Плоское напряженное состояние

Случай плоского напряженного состояния, реализуемого в плоскости. Величины экстремальных касательных напряжений. Разложение тензора деформаций на шаровой тензор и девиатор. Девять соотношений, связывающих линейные и угловые деформации с перемещениями.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 30.07.2013
Размер файла 133,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Плоское напряженное состояние

Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид

Геометрическая иллюстрация представлена на рис. 1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид

Корни этого уравнения равны

(1)

Нумерация корней произведена для случая .

Рис. 1. Плоское исходное напряженное состояние

Рис. 2. Позиция главных напряжений

Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты: , , nх=0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:

(2)

(3)

Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла между нормалью п и осью Оу

(4)

Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х) - периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).

Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.

Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения

,

откуда получим

(5)

Сравнивая соотношения (4) и (5), находим, что

Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3).

Рис. 3. Экстремальность касательных напряжений

Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул

.

После некоторых преобразований получим

Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения

Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с

Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.

Тензор деформации

Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.

Рис. 4. Плоская деформация

По определению относительная линейная деформация в точке М в направлении оси Ох равна

Из рис. 4 следует

Учитывая, что MN=dx, получим

В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения

справедливого при x<<1, окончательно для малой деформации получим

Угловая деформация определяется как сумма углов и (4). В случае малых деформаций

плоскость напряжение тензор деформация

Для угловой деформации имеем

Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.

(6)

Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций

(7)

Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.

Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры

(рис. 4), а его объем будет равен

.

Относительное изменение объема

в пределах малых деформаций составит

что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.

Также, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т.е. девиатор характеризует деформацию тела без изменения его объема.

Размещено на Allbest.ru

...

Подобные документы

  • Плоское напряженное состояние главных площадок стального кубика. Определение величины нормальных и касательных напряжений по граням; расчет сил, создающих относительные линейные деформации, изменение объема; анализ удельной потенциальной энергии.

    контрольная работа [475,5 K], добавлен 28.07.2011

  • Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.

    курсовая работа [111,3 K], добавлен 28.11.2009

  • Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.

    контрольная работа [364,5 K], добавлен 11.10.2013

  • Определяющие соотношения модели нелинейно упругой среды, вычисление компонент тензора напряжений. Определение автомодельного движения. Сведение модельных соотношений к системе дифференциальных уравнений. Краевая задача разгрузки нелинейно упругой среды.

    курсовая работа [384,1 K], добавлен 30.01.2013

  • Исследование напряжённого состояние в точке. Изучение главного касательного напряжения. Классификация напряжённых состояний. Определение напряжений по площадкам параллельным направлению одного из напряжений. Дифференциальные уравнения равновесия.

    курсовая работа [450,2 K], добавлен 23.04.2009

  • Основные величины, характеризующие синусоидальные ток, напряжение и электродвижущую силу. Мгновенное значение величины. Действующее и среднее значения синусоидальных токов и напряжений. Изображение токов, напряжений и ЭДС комплексными числами и векторами.

    презентация [967,5 K], добавлен 22.09.2013

  • Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.

    курсовая работа [264,9 K], добавлен 01.11.2013

  • Проверка соотношений, связывающих напряжения и токи цепей при соединении приёмников звездой и треугольником. Построение в подпрограмме "Трехфазные цепи" векторных диаграмм фазных напряжений и токов приёмника, соединённого звездой без нейтрального провода.

    лабораторная работа [718,5 K], добавлен 03.03.2014

  • Энергетическая теория прочности Гриффитса. Растяжение и сжатие как одноосные воздействия нагрузки. Деформированное состояние в стержне. Зависимость компонентов тензора напряжения от ориентации осей. Теория Ирвина и Орована для квазехрупкого разрушения.

    курс лекций [949,8 K], добавлен 12.12.2011

  • Физические величины и их измерения. Различие между терминами "контроль" и "измерение". Штриховая мера длины IА-0–200 ГОСТ 12069–90. Параметры для оценки шероховатости. Назначение, типы и параметры угольников поверочных. Измерение деформаций и напряжений.

    контрольная работа [2,3 M], добавлен 28.05.2014

  • Расчет напряженно-деформированного состояния ортотропного покрытия на упругом основании. Распределение напряжений и перемещений в ортотропной полосе на жестком основании. Приближенный расчет напряженного состояния покрытия из композиционного материала.

    курсовая работа [3,3 M], добавлен 13.12.2016

  • Величины, характеризующие синусоидальные ток. Мгновенное значение величины. Диапазон частот, применяемых на практике синусоидальных токов и напряжений. Явление электромагнитной индукции. Закон Джоуля-Ленца, формула Эйлера. Модули комплексных чисел.

    презентация [966,7 K], добавлен 25.07.2013

  • Общие сведения о шаровой молнии. Условия образования шаровой молнии. Случаи внезапного появления шаровой молнии. Разновидности шаровых молний, их вес, скорость передвижения, размер, время жизни, поведение, температура. Физическая природа шаровой молнии.

    презентация [3,0 M], добавлен 04.05.2011

  • Определение напряжений на координатных площадках. Определение основных направляющих косинусов новых осей в старой системе координат. Вычисление нормальных и главных касательных напряжений. Построение треугольника напряжений. Построение диаграмм Мора.

    контрольная работа [1,7 M], добавлен 11.08.2015

  • Определение момента инерции и его физический смысл. Теорема Гюйгенса-Штейнера о параллельных и перпендикулярных осях. Некоторые свойства тензора инерции: симметричность, положительная определенность, неравенства. Пример использования симметрии тела.

    презентация [766,1 K], добавлен 02.10.2013

  • Предпосылки возникновения теории пластической деформации, этапы развития представлений. Наблюдение линий максимальных касательных напряжений. Пластические сдвиги в монокристаллах. Теория решеточных дислокаций. Модель Френкеля-Конторовой. Сила Пайерлса.

    реферат [1,1 M], добавлен 04.05.2010

  • Исследование шаровой молнии с точки зрения физики. Внешний вид, природа и свойства шаровой молнии: ее физическая и химическая характеристики. Гипотеза квантовой природы шаровой молнии. Основные правила безопасности при встречей с шаровой молнией.

    реферат [69,2 K], добавлен 22.10.2008

  • Принципы работы с пакетом Simulink, благодаря которому можно рассчитывать линейные цепи двухполюсников и четырехполюсников. Линейные цепи постоянного тока. Линейные электрические цепи переменного тока. Электрические фильтры. Диаграммы токов и напряжений.

    курсовая работа [1,2 M], добавлен 07.08.2013

  • Научные теории происхождения электрического разряда над водной поверхностью. Сравнение жизненных циклов капли жидкого атомарного водорода и шаровой молнии для определения природы последней. Проблематика проведения исследований в лабораторных условиях.

    статья [28,8 K], добавлен 23.01.2010

  • Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.

    контрольная работа [646,4 K], добавлен 02.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.