Понятие о напряжениях и деформациях

Композиция вектора напряжения. Относительная линейная деформация в точке в направлении вектора. Деформации, связанные с изменением формы тела. Напряженное состояние в точке. Тензор напряжений. Равновесное состояние бесконечно-малого параллелепипеда.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 30.07.2013
Размер файла 105,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Понятие о напряжениях и деформациях

Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n. В окрестности этой точки выделим малую площадку F. Главный вектор внутренних сил, действующих на этой площадке, обозначим через P (рис. 1 а). При уменьшении размеров площадки соответственно

Рис. 1. Композиция вектора напряжения

а) вектор полного напряжения б) вектор нормального и касательного напряжений уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при получим

Аналогичный предел для главного момента равен нулю. Введенный таким образом вектор рn называется вектором напряжений в точке. Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки F, характеризуемой вектором п. Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора п определяет напряженное состояние в этой точке.

В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали п. Проекция вектора рn на направление вектора п называется нормальным напряжением , а проекция на плоскость, проходящую через точку М и ортогональную вектору n, - касательным напряжением (рис. 1 б).

Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м2.

При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т.е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

Отнесем недеформированное тело к декартовой системе координат Oxyz (рис. 2). Положение некоторой точки М в этой системе координат определяется радиус-вектором r (х, у, z). В деформированном состоянии точка М займет новое положение М/, характеризуемое радиус-вектором r' (х, у, z). Вектор u=r'-r называется вектором, перемещений точки М. Проекции вектора u на координатные оси определяют компоненты вектора перемещений и (х, у, z), v (х, у, z), w (х, у, z), равные разности декартовых координат точки тела после и до деформации.

Перемещение, при котором взаимное расположение точек тела не меняется, не сопровождается деформациями. В этом случае говорят, что тело перемещается как жесткое целое (линейное перемещение в пространстве или поворот относительно некоторой точки). С другой стороны, деформация, связанная с изменением формы тела и его объема, невозможна без перемещения его точек.

Рис. 2. Композиция вектора перемещения

Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации. Рассмотрим, например, точку М и близкую к ней точку N, расстояние между которыми в недеформированном состоянии вдоль направления вектора s обозначим через (рис. 2). В деформированном состоянии точки М и N переместятся в новое положение (точки М' и N'), расстояние между которыми обозначим через s'. Предел отношения

называется относительной линейной деформацией в точке М в направлении вектора s, рис. 3. Рассматривая три взаимно перпендикулярных направления, например, вдоль координатных осей Ох, Оу и Oz, получим три компоненты относительных линейных деформаций характеризующих изменение объема тела в процессе деформации.

Для описания деформаций, связанных с изменением формы тела, рассмотрим точку М и две близкие к ней точки N и Р, расположенные в недеформированном состоянии в направлении двух взаимно ортогональных векторов s1 и s2. Расстояния между точками обозначим через и (рис. 4). В деформированном состоянии положение точек обозначим через М', N' и Р'. Угол между отрезками M'N' и М'Р' в общем случае будет отличным от прямого. При , изменение угла между двумя ортогональными до деформации направлениями называется угловой деформацией. Как видно из рис. 4, угловая деформация складывается из двух углов и , связанных с поворотами отрезков M'N' и М'Р' 'в.плоскости, образованной векторами s1 и s2, относительно этих векторов. Если заданы три взаимно ортогональных вектора, направленных вдоль координатных осей, то имеются три угловые деформации , и , которые вместе с тремя линейными деформациями , и полностью определяют деформированное состояние в точке.

