Расчет балки на упругом основании
Расчет бесконечно длинной балки на упругом основании, загруженной одной силой, его применение в вычислениях реакции железнодорожных рельсов, фундаментов зданий. Интенсивность реакции, ее распределение и величина прогиба статически неопределимых балок.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 30.07.2013 |
Размер файла | 56,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Расчет балки на упругом основании
План
1. Общие понятия
2. Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р
1. Общие понятия
К числу статически неопределимых балок может быть отнесена балка на упругом основании. Так называется балка, опирающаяся по всей своей длине (Рис.1) на упругое основание, оказывающее в каждой точке на балку реакцию, пропорциональную у - прогибу балки в этой точке. Коэффициент пропорциональности обозначается буквой k.
Введение предположения о пропорциональности реакций прогибу является приближением, хотя и достаточно близким к действительным условиям.
Рис.1. Расчетная схема балки на упругом основании.
Предложение ввести в расчет коэффициент пропорциональности к, именуемый "коэффициентом постели", было впервые сделано русским академиком Николаем Ивановичем Фуссом в 1801 году. Принимая это предположение, получаем, что интенсивность реакции основания в каждой точке сила равна ky и измеряется в единицах силы и длины; размерность коэффициента k при этом будет сила и квадрат длины. Будем считать, что основание оказывает реакцию при прогибах балки как вниз, так и вверх.
На практике задачи о расчете балки на упругом основании встречаются в железнодорожном деле (рельс, шпала), в строительстве - фундаменты различных сооружений, передающие нагрузку на грунт.
Статически неопределимой такая балка будет потому, что условие статики - сумма нагрузок равна всей реакции основания - не дает возможности установить распределение этой реакции по длине балки, а значит, вычислить изгибающие моменты и поперечные силы.
Интенсивность реакции в каждой точке связана с прогибами балки. Поэтому для решения задачи необходимо найти сначала уравнение изогнутой оси , а уже затем формулы для вычисления изгибающего момента и поперечной силы. Ход решения оказывается обратным обычному.
Найдем уравнение изогнутой оси для балки постоянного сечения, лежащей на упругом основании и нагруженной сосредоточенными силами ... (Рис.1). Начало координат возьмем в любой точке, ось х направим вправо, ось у вертикально вверх. Направление нагрузок вверх будем считать положительным. Напишем обычное дифференциальное уравнение изгиба
Так как М(х) нам неизвестен, то постараемся связать прогибы непосредственно с нагрузкой, для этого дифференцируем дважды предыдущее уравнение:
(1)
где q(x)--интенсивность сплошной нагрузки, действующей на балку в сечении с абсциссой х.
Сплошной нагрузкой для нашей балки является лишь реакция упругого основания. Интенсивность ей пропорциональна прогибам; эта нагрузка направлена вверх, т. е. положительна, когда прогибы идут вниз, т. е. отрицательны, и наоборот. Таким образом, эта нагрузка имеет знак, обратный знаку прогибов:
Тогда
(2)
(3)
Если обозначить
,
то общий интеграл уравнения (25.3) имеет вид:
(25.4)
Постоянные А, В, С, D должны быть определены в каждом частном случае нагрузки и длины балки. Величина имеет измерение обратное длине.
2. Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р
балка статика упругий основание
Наиболее просто решается задача об изгибе бесконечно длинной балки, нагруженной одной сосредоточенной силой (Рис.2). Помимо непосредственного практического значения решение этой задачи позволит путем последовательных приближений рассчитывать и балки конечной длины.
Рис.2. Расчетная схема балки бесконечной длины.
Начало координат расположим в точке приложения силы Р. Определим постоянные А, В, С и D. Так как вся реакция основания, равная силе Р должна быть конечной величиной, то прогибы балки в точках, бесконечно удаленных от точки приложения силы, должны обращаться в нуль:
(5)
При бесконечно больших значениях х два вторых слагаемых в правой части формулы (4) обращаются в нуль благодаря множителю , два же первых могут обратиться в нуль лишь при и таким образом,
(6)
Далее, по симметрии нагрузки и реакции основания, касательная к изогнутой оси в точке приложения силы должна идти параллельно оси абсцисс:
Дифференцируя (6), получаем:
Подставляя в это выражение и приравнивая результат нулю, находим: D - С = 0 и C=D; таким образом, уравнения будут:
(7)
(8)
Для определения последней постоянной С имеем еще одно уравнение: нам известна величина поперечной силы в начале координат.
Разрезав балку сечением в точке О справа от силы Р и рассматривая правую часть балки, видим, что поперечная сита в этом сечении равна реакции основания, действующей на правую половину балки со знаком минус; так как реакция направлена вверх (для правой половины) и вся реакция основания равна Р, значит, поперечная сила в сечении при х = 0 равна
Но, с другой стороны
(9)
Таким образом,
(10)
Вычисляем, пользуясь (8), и :
(11)
(12)
Подставляя (12) в (10) и приравнивая х нулю, получаем:
и
Теперь значения у и ее производных получают вид
Таким образом, напряженное состояние и деформации балки на упругом основании всецело определяются нагрузкой и коэффициентом , зависящим от соотношения жесткостей балки и упругого основания.
Размещено на Allbest.ru
...Подобные документы
Расчет напряженно-деформированного состояния ортотропного покрытия на упругом основании. Распределение напряжений и перемещений в ортотропной полосе на жестком основании. Приближенный расчет напряженного состояния покрытия из композиционного материала.
