Определение общего термического сопротивления многопустотного камня

Подъемная сила, вызванная неоднородностью температурного поля. Коэффициент объемного расширения или термической упругости. Перенос теплоты при движении среды за счет Архимедовой силы. Поток свободной или естественной конвекции. Теплоотдача плоского ребра.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 07.08.2013
Размер файла 305,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Санкт-Петербургский государственный архитектурно-строительный университет

Кафедра ОВ и КВ

Дисциплина: тепломассообмен

К У Р С О В А Я Р А Б О Т А

«Определение общего термического сопротивления многопустотного камня»

Санкт-Петербург

2010

Подъёмная сила, вызванная неоднородностью температурного поля

В жидкостях и газах на процесс теплопроводности накладывается конвективный перенос, обусловленный движением конечных (состоящих из большого числа молекул) объемов среды. Неоднородное температурное поле приводит к возникновению неоднородного поля плотностей: в областях с более высокой температурой плотность среды вследствие теплового расширения уменьшается, и наоборот. Возникает неоднородное поле гравитационных массовых сил. Так, различие плотностей с/с 0, связанное с перепадом температур ?Т=Т-Т0, равно

,

где - коэффициент объемного расширения или термической упругости.

Подъемная сила единицы объема (Архимедова сила) равна

g(с-сo) = -gсв?T.

Перенос теплоты при движении среды за счет Архимедовой силы называют свободной или естественной конвекцией. В общем случае свободная конвекция может иметь место при движении жидкости под действием неоднородного поля не только гравитационных, но и других массовых сил (электрических, магнитных).

Если процесс переноса теплоты при вынужденной конвекции, то движение среды вызвано действием внешних сил, приложенных на границах системы, или за счет кинетической энергии, сообщенной жидкости вне системы. В таких случаях температурное поле можно рассматривать (за исключением сильно разряженных газов) также можно рассматривать как непрерывное и использовать такие понятия как градиент температуры.

Поток свободной или естественной конвекции возникает различными путями, например, когда нагретый объект помещен в газ, плотность которого изменяется с температурой. Тепло переносится от поверхности объекта к слоям окружающего его газа. Уменьшение плотности, которое в обычном газе связано с увеличением температуры, заставляет эти слои подниматься и таким образом создает поток свободной конвекции, переносящий тепло от объекта. Физически такой поток можно описать на основании учета тех объемных сил, которые его вызывают.

В характерном примере, описанном выше, эти объемные силы являются гравитационными силами. Потоки свободной конвекции под влиянием гравитационных сил были исследованы более подробно, поскольку они встречаются часто в природе и в инженерных применениях. Потоки могут вызываться также и другими объемными силами. В ротационной системе, например, этими силами являются центробежные и Кориолисовы силы. Примером может служить поток охлаждающего воздуха через проходы во вращающихся лопастях газовых турбин. В пограничных слоях, окружающих ракеты, летящие с высокой сверхзвуковой скоростью, температуры могут быть такими высокими, что воздух ионизируется, в результате чего и атомы и молекулы станут электрически заряженными. В этом случае могут возникнуть электрические и магнитные объемные силы, которые также будут влиять на поток. Свободная конвекция под влиянием других сил, кроме гравитационных, изучена мало.

В качестве первой оценки для получения сведений о потоке под влиянием других сил могут быть использованы соотношения, описывающие свободную гравитационную конвекцию. Тогда гравитационное ускорение должно быть заменено в числе Грасгофа (безразмерная величина, определяющая поток свободной конвекции) ускорением, соответствующим вызывающей силе, например центробежным ускорением V2/r. Полученный таким путем ответ можно рассматривать только как приближенный, так как поле для ускорений, соответствующих различным силам, часто отлично от поля гравитационного ускорения.

I. Определить теплоотдачу и построить график изменения температуры по высоте алюминиевого ребра (л=200 Вт/(м*К)) с толщиной д= 0,005 м, длиной L=0,2 м, высотой h= 0,2 м. Температура в основании ребра ta =130єС, tвоздуха =30єС, б = 18 Вт/(м2К). Сравнить, как изменится теплоотдача ребра, если его изготовить из стали

(л=50 Вт/(м*К)).