Рис. 3. Композиция линейной деформации

Рис. 4. Композиция угловой деформации

Напряженное состояние в точке. Тензор напряжений

Вектор напряжений pn является физическим объектом, имеющим длину, направление и точку приложения. В этом смысле он обладает векторными свойствами. Однако этому объекту присущи некоторые свойства, не характерные для векторов. В частности, величина и направление вектора напряжений зависят от ориентации вектора n нормали бесконечно малого элемента поверхности dF. Совокупность всех возможных пар векторов п, рn в точке определяет напряженное состояние в данной точке. Однако для полного описания напряженного состояния в точке нет необходимости задавать бесконечное множество направлений вектора n, достаточно определить векторы напряжений на трех взаимно перпендикулярных элементарных площадках. Напряжения на произвольно ориентированных площадках могут быть выражены через эти три вектора напряжений. В дальнейшем лектор умышленно меняет ориентацию координат. Так, что ось Z - продольная ось бруса, а X и Y - координаты любой точки его поперечного сечения.

Проведем через точку М три взаимно перпендикулярных плоскости с векторами нормалей, направления которых совпадают с направлениями координатных осей. Элементарные площадки образуем дополнительными сечениями, параллельными исходным плоскостям и отстоящими от них на бесконечно малые расстояния dx, dy, dz. В результате в окрестности точки М получим бесконечно малый параллелепипед, поверхность которого образована элементарными площадками dFх=dydz, dFн==dxdz, dFя=dxdy. Векторы напряжений px, py, pz, действующие на элементарных площадках, показаны на рис. 5.

Разложим каждый вектор напряжений на составляющие вдоль координатных осей (рис. 6). На каждой площадке действует одно нормальное напряжение , , , где индекс обозначает направление вектора нормали к площадке и два касательных напряжения с двумя индексами, из которых первый указывает направление действия компоненты напряжения, второй-направление вектора нормали к площадке.

Рис. 5. Равновесное состояние бесконечно-малого параллелепипеда

Рис. 6. Компоненты тензора напряженного состояния

Совокупность девяти компонент напряжений (по три на каждой из трех взаимно перпендикулярных площадок) представляет собой некоторый физический объект, называемый тензором напряжений в точке. Тензор можно представить в виде матрицы, соответствующим образом упорядочив девять компонент:

Для компонент тензора напряжений общепринятым является следующее правило знаков: компонента считается положительной, если на площадке с положительной внешней нормалью (т.е. направленной вдоль одной из координатных осей) эта компонента направлена в сторону положительного направления соответствующей оси. На рис. 6 все компоненты тензора напряжений изображены положительными. На площадках с отрицательной внешней нормалью (грани параллелепипеда, не видимые на рис. 5 и 6) положительная компонента направлена в противоположном направлении. Напряжения на трех взаимно ортогональных площадках с отрицательными направлениями нормалей также характеризуют напряженное состояние в точке. Эти напряжения, являющиеся компонентами тензора напряжений, определяются аналогично напряжениям на площадках с положительной нормалью. Они обозначаются теми же символами и имеют положительное направление, обратное изображенному на рис. 6.

напряжение деформация тензор равновесный

Размещено на Allbest.ru

...

Подобные документы

  • Исследование напряжённого состояние в точке. Изучение главного касательного напряжения. Классификация напряжённых состояний. Определение напряжений по площадкам параллельным направлению одного из напряжений. Дифференциальные уравнения равновесия.

    курсовая работа [450,2 K], добавлен 23.04.2009

  • Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.

    курсовая работа [264,9 K], добавлен 01.11.2013

  • Плоское напряженное состояние главных площадок стального кубика. Определение величины нормальных и касательных напряжений по граням; расчет сил, создающих относительные линейные деформации, изменение объема; анализ удельной потенциальной энергии.

    контрольная работа [475,5 K], добавлен 28.07.2011

  • Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.

    контрольная работа [364,5 K], добавлен 11.10.2013

  • Определение охлаждения (нагревания) бесконечно длинного цилиндра и шара. Расчет корней уравнения для бесконечно цилиндра. Влияние формы тела на охлаждение/нагревание. Дифференциальное уравнение Фурье. Средняя безразмерная температура параллелепипеда.

    презентация [643,5 K], добавлен 15.03.2014

  • Анализ метрологических характеристик. Расчет среднеарифметического значения выходного напряжения в каждой точке входного. Проверка на однородность в каждой контрольной точке. Методы нахождения теоретической СХП и оценка степени ее достоверности.