курсовая работа [3,3 M], добавлен 13.12.2016Определение равнодействующей системы сил геометрическим способом. Расчет нормальных сил и напряжений в поперечных сечениях по всей длине бруса и балки. Построение эпюры изгибающих и крутящих моментов. Подбор условий прочности. Вычисление диаметра вала.
контрольная работа [652,6 K], добавлен 09.01.2015Проведение расчета площади поперечного сечения стержней конструкции. Определение напряжений, вызванных неточностью изготовления. Расчет балок круглого и прямоугольного поперечного сечения, двойного швеллера. Кинематический анализ данной конструкции.
курсовая работа [1,0 M], добавлен 24.09.2014Вычисление прогиба и угла поворота балки; перерезывающих сил и изгибающих моментов. Расчет статически неопределимой плоской рамы и пространственного ломаного бруса. Построение эпюр внутренних силовых факторов. Подбор двутаврового профиля по ГОСТ 8239-72.
курсовая работа [2,8 M], добавлен 09.09.2012Методика численного решения задач нестационарной теплопроводности. Расчет распределения температуры по сечению балки явным и неявным методами. Начальное распределение температуры в твердом теле (временные граничные условия). Преимущества неявного метода.
реферат [247,8 K], добавлен 18.04.2011Определение реакции опор и построение эпюры моментов, поперечных и продольных сил для статически неопределимой Е-образной рамы с одной скользящей и двумя неподвижными опорами с помощью составления уравнений методом сил, формулы Мора и правила Верещагина.
задача [173,2 K], добавлен 05.12.2010Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.
курсовая работа [1,2 M], добавлен 25.05.2015Описание решения стержневых систем. Построение эпюр перерезывающих сил и изгибающих моментов. Расчет площади поперечных сечений стержней, исходя из прочности, при одновременном действии на конструкцию нагрузки, монтажных и температурных напряжений.
курсовая работа [2,2 M], добавлен 23.11.2014Опорные реакции балки. Уравнение равновесия в виде моментов всех сил относительно точек. Как находится проекция силы на ось. Равновесие системы сходящихся сил. Как находится момент силы относительно точки. Направление реакции в подвижном шарнире.
контрольная работа [658,8 K], добавлен 15.04.2015Построение эпюры внутренних сил на основании данных о реакции заделок и действующих нагрузках. Скачки напряжения из-за резкого изменения площади в местах изменения поперечного сечения. Направление реакции левой и правой заделки, уравнение равновесия.
задача [78,5 K], добавлен 19.12.2009Использование математических методов для определения основных физических величин моделей реальных материальных объектов. Расчет силы реакции в стержнях, угловой скорости кривошипа, нагрузки на опоры балки; построение графика движения материальной точки.
контрольная работа [1,5 M], добавлен 02.12.2010Сущность цепной ядерной реакции. Распределение энергии деления ядра урана между различными продуктами деления. Виды и химический состав ядерного топлива. Массовые числа протона и нейтрона. Механизм цепной реакции деления ядер под действием нейтронов.
реферат [34,4 K], добавлен 30.01.2012Определение продольной силы в стержнях, поддерживающих жёсткий брус. Построение эпюры продольных усилий, нормальных напряжений и перемещений. Расчет изгибающих моментов и поперечных сил, действующих на балку. Эпюра крутящего момента и углов закручивания.
контрольная работа [190,3 K], добавлен 17.02.2015Расчетная схема балки. Закон движения точки. Определение составляющих ускорения. Кинематические параметры системы. Угловая скорость шкива. Плоская система сил. Определение сил инерции стержня и груза. Применение принципа Даламбера к вращающейся системе.
контрольная работа [307,9 K], добавлен 04.02.2013Изучение траектории колебания механической системы с одной степенью свободы, на которую действуют момент сопротивления и возмущающая гармоническая сила. Определение закона движения первого тела и расчет реакции внешних и внутренних связей системы.
курсовая работа [374,7 K], добавлен 03.09.2011Проблемы теории суперструн. Периодическая система измерения физических величин, расчет их размерности на основании "пи-теоремы". Зависимость между физическими величинами с точностью до постоянного безразмерного множителя, ее соответствие законам физики.
реферат [73,8 K], добавлен 05.09.2010Составление на основании законов Кирхгофа системы уравнений для определения токов во всех ветвях схемы. Определение токов во всех ветвях схемы, используя метод контурных токов и на основании метода наложения. Составление баланса мощностей для схемы.
контрольная работа [60,3 K], добавлен 03.10.2012Применение и использование реакции деления атомных ядер для выработки теплоты и производства электроэнергии. История создания первого ядерного реактора, предназначение устройства для организации управляемой самоподдерживающейся цепной реакции деления.
презентация [921,7 K], добавлен 08.12.2014Термодинамика как наука о взаимопревращениях различных форм энергии и законах этих превращений, предмет и методы ее исследований. Определение теплового эффекта заданной химической реакции и возможность ее протекания в заданном интервале температур.
контрольная работа [269,9 K], добавлен 15.03.2015Методика определения скоростей и ускорений точек твердого тела при плоском движении, порядок расчетов. Графическое изображение реакции и момента силы. Расчет реакции опор для способа закрепления бруса, при котором Yа имеет наименьшее числовое значение.
задача [345,9 K], добавлен 23.11.2009