Особенности полупроводников

Полупроводники как вещества, занимающие по величине удельной электрической проводимости промежуточное положение между металлами и диэлектриками: знакомство с видами, общая характеристика структуры. Анализ схемы энергетических состояний электронов.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 21.07.2013
Размер файла 173,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Общие сведения о полупроводниках

полупроводник энергетический металл

Виды полупроводников. К полупроводникам относятся вещества, занимающие по величине удельной электрической проводимости промежуточное положение между проводниками (металлами) и диэлектриками. Значения удельной электрической проводимости этих трех классов веществ приведены в табл. 1.1.

Таблица 1.1 Электропроводность веществ

Основным признаком, выделяющим полупроводники как особый класс веществ, является сильное влияние температуры и концентрации примесей на их электрическую проводимость. Так, например, даже при сравнительно небольшом повышении температуры проводимость полупроводников резко возрастает (до 5--6% на 10С). Проводимость же металлов с ростом температуры не увеличивается, а падает очень незначительно: изменение составляет десятые доли процента на 10С. Введение примеси в полупроводник в количестве 10-7--10-9 % уже существенно увеличивает его проводимость.

У большинства полупроводников сильное изменение электрической проводимости возникает под действием света, ионизирующих излучений и других энергетических воздействий. Таким образом, полупроводник - это вещество, удельная проводимость которого существенно зависит от внешних факторов.

Полупроводники представляют собой наиболее многочисленный класс веществ. К ним относятся химические элементы: бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, серое олово, теллур, йод, химические соединения CuCl, CaAs, GeSi, CuO, PbS и др., большинство минералов -- природных химических соединений, число которых доходит до 2000, и многие органические вещества.

В электронике находит применение лишь ограниченное число полупроводниковых веществ. На первом месте среди них стоят германий, кремний, арсенид галлия, используемые в качестве основы при изготовлении полупроводниковых приборов. Бор, фосфор, мышьяк и некоторые другие вещества используют в качестве примесей.

Структура полупроводников. Применяемые в электронике полупроводники имеют монокристаллическую структуру. Это означает, что по всему объему такого вещества атомы размещены в строго периодической последовательности на определенных постоянных расстояниях друг от друга, образуя так называемую кристаллическую решетку. У германия и кремния кристаллическая решетка такая же, как у алмаза (рис. 1.1): каждый атом («шарик» на рисунке) окружен четырьмя атомами, находящимися в вершинах правильного тетраэдра. В 1 см3 германия содержится 4,4·1022 атомов, кремния - 5·1022 атомов.

Рис.1.3

Каждый атом кристаллической решетки электрически нейтрален, но существуют силы, удерживающие атомы в узлах решетки; они возникают за счет валентных электронов. Подобную связь называют ковалентной, для ее создания необходима пара валентных электронов. На рисунке связи условно показаны в виде стержней.

Рис. 1.2

Сущность ковалентной связи можно пояснить на примере объединения двух атомов водорода (рис. 1.2, а) в молекулу. При этом два валентных электрона образуют общую электронную оболочку молекулы (рис. 1.2, 6) и силы притяжения к ним протонов уравновешиваются силами взаимного их отталкивания. При увеличения расстояния между протонами, входящими в молекулу, возникают силы притяжения, а при уменьшении -- силы отталкивания. Равновесное состояние системы частиц соответствует минимуму потенциальной энергии и является устойчивым, так как для разрушения молекулы необходима затрата энергии.

В германии и кремнии, являющихся четырехвалентными элементами, на наружной оболочке имеется по четыре валентных электрона, поэтому каждый атом образует четыре ковалентных связи с четырьмя ближайшими от него атомами.

2.Носители заряда в полупроводнике

Виды зарядов. В рассмотренной идеальной кристаллической решетке все электроны связаны со своими атомами, поэтому такая структура не проводит электрический ток. Однако в полупроводниках (что коренным образом отличает их от диэлектриков) сравнительно небольшие энергетические воздействия, обусловленные нагревом или облучением, могут привести к отрыву некоторых электронов от своих атомов. Такие освобожденные от валентной связи электроны обладают способностью перемещаться по кристаллической решетке, их называют электронами проводимости.

В квантовой механике показывается, что энергетические состояния электронов проводимости образуют целую зону значений (уровней) энергии, называемую зоной проводимости. В интервале значений энергий от W до W+dW число энергетических уровней, на которых могут находиться электроны проводимости, равно [1]

где тп -- эффективная масса электрона проводимости (в германии и кремнии, например, она составляет 0,22 - 0,33 от массы покоя соответственно);

Wc -- минимальный уровень энергии электрона (дно) зоны проводимости;

h = 6,62?10-34 Дж с -- постоянная Планка.

В соответствии с принципом Паули в одном и том же энергетическом состоянии могут находиться лишь два электрона, имеющих при этом различные спины.

Энергетические состояния валентных электронов также образуют зону уровней энергии, называемую валентной. Максимальный уровень энергии (потолок) этой зоны обозначим Wv (рис. 1.3 ,a).