    курсовая работа [799,7 K], добавлен 01.11.2013

  • Анализ зависимости веса тела от ускорения опоры, на которой оно стоит, изменения взаимного положения частиц тела, связанного с их перемещением друг относительно друга. Исследование основных видов деформации: кручения, сдвига, изгиба, растяжения и сжатия.

    презентация [2,9 M], добавлен 04.12.2011

  • Физические свойства эритроцитов. Методы измерения деформируемости эритроцитов. Зависимость вязкости крови от скорости сдвига. Изменения дискоидной формы эритроцитов при его деформации, возникающей при различных напряжениях сдвига. Многократная деформация.

    курсовая работа [947,8 K], добавлен 16.06.2016

  • Свойства независимых комбинаций продольной и поперечной объемных волн. Закон Гука в линейной теории упругости при малых деформациях. Коэффициент Пуассона, тензоры напряжения и деформации. Второй закон Ньютона для элементов упругой деформированной среды.

    реферат [133,7 K], добавлен 15.10.2011

  • Содержание закона Ампера. Напряженность магнитного поля, её направление. Закон Био-Савара-Лапласа, сущность принципа суперпозиции. Циркуляция вектора магнитного напряжения. Закон полного тока (дифференциальная форма). Поток вектора магнитной индукции.

    лекция [489,1 K], добавлен 13.08.2013

  • Определение нормальных напряжений в произвольной точке поперечного сечения балки при косом и пространственном изгибе. Деформация внецентренного сжатия и растяжения. Расчет массивных стержней, для которых можно не учитывать искривление оси стержня.

    презентация [156,2 K], добавлен 13.11.2013

  • Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.

    презентация [522,0 K], добавлен 24.09.2013

  • Гипотезы сопротивления материалов, схематизация сил. Эпюры внутренних силовых факторов, особенности. Три типа задач сопротивления материалов. Деформированное состояние в точке тела. Расчёт на прочность бруса с ломаной осью. Устойчивость сжатых стержней.

    курс лекций [4,1 M], добавлен 04.05.2012

  • Применения МД для исследования пластической деформации кристаллов. Алгоритм интегрирования по времени. Начальное состояние для кристалла с дефектами. Уравнение для ширины ячейки моделирования. Моделирования пластической деформации ГПУ кристаллов.

    дипломная работа [556,7 K], добавлен 07.12.2008

  • Определение токов и напряжений режимов работы сети при поперечной (двухфазное, однофазное и двухфазное замыкания на землю) и продольной несимметрии (обрыв одной и двух фаз). Определение значения ударного тока в точке. Фактические напряжения в разрыве.

    курсовая работа [8,6 M], добавлен 14.11.2017

  • Составление и решение уравнения движения груза по заданным параметрам, расчет скорости тела в заданной точке с помощью диффенциальных уравнений. Определение реакций опор твердого тела для определенного способа закрепления, уравнение равновесия.

    контрольная работа [526,2 K], добавлен 23.11.2009

  • Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.

    курсовая работа [111,3 K], добавлен 28.11.2009

  • Расчет величины ускорения тела на наклонной плоскости, числа оборотов колес при торможении, направление вектора скорости тела, тангенциального ускорения. Определение параметров движения брошенного тела, расстояния между телами во время их движения.

    контрольная работа [1,0 M], добавлен 29.05.2014

  • Пункт автоматического регулирования напряжения ПАРН типа ВДТ/VR-32, его назначение и область применения. Схема электроснабжения без использования и с использованием ПАРН. Расчет мощности в точке ответвления куста №1. Потери напряжения на участке лини.

    контрольная работа [3,4 M], добавлен 16.01.2015

  • Рассмотрение понятия и видов диэлектриков, особенностей их поляризации. Описание потока вектора электрического смещения. Изучение теоремы Остроградского-Гаусса. Расчет электрических полей в различных аппаратах, кабелях. Изменение вектора и его проекций.

    презентация [2,3 M], добавлен 13.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.