Теоретические основы электротехники
Исследование режимов электрических цепей методом векторных и круговых диаграмм. Уравнение дуги окружности в комплексной форме. Круговые диаграммы тока и напряжений для элементов последовательной и сложной цепи. Порядок построения круговой диаграммы.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 23.07.2013 |
Размер файла | 31,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование режимов электрических цепей методом векторных и круговых диаграмм
1. Уравнение дуги окружности в комплексной форме
При изменении параметров одного из элементов сложной цепи токи всех ветвей, напряжения на всех элементах изменяются так, что концы векторов этих величин описывают дуги некоторых окружностей. Для исследования зависимости любой векторной величины (U, I) от переменного параметра достаточно определить дугу окружности, по которой перемещается конец этого вектора, другими словами, построить круговую диаграмму. круговая диаграмма уравнение дуга
Уравнение дуги окружности в комплексной форме имеют вид:
,
где М = Мej - исследуемый вектор, M0 вектор-хорда дуги окружности, a = const - постоянный коэффициент, = const - постоянный угол, n = var = (0 ) - переменный параметр.
Порядок построения круговой диаграммы по заданному уравнению:
.
На комплексной плоскости в выбранном масштабе mм откладывают вектор М0=5ej20 хорду дуги окружности (рис. 80).
Вдоль вектора-хорды М0 от его начала в выбранном масштабе mа откладывают отрезок, равный коэффициенту “а”.
Рис. 80
Из конца отрезка “а” под углом - к вектору М0 проводят линию переменного параметра (л.п.п.), на которой наносят масштаб mа, принятый ранее для отрезка “а”.
Определят положение центра дуги как точку пересечения двух перпендикуляров: первый проводят через середину вектора-хорды М0, а второй - из начала координат к линии переменного параметра.
Проводят рабочую дугу по ту сторону от вектора-хорды М0, где расположена линия переменного параметра.
Вдоль линии переменного параметра откладывают текущее значение параметра “n” соединяют точку с началом вектора М0 (началом координат) и продолжают прямую линию до пересечения с дугой окружности. Искомый вектор М соответствует отрезку от начала координат до точки пересечения прямой линии с дугой окружности, при этом модуль вектора равен длине отрезка в масштабе mм, а начальная фаза вектора - углу между вещественной осью +1 и направлением вектора.
На рис. 80 показано семейство векторов М, построенных для различных значений переменного параметра “n” (n= 0; 10; 20; 30).
2. Круговая диаграмма тока и напряжений для элементов последовательной цепи
Рассмотрим схему цепи, состоящую из последовательно включенных источника ЭДС E и пассивных элементов Z1, и Z2 (рис. 81). Задано, что E = Eej=const, Z1 = Z1ej1 = const, Z2 = Z2ej2, где 2=const, a Z2 = var = 0? переменный параметр.
Преобразуем уравнение закона Ома для схемы к виду дуги окружности в комплексной форме:
,
где М0 = Iк= E/Z1 - ток короткого замыкания, соответствует вектору-хорде дуги окружности, Z2 = n = var - переменный параметр, Z1= a = const постоянный коэффициент, 2 1= = const - постоянный угол.
Таким образом, уравнение для тока I является уравнением дуги окружности.
Напряжение на первом элементе представляет собой уравнение дуги окружности:
.
Напряжение на втором элементе представляет собой уравнение дуги окружности:
.
Для каждого из векторов I, U1, U2 может быть построена круговая диаграмма согласно полученным уравнениям и по ним исследована их зависимость от переменного параметра n = Z2.
3. Круговая диаграмма для произвольного тока и напряжения в сложной цепи
Пусть в схеме сложной цепи изменяется параметр сопротивления в к-той ветви Zк=Zкejк так, что фазный угол к= const, а модуль Zк=0? = var - переменный параметр.
Выделим к-тую ветвь из сложной схемы, а остальную часть схемы по отношению к ветви заменим эквивалентным генератором напряжения с параметрами Eэ = Uхх, Z0= Z0ejo = Zвх (рис. 82):
Таким образом, получившаяся эквивалентная схема рис. 82 ничем не отличается от рассмотренной ранее схемы рис. 81, и, следовательно, для переменных векторов Iк, Uк по аналогии могут быть могут быть записанные уравнения дуги в комплексной форме, например:
есть уравнение дуги.
Докажем, что для тока In произвольной n-ой ветви сложной схемы также может быть получено уравнение дуги в комплексной форме.
В соответствии с теоремой о линейных отношениях исследуемый In и ток Iк связаны между собой линейной зависимостью:
In = A + B•Iк,
где А, В - комплексные коэффициенты, значения которых можно найти из крайних режимов схемы (холостого хода и короткого замыкания).
В режиме холостого хода Zк = , Iкхх = 0, тогда Inxx= A.
В режиме короткого замыкания Zк = 0, тогда Inкз = A + B•Iккз = Inxx + B•Iккз, откуда получаем:
Подставим найденные значения коэффициентов А и В и уравнение дуги для тока Iк в уравнение связи:
Уравнение для произвольного тока In состоит из суммы двух векторов: а) постоянного вектора Inxx, равного его значению в режиме холостого хода при Zк = , и б) переменного вектора, изменяющегося по дуге окружности с хордой Inкз Inxx. При построении круговой диаграммы тока In по этому уравнению вначале строится его постоянная составляющая Inxx, в конце которой строится круговая диаграмма для переменной составляющей, результирующий вектор получают как сумму двух составляющих.
Уравнение круговой диаграммы для произвольного напряжения может быть получено путем аналогичных логических выводов.