Решение:

;

где ; P-периметр, S- площадь боковой грани.

; mh=6,075*0,2=1,2149; ch(1,2149)= 1,833502; sh(1,2149)= 1,536609;

График изменения температуры по высоте алюминиевого ребра:

Теплоотдача плоского ребра конечных размеров:

; где

Для стали:

; mh=12,149*0,2=2,43; ch(2,43)= 5,721459; sh(2,431)=; 5,630423;

;

Поскольку , следовательно, если алюминий поменять на сталь, то его теплоотдача уменьшится ( в 9,77 раз).

2. Определить общее термическое сопротивление пустотного камня. Длина кирпича, толщина , , л=0,55 Вт/(м*К)

температурный термический теплоотдача конвекция

Решение:

Разобьем стену на вертикальные слои, последовательно имеющие сопротивления и, и горизонтальные - и.

1) Для вертикального потока .

При вертикальном разбиении:

;

;

.

При горизонтальном разбиении:

;

;

; .

2) Для горизонтального потока .

При вертикальном разбиении:

;

;

.

При горизонтальном разбиении:

;

;

;

.

Размещено на Allbest.ru

...

Подобные документы

  • Нахождение работы в обратимых термодинамических процессах. Теоретический цикл поршневого двигателя внутреннего сгорания с комбинированным подводом теплоты. Работа расширения и сжатия. Уравнение состояния газа. Теплоотдача при свободной конвекции.

    контрольная работа [1,8 M], добавлен 22.10.2011

  • Теплоотдача при вынужденном движении теплоносителей; естественной конвекции, изменении агрегатного состояния вещества. Движение жидкости около горизонтальной и вертикальной поверхности. Значения коэффициента теплоотдачи для разных случаев теплообмена.

    презентация [1,3 M], добавлен 24.06.2014

  • Измерение изменения объема воды при нагреве её от 0 до 90 градусов. Расчет показателя коэффициента термического расширения воды. Понятие фазового перехода как превращения вещества из одной термодинамической фазы в другую при изменении внешних условий.

    лабораторная работа [227,4 K], добавлен 29.03.2012

  • Конвективный теплообмен в однородной среде. Свободная (естественная) и вынужденная конвекции. Физические свойства жидкостей. Коэффициенты динамической вязкости, объемного (температурного) расширения жидкости. Гидродинамический пограничный слой.

    презентация [100,5 K], добавлен 18.10.2013

  • Коэффициент термического расширения, формулы. Фазовые переходы первого и второго рода в термодинамике. Плавление и кристаллизация, испарение и конденсация, сублимация и десублимация. График зависимости изменения объема воды от температуры и времени.

    лабораторная работа [402,2 K], добавлен 22.09.2013

  • Определение коэффициента теплоотдачи при сложном теплообмене. Обмен теплотой поверхности твёрдого тела и текучей среды. Использование уравнения Ньютона–Рихмана при решении практических задач конвективного теплообмена. Стационарный тепловой режим.

    лабораторная работа [67,0 K], добавлен 29.04.2015

  • Потери напора на трение в горизонтальных трубопроводах. Полная потеря напора как сумма сопротивления на трение и местные сопротивления. Потери давления при движении жидкости в аппаратах. Сила сопротивления среды при движении шарообразной частицы.

    презентация [54,9 K], добавлен 29.09.2013

  • Определение и общая характеристика выталкивающей (архимедовой) силы, а также проверка ее зависимости от объема и формы погружаемого тела, глубины погружения и плотности жидкости с помощью опытов. Сущность закона Архимеда, его изображение в виде формулы.

    презентация [895,7 K], добавлен 03.05.2010

  • Расчет температурного поля предельного состояния при движении подвижного точечного источника тепла в полубесконечном теле. Сравнение температур в период теплонасыщения и предельного поля. Термический цикл точки, распределение максимальных температур.

    курсовая работа [304,9 K], добавлен 18.01.2015

  • Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.

    презентация [204,4 K], добавлен 24.01.2012

  • Сущность метода определения местного коэффициента теплоотдачи при течении