборудования для ТП. Расчет заземления подстанции и нулевого провода.
курсовая работа [158,9 K], добавлен 01.02.2013Назначение и сущность расчета заземляющего устройства подстанции, особенности его монтажа, определение допустимого сопротивления, выбор формы и размеров электродов. Защита подстанции от прямых ударов молнии, характеристика методик и цели раcчета.
контрольная работа [1,0 M], добавлен 30.09.2012Проектирование архитектуры CAD-приложения для расчета молниезащиты и заземления. Интеграция программы с САПР. Построение зон защиты молниеотводов. Моделирование грозовых перенапряжений на электрической подстанции при ударе молнии в воздушную линию.
дипломная работа [1,5 M], добавлен 13.10.2017Комплексная защита подстанции. Защита подстанции от прямого удара молнии. Принцип работы молниеотвода. Аппараты защиты подстанции от импульсных перенапряжений атмосферного характера или от грозовых перенапряжений. Правила защиты электроустановок.
реферат [536,7 K], добавлен 07.05.2016Расчет сечения провода по экономической плотности тока. Механический расчет проводов и тросов воздушных линий электропередачи. Выбор подвесных изоляторов. Проверка линии электропередачи на соответствие требованиям правил устройства электроустановок.
курсовая работа [875,3 K], добавлен 16.09.2017Расчетная нагрузка питающих линий, вводов и на шинах РУ-0,4 кВ ТП от общего освещения общежитий. Устройство сети заземления, защита здания от прямых ударов молнии. Размеры и формы токоотводов. Расчет оплаты за электроэнергию по одноставочному тарифу.
дипломная работа [320,7 K], добавлен 23.01.2012Выбор изоляторов для соответствующих классов напряжений. Параметры контура заземления подстанции, обеспечивающие допустимую величину стационарного заземления. Построение зависимости импульсного сопротивления контура заземления подстанции от тока молнии.
курсовая работа [682,7 K], добавлен 18.04.2016Определение мощности подстанции. Выбор силовых трансформаторов. Расчет мощности потребителей и токов. Выбор электрических параметров схемы замещения, токоведущих частей. Трансформаторы тока на линии. Расчет заземляющих устройств. Защита от перенапряжений.
курсовая работа [901,8 K], добавлен 12.11.2013Первичные и вторичные параметры электрической линии. Формы записи токов и напряжений. Волны и виды нагрузки в длинной линии без потерь. Распределение действующих значений напряжения и тока вдоль линии. Коэффициент стоячей волны, векторные диаграммы.
презентация [257,4 K], добавлен 20.02.2014План и боковой разрез открытого распределительного устройства. Определение необходимого количества молниеотводов. Сечение зоны защиты одиночного стержневого молниеотвода. Конструкция заземления опор, обеспечивающая нормированное значение сопротивления.
контрольная работа [2,6 M], добавлен 27.02.2013Описание коммутационного оборудования подстанции. Расчет продольной дифференциальной и максимальной токовой защиты трансформаторов. Сведения о вакуумных выключателях. Защита электрооборудования подстанции от атмосферных и внутренних перенапряжений.
дипломная работа [935,3 K], добавлен 17.06.2015Анализ графиков нагрузок. Выбор мощности трансформаторов, схем распределительных устройств высшего и низшего напряжения, релейной защиты и автоматики, оперативного тока, трансформатора собственных нужд. Расчет заземления подстанции и молниеотводов.
курсовая работа [1,6 M], добавлен 24.11.2014Изолирующая подвеска проводов, расчет напряженности электрического поля под проводами. Определение параметров воздушной линии электропередачи и примыкающих систем, отключений при ударах молнии и обратных перекрытиях. Расчет коммутационных перенапряжений.
курсовая работа [1,8 M], добавлен 16.11.2010Расчет электрических нагрузок главной понижающей подстанции. Выбор силовых трансформаторов. Расчет питающих линии электропередач, токов короткого замыкания. Выбор оборудования и конструктивное выполнение подстанции. Релейная защита и сетевая автоматика.
курсовая работа [917,1 K], добавлен 04.12.2013Действующие схемы электроустановок и соединений. Токи короткого замыкания, выбор оборудования и ошиновки. Защита от перенапряжений, молниезащита, заземление. Решения по релейной защите и вторичным соединениям. Схема организации учета электроэнергии.
отчет по практике [2,7 M], добавлен 12.01.2011Выбор основного оборудования и токоведущих элементов подстанции. Расчёт максимальных рабочих токов основных присоединений подстанции. Определение мощности трансформаторов подстанции. Расчет заземляющего устройства и определение зоны защиты молниеотводов.
дипломная работа [3,2 M], добавлен 26.05.2023Обзор оборудования на подстанции, назначение релейной защиты. Терминал защиты линии электропередач. Шкафы защиты шин и трехобмоточных трансформаторов с напряжением 110 (220) Кв. Регулятор напряжения SPAU 341C. Расчет уставок и токов короткого замыкания.
дипломная работа [1022,1 K], добавлен 10.09.2011Состав воздушных линий электропередач: провода, траверсы, изоляторы, арматура, опоры, разрядники, заземление, волоконно-оптические линии. Классификация линий электропередач по роду тока, назначению и напряжению. Расположение проводов на воздушной линии.
презентация [188,3 K], добавлен 02.09.2013Расчет воздушной линии электропередачи, обеспечение условия прочности провода. Внешние нагрузки на провод. Понятие о критическом пролете, подвеска провода. Опоры воздушных линий электропередачи. Фермы как опоры для высоковольтных линий электропередачи.
дипломная работа [481,8 K], добавлен 27.07.2010