При разрыве валентной связи и уходе электрона из атома в кристаллической решетке образуется незаполненная связь (дырка), которой присущ нескомпенсированный положительный заряд, равный по величине заряду электрона е. Поскольку на незаполненную связь легко переходят валентные электроны с соседних связей, чему способствует тепловое движение в кристалле, место, где отсутствует валентный электрон, хаотически перемещается по решетке. При наличии внешнего электрического поля дырка будет двигаться в направлении, определенном вектором напряженности поля, что соответствует переносу положительного заряда, т. е. возникает электрический ток.

Между максимальным уровнем энергии валентной зоны Wv и минимальным уровнем энергии зоны проводимости Wс лежит область энергетических состояний, в которой электроны не могут находиться; это так называемая запрещенная зона (рис. 1.3, а). Ширина запрещенной зоны ?W= Wc - Wv определяет минимальную энергию, необходимую для освобождения валентного электрона, т. е. энергию ионизации атома полупроводника. У германия ?W = 0,72 эВ, у кремния ?W = 1,12эВ, у арсенида галлия ?W =1,41 эВ, следовательно, ширина запрещенной зоны зависит от структуры кристаллической решетки и вида вещества.

Схему энергетических состояний электронов, изображенную на рис. 1.3, называют энергетической диаграммой полупроводника.

Собственные и примесные полупроводники. Полупроводник, имеющий в узлах кристаллической решетки только свои атомы, называют собственным полупроводником; все величины, относящиеся к нему, обозначают индексом i (от англ, intrinsic - присущий). В электронике часто применяют полупроводники, у которых часть атомов основного вещества в узлах кристаллической решетки замещена атомами другого вещества; такие полупроводники называют примесными.

Для германия и кремния чаще всего используют пятивалентные (фосфор,

сурьма, мышьяк) и трехвалентные (бор, алюминий, индий, галлий) примеси.

Рис.1.3

При наличии пятивалентной примеси четыре валентных электрона примесного атома совместно с четырьмя электронами соседних атомов образуют ковалентные связи, а пятый валентный электрон оказывается «лишним». Энергия связи его со своим атомом ?Wп намного меньше энергии ?W, необходимой для освобождения валентного электрона (табл. 1.2).

Значения энергии ионизации пятивалентных примесей в германии и кремнии

Таблица 1.2

Примесь

Энергия ионизации ?W/f эВ

германий

кремний

Фосфор

Мышьяк Сурьма

0.012

0,013 0,0096

0.044 0,049 0,039

Благодаря небольшой энергии ионизации ?Wn пятый электрон даже при комнатной температуре (При Т = 300 К средняя энергия теплового движения микрочастицы kT~ 0,026 эВ.) может быть оторван от своего атома за счет энергии теплового движения. При этом образуются электрон проводимости и неподвижный положительный заряд -- атом примеси, потерявший этот электрон. Такие примеси (отдающие электроны) называют донорными.

При введении трехвалентной примеси примесный атом отдает три своих валентных электрона для образования ковалентных связей с тремя близлежащими атомами. Связь с четвертым атомом оказывается незаполненной, однако на нее сравнительно легко могут переходить валентные электроны с соседних связей, что видно из табл. 1.3, где приведены значения энергии ионизации ?WP некоторых трехвалентных примесей в германии и кремнии.

Таблица 1.3

Примесь

Энергия ионизации ?Wр, эВ

германий

кремний

Бор

Алюминий

Галлий

Индии

0,0104 0,0102 0,0108 0,0112

0,045

0,057

0,065

0,160

При перебросе валентного электрона на незаполненную связь примесный атом с присоединенным лишним электроном образует в кристаллической решетке неподвижный отрицательный заряд; кроме того, образуется дырка, способная перемещаться по решетке. Такие примеси (захватывающие электроны) называют акцепторными.

На энергетической диаграмме полупроводника донорные и акцепторные примеси образуют локальные энергетические уровни, лежащие в запрещенной зоне. Уровни доноров находятся около дна зоны проводимости, их энергия ионизации равна ?Wn (рис. 1.3, б), а уровни акцепторов - у потолка валентной зоны, их энергия ионизации равна ?WP (рис. 1.3, в).

Размещено на Allbest.ru

...

Подобные документы

  • Полупроводники - вещества, обладающие электронной проводимостью, занимающие промежуточное положение между металлами и изоляторами. История открытия, распространенность полупроводников в природе и человеческой практике, их применение в наноэлектронике.

    реферат [51,6 K], добавлен 10.01.2012

  • Строение полупроводников - материалов, которые по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Электронная проводимость, обусловливаемая наличием у полупроводника свободных электронов. Донорные примеси.

    дипломная работа [676,6 K], добавлен 24.09.2015

  • Строение твердого тела. Понятие об энергетических уровнях. Классификация тел по электропроводности. Механизм образования электронной и дырочной проводимости. Примесные и собственные полупроводники. Области применения полупроводниковых материалов.

