Теорема Кастильяно
Метод определения перемещений точек балки, основанный на вычислении потенциальной энергии деформации. Теорема Кастильяно, ее применение для нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.
Рубрика | Физика и энергетика |
Предмет | Сопротивление материалов |
Вид | лекция |
Язык | русский |
Прислал(а) | chastinvest |
Дата добавления | 30.07.2013 |
Размер файла | 70,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность дифференциальных зависимостей при поперечном изгибе, расчет касательного напряжения. Дифференциальное уравнение изогнутой оси балки. Теорема о взаимности работ и перемещений. Графоаналитический способ определения перемещения при изгибе.
контрольная работа [1,9 M], добавлен 11.10.2013Понятие о возможных перемещениях. Действительные работы внешних и внутренних сил. Потенциальная энергия стержневой системы. Теоремы Клапейрона и Бетти. Применение интеграла и формулы Мора, закона Гука. Определение перемещений методами теории упругости.
презентация [219,6 K], добавлен 24.05.2014Теория напряженно-деформированного состояния в точке тела. Связь между напряженным и деформированным состоянием для упругих тел. Основные уравнения и типы задач теории упругости. Принцип возможных перемещений Лагранжа и возможных состояний Кастильяно.
реферат [956,3 K], добавлен 13.11.2011Внешние и внутренние силы механической системы. Дифференциальные уравнения движения системы материальных точек: теорема об изменении количества движения системы; теорема о движении центра масс. Момент инерции, его зависимость от положения оси вращения.
презентация [1,7 M], добавлен 26.09.2013Описание удара как физического явления, при котором скорости точек тела изменяются на конкретную величину в малый промежуток времени. Расчет изменения кинетической энергии механической системы во время удара. Коэффициент восстановления и теорема Карно.
презентация [298,3 K], добавлен 09.11.2013Реостатные и индуктивные преобразователи. Анализ методов и средств контроля линейных перемещений. Расчет параметров оптической системы. Описание оптико-механической схемы. Расчет интегральной чувствительности. Расчет потерь излучения в оптической системе.
курсовая работа [662,2 K], добавлен 19.05.2013Классификация связей, возможные перемещения системы. Принцип возможных перемещений и возможная работа. Общие уравнения динамики. Появление сил реакции. Возможное перемещение механической системы. Число степеней свободы и число независимых координат.
презентация [1,9 M], добавлен 26.09.2013Исследование взаимодействия тела постоянной и изменяемой формы (без ограничений перемещений) с потоком воздуха. Структура энергодинамической системы физических величин. Анализ элементов синтеза энергии. Механические воздействия потока на объект.
научная работа [637,3 K], добавлен 11.03.2013Векторы угловой скорости и углового ускорения вращающегося тела. Производные от единичных векторов подвижных осей (формулы Пуассона). Теорема о сложении скоростей (правило параллелограмма скоростей). Теорема о сложении ускорений (теорема Кориолиса).
курсовая работа [623,5 K], добавлен 27.10.2014Фазовые переходы для автоколебательной системы "Хищник-Жертва" и для волн пластической деформации. Получение уравнений в обезразмеренном виде. Определение координат особых точек, показателей Ляпунова для них. Исследование характера их устойчивости.
курсовая работа [805,6 K], добавлен 17.04.2011Ударные силы и импульсы. Главный вектор и главный момент ударных импульсов. Теорема импульсивного движения, теорема об изменении количества движения и кинематической энергии. Удар по свободному твердому телу и удар по телу с одной неподвижной точкой.
презентация [666,9 K], добавлен 30.07.2013Порядок сборки заданной электрической цепи, методика измерения потенциалов всех точек данной цепи. Определение силы тока по закону Ома, его направления в схемах. Построение для каждой схемы потенциальной диаграммы по соответствующим данным расчета.
лабораторная работа [51,9 K], добавлен 12.01.2010Интегральная теорема Кирхгофа–Гельмгольца. Угловой спектр плоских волн. Сущность квазиоптического приближения. Интеграл Кирхгофа, метод стационарной фазы. Решение дифракционной задачи с помощью интеграла Кирхгофа и соответствующей функции Грина.
контрольная работа [56,2 K], добавлен 20.08.2015Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.
шпаргалка [619,6 K], добавлен 04.05.2015Ускорение как непосредственный результат действия силы на тело. Теорема о кинетической энергии. Законы сохранения импульса и механической энергии. Особенности замкнутой и консервативной механических систем. Потенциальная энергия взаимодействующих тел.
реферат [132,0 K], добавлен 22.04.2013Теорема об изменении момента количества движения системы. Плоско-параллельное движение или движение свободного твердого тела. Работа сил тяжести, действующих на систему, приложенных к вращающемуся телу. Вращательное и плоско-параллельное движение.
презентация [1,6 M], добавлен 26.09.2013Квантовые точки Ge/Si. "Кулоновская щель" в плотности состояний. Общее представление о прыжковой проводимости. Нахождение распределения носителей в массиве квантовых точек. Возбуждение и релаксация в массиве квантовых точек, результаты моделирования.
курсовая работа [2,0 M], добавлен 02.07.2012Решение задачи на определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях. Определение кинетической энергии системы, работы сил, скорости в конечный момент времени. Кинематический анализ многозвенного механизма.
контрольная работа [998,2 K], добавлен 23.11.2009Методика определения скоростей и ускорений точек твердого тела при плоском движении, порядок расчетов. Графическое изображение реакции и момента силы. Расчет реакции опор для способа закрепления бруса, при котором Yа имеет наименьшее числовое значение.
задача [345,9 K], добавлен 23.11.2009Эвристические соображения, приводящие к градиентным методам. Теорема о линейной сходимости градиентного метода с постоянным шагом. Эвристические соображения, приводящие к методу Ньютона безусловной оптимизации. Теорема о квадратичной сходимости метода.
курсовая работа [209,1 K], добавлен 03.06.2014