Размещено на Allbest.ru
...Подобные документы
Применение метода комплексных амплитуд к расчёту цепей гармонического тока, особенности построения векторных диаграмм. Расчет методом контурных токов мгновенного значения токов в ветвях, проверка баланса мощностей, векторной диаграммы токов и напряжений.
курсовая работа [160,3 K], добавлен 19.12.2009Расчёт неразветвлённой цепи с помощью векторных диаграмм, разветвлённой цепи с помощью векторных диаграмм. Расчет ложных цепей переменного тока символическим методом, трёхфазной цепи при соединении приемника в звезду, неразветвлённой цепи.
курсовая работа [123,9 K], добавлен 03.11.2010Схема исследуемых электрических цепей. Измерение напряжения на всех элементах цепи, значения общего тока и мощности. Определение параметров напряжения в режиме резонанса и построение векторных диаграмм тока, топографических векторных диаграмм напряжений.
лабораторная работа [455,5 K], добавлен 31.01.2016Порядок расчета неразветвленной электрической цепи синусоидального тока комплексным методом. Построение векторной диаграммы тока и напряжений. Анализ разветвленных электрических цепей, определение ее проводимости согласно закону Ома. Расчет мощности.
презентация [796,9 K], добавлен 25.07.2013Основные законы электрических цепей. Освоение методов анализа электрических цепей постоянного тока. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока. Расчет цепи методом эквивалентных преобразований.
лабораторная работа [212,5 K], добавлен 05.12.2014Изучение неразветвленной цепи переменного тока. Особенности построения векторных диаграмм. Определение фазового сдвига векторов напряжения на активном и индуктивном сопротивлении. Построение векторной диаграммы и треугольников сопротивления и мощностей.
лабораторная работа [982,7 K], добавлен 12.01.2010Анализ электрической схемы постоянного тока. Особенности первого и второго законов Кирхгофа для узлов и ветвей цепи. Знакомство с типами электрических цепей: двухполюсные, четырёхполюсные. Рассмотрение способов постройки векторных диаграмм напряжений.
контрольная работа [651,6 K], добавлен 04.04.2013Расчет линейной электрической цепи постоянного тока, а также электрических цепей однофазного синусоидального тока. Определение показаний ваттметров. Вычисление линейных и фазных токов в каждом трехфазном приемнике. Векторные диаграммы токов и напряжений.
курсовая работа [1,2 M], добавлен 21.10.2013Расчет простейшей и сложной электрической цепи. Определение симметричного режима трехфазной цепи. Анализ синусоидального тока методом симметричных составляющих. Построение векторно-топографической диаграммы. Проверка баланса активных реактивных мощностей.
курсовая работа [2,2 M], добавлен 15.09.2014Принцип получения переменной ЭДС. Действующие значение тока и напряжения. Метод векторных диаграмм. Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость. Проводимость и расчет электрических цепей. Резонанс напряжений и токов.
реферат [1,3 M], добавлен 19.02.2009Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.
лабораторная работа [44,5 K], добавлен 23.11.2014Расчет линейных и нелинейных электрических цепей постоянного тока. Анализ состояния однофазных и трехфазных электрических цепей переменного тока. Исследование переходных процессов, составление баланса мощностей, построение векторных диаграмм для цепей.
курсовая работа [1,5 M], добавлен 23.10.2014Расчет эквивалентных параметров цепей переменного тока. Применение символического метода расчета цепей синусоидального тока. Проверка баланса мощностей. Исследование резонансных явлений в электрических цепях. Построение векторных топографических диаграмм.
контрольная работа [1,4 M], добавлен 09.02.2013Расчёт токов и напряжений цепи. Векторные диаграммы токов и напряжений. Расчёт индуктивностей и ёмкостей цепи, её мощностей. Выражения мгновенных значений тока неразветвлённой части цепи со смешанным соединением элементов для входного напряжения.
контрольная работа [376,9 K], добавлен 14.10.2012Составление электрической схемы для цепи постоянного тока, заданной в виде графа. Замена источников тока эквивалентными источниками ЭДС. Уравнения узловых потенциалов. Законы Кирхгофа. Построение векторно-топографической диаграммы токов и напряжений.
контрольная работа [2,1 M], добавлен 31.08.2012Расчет параметров цепи постоянного тока методом уравнений Кирхгофа, и узловых напряжений. Расчет баланса мощностей. Построение потенциальной диаграммы. Сравнение результатов вычислений. Расчет параметров цепи переменного тока методом комплексных амплитуд.
курсовая работа [682,1 K], добавлен 14.04.2015Расчет сложной электрической цепи постоянного тока. Определение тока в ветвях по законам Кирхгофа. Суть метода расчета напряжения эквивалентного генератора. Проверка выполнения баланса мощностей. Расчет однофазной электрической цепи переменного тока.
контрольная работа [542,1 K], добавлен 25.04.2012Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.
реферат [122,8 K], добавлен 27.07.2013Параметры синусоидальных токов. Алгебра комплексных чисел и законы цепей в символической форме. Фазовые соотношения между напряжением и током. Векторные и топографические диаграммы, передача мощности от активного двухполюсника в цепи синусоидального тока.
реферат [1,3 M], добавлен 24.11.2010Практическая проверка и определение физических явлений, происходящих в цепи переменного тока при последовательном соединении резистора, индуктивной катушки и конденсатора. Получение резонанса напряжений, построение по опытным данным векторной диаграммы.
лабораторная работа [32,3 K], добавлен 12.01.2010