    курсовая работа [475,6 K], добавлен 12.02.2014

  • Классификация веществ по электропроводности. Расчёт эффективной массы плотности состояний электронов в зоне проводимости и дырок в валентной зоне, концентраций свободных носителей заряда. Определение зависимости энергии уровня Ферми от температуры.

    курсовая работа [913,5 K], добавлен 14.02.2013

  • Сведения о полупроводниках их классификация. Собственная и примесная проводимость полупроводников. Характеристика группы органических полупроводников. Электропроводность низкомолекулярных органических полупроводников. Электрические свойства полимерных.

    курсовая работа [779,2 K], добавлен 24.07.2010

  • Зонная модель электронно-дырочной проводимости полупроводников. Расчет концентрации ионизованной примеси. Контакт двух полупроводников с различными типами проводимости. Электронно-дырочные переходы. Полупроводниковые выпрямители. Суть сверхпроводимости.

    презентация [122,7 K], добавлен 09.04.2015

  • Полупроводники n- и p-типа, методы получения и их зонные диаграммы. Основные и неосновные носители зарядов. Прохождение тока через полупроводники с разным типом проводимости. Виды транзисторных технологий, методика изготовления и область применения.

    реферат [756,9 K], добавлен 28.07.2010

  • Энергетические зоны в полупроводниках. Энергетическая диаграмма процесса переноса электрона с энергетического уровня в зону проводимости. Пример внедрения трехвалентного атома в решетку кремния. Эффективная плотность состояний в зоне проводимости.

    реферат [730,0 K], добавлен 26.08.2015

  • Правило интервалов Ланде. Кратность вырождения энергетических состояний. Нахождение термов электронных конфигураций. Возможные наборы состояний эквивалентных p-электронов. Правила отбора в приближении LS-связи. Степень вырождения состояний электрона.

    презентация [108,0 K], добавлен 19.02.2014

  • Описание полупроводников, характеристика их основных свойств. Физические основы электронной проводимости. Строение кристалла кремния. Направленное движение электронов и дырок под действием электрического поля, p-n переход. Устройство транзисторов.

    презентация [2,4 M], добавлен 20.04.2016

  • Объединение изолированных атомов в кристалл. Схема локальных энергетических уровней электронов. Основные элементы зонной теории. Особенность состояний электронов в кристаллах. Уменьшение сопротивления металлов. Физические основы квантовой электроники.

    контрольная работа [1,9 M], добавлен 09.01.2012

  • Ферромагнетики как вещества, в которых ниже определенной температуры устанавливается ферромагнитный порядок магнитных моментов атомов или ионов или моментов коллективизированных электронов: характеристика и свойства. Ферритовое запоминающее устройство.

    контрольная работа [192,5 K], добавлен 15.06.2014

  • Способность диэлектриков проводить электрический ток, характер движения электронов, переходы. Определения механизма проводимости — наблюдение тока в магнитном поле, определение знака термоэлектродвижущей силы. Проводимость первого и второго порядка.

    реферат [18,4 K], добавлен 20.09.2009

  • Основные свойства полупроводников. Строение кристаллов. Представления электронной теории кристаллов. Статистика электронов в полупроводниках. Теория явлений переноса. Гальваномагнитные и термомагнитные явления. Оптический свойства полупроводников.

    книга [3,8 M], добавлен 21.02.2009

  • Знакомство с этапами проектирования электрической части ТЭЦ-200 мвт. Анализ проблем выбора силовых трансформаторов. Рассмотрение способов ограничения токов короткого замыкания на шинах генераторного напряжения. Особенности составления электрической схемы.

    курсовая работа [728,6 K], добавлен 08.12.2013

  • Понятие и общая характеристика, физическое обоснование динамики блоховского электрона. Его эффективная масса, зонная структура типичных полупроводников и плотность состояний. Принципы и описание главных этапов процесса заполнения электронных состояний.

    презентация [271,4 K], добавлен 25.10.2015

  • Расчет температурной зависимости концентрации электронов в полупроводнике акцепторного типа. Определение и графическое построение зависимости энергии уровня Ферми от температуры: расчет температур перехода к собственной проводимости и истощения примеси.

    курсовая работа [3,1 M], добавлен 15.02.2013

  • Понятие о полупроводниках, их свойства, область применения. Активные диэлектрики. Рождение полупроводникового диода. Открытие сегнетоэлектриков и пьезоэлектриков. Исследования проводимости различных материалов. Физика полупроводников и нанотехнологии.

    курсовая работа [94,4 K], добавлен 14.11.2010

  • Энергетический спектр электронов и плотность электронных состояний в низкоразмерных объектах. Важнейшие квантовомеханические характеристики тел. Спектр неограниченного кристалла 3D-электронного газа. Электронный газ в квантовой проволоке или точке.

    лекция [484,6 K], добавлен 24.04.2014

  • Удельное сопротивление полупроводников. Строение кристаллической решетки кремния. Дефекты точечного типа и дислокации. Носители заряда и их движение в электрическом поле. Энергетические уровни и зоны атома. Распределение носителей в зонах проводимости.

    презентация [150,3 K], добавлен 27.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.