Плоское напряженное состояние
Случай плоского напряженного состояния, реализуемого в плоскости. Величины экстремальных касательных напряжений. Разложение тензора деформаций на шаровой тензор и девиатор. Девять соотношений, связывающих линейные и угловые деформации с перемещениями.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 30.07.2013 |
Размер файла | 133,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Плоское напряженное состояние
Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид
Геометрическая иллюстрация представлена на рис. 1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид
Корни этого уравнения равны
(1)
Нумерация корней произведена для случая .
Рис. 1. Плоское исходное напряженное состояние
Рис. 2. Позиция главных напряжений
Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты: , , nх=0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:
(2)
(3)
Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла между нормалью п и осью Оу
(4)
Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х) - периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).
Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.
Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения
,
откуда получим
(5)
Сравнивая соотношения (4) и (5), находим, что
Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3).
Рис. 3. Экстремальность касательных напряжений
Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул
.
После некоторых преобразований получим
Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения
Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с
Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.
Тензор деформации
Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.
Рис. 4. Плоская деформация
По определению относительная линейная деформация в точке М в направлении оси Ох равна
Из рис. 4 следует
Учитывая, что MN=dx, получим
В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения
справедливого при x<<1, окончательно для малой деформации получим
Угловая деформация определяется как сумма углов и (4). В случае малых деформаций
плоскость напряжение тензор деформация
Для угловой деформации имеем
Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.
(6)
Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций
(7)
Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.
Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры
(рис. 4), а его объем будет равен
.
Относительное изменение объема
в пределах малых деформаций составит
что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.
Также, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т.е. девиатор характеризует деформацию тела без изменения его объема.
Размещено на Allbest.ru
...Подобные документы
Плоское напряженное состояние главных площадок стального кубика. Определение величины нормальных и касательных напряжений по граням; расчет сил, создающих относительные линейные деформации, изменение объема; анализ удельной потенциальной энергии.
контрольная работа [475,5 K], добавлен 28.07.2011Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.
курсовая работа [111,3 K], добавлен 28.11.2009Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.
контрольная работа [364,5 K], добавлен 11.10.2013Определяющие соотношения модели нелинейно упругой среды, вычисление компонент тензора напряжений. Определение автомодельного движения. Сведение модельных соотношений к системе дифференциальных уравнений. Краевая задача разгрузки нелинейно упругой среды.
курсовая работа [384,1 K], добавлен 30.01.2013Исследование напряжённого состояние в точке. Изучение главного касательного напряжения. Классификация напряжённых состояний. Определение напряжений по площадкам параллельным направлению одного из напряжений. Дифференциальные уравнения равновесия.
курсовая работа [450,2 K], добавлен 23.04.2009Основные величины, характеризующие синусоидальные ток, напряжение и электродвижущую силу. Мгновенное значение величины. Действующее и среднее значения синусоидальных токов и напряжений. Изображение токов, напряжений и ЭДС комплексными числами и векторами.
презентация [967,5 K], добавлен 22.09.2013Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.
курсовая работа [264,9 K], добавлен 01.11.2013Проверка соотношений, связывающих напряжения и токи цепей при соединении приёмников звездой и треугольником. Построение в подпрограмме "Трехфазные цепи" векторных диаграмм фазных напряжений и токов приёмника, соединённого звездой без нейтрального провода.
лабораторная работа [718,5 K], добавлен 03.03.2014Энергетическая теория прочности Гриффитса. Растяжение и сжатие как одноосные воздействия нагрузки. Деформированное состояние в стержне. Зависимость компонентов тензора напряжения от ориентации осей. Теория Ирвина и Орована для квазехрупкого разрушения.
курс лекций [949,8 K], добавлен 12.12.2011Физические величины и их измерения. Различие между терминами "контроль" и "измерение". Штриховая мера длины IА-0–200 ГОСТ 12069–90. Параметры для оценки шероховатости. Назначение, типы и параметры угольников поверочных. Измерение деформаций и напряжений.
контрольная работа [2,3 M], добавлен 28.05.2014Расчет напряженно-деформированного состояния ортотропного покрытия на упругом основании. Распределение напряжений и перемещений в ортотропной полосе на жестком основании. Приближенный расчет напряженного состояния покрытия из композиционного материала.
курсовая работа [3,3 M], добавлен 13.12.2016Величины, характеризующие синусоидальные ток. Мгновенное значение величины. Диапазон частот, применяемых на практике синусоидальных токов и напряжений. Явление электромагнитной индукции. Закон Джоуля-Ленца, формула Эйлера. Модули комплексных чисел.
презентация [966,7 K], добавлен 25.07.2013Общие сведения о шаровой молнии. Условия образования шаровой молнии. Случаи внезапного появления шаровой молнии. Разновидности шаровых молний, их вес, скорость передвижения, размер, время жизни, поведение, температура. Физическая природа шаровой молнии.
презентация [3,0 M], добавлен 04.05.2011Определение напряжений на координатных площадках. Определение основных направляющих косинусов новых осей в старой системе координат. Вычисление нормальных и главных касательных напряжений. Построение треугольника напряжений. Построение диаграмм Мора.
контрольная работа [1,7 M], добавлен 11.08.2015Определение момента инерции и его физический смысл. Теорема Гюйгенса-Штейнера о параллельных и перпендикулярных осях. Некоторые свойства тензора инерции: симметричность, положительная определенность, неравенства. Пример использования симметрии тела.
презентация [766,1 K], добавлен 02.10.2013Предпосылки возникновения теории пластической деформации, этапы развития представлений. Наблюдение линий максимальных касательных напряжений. Пластические сдвиги в монокристаллах. Теория решеточных дислокаций. Модель Френкеля-Конторовой. Сила Пайерлса.
реферат [1,1 M], добавлен 04.05.2010Исследование шаровой молнии с точки зрения физики. Внешний вид, природа и свойства шаровой молнии: ее физическая и химическая характеристики. Гипотеза квантовой природы шаровой молнии. Основные правила безопасности при встречей с шаровой молнией.
реферат [69,2 K], добавлен 22.10.2008Принципы работы с пакетом Simulink, благодаря которому можно рассчитывать линейные цепи двухполюсников и четырехполюсников. Линейные цепи постоянного тока. Линейные электрические цепи переменного тока. Электрические фильтры. Диаграммы токов и напряжений.
курсовая работа [1,2 M], добавлен 07.08.2013Научные теории происхождения электрического разряда над водной поверхностью. Сравнение жизненных циклов капли жидкого атомарного водорода и шаровой молнии для определения природы последней. Проблематика проведения исследований в лабораторных условиях.
статья [28,8 K], добавлен 23.01.2010Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.
контрольная работа [646,4 K], добавлен 02.05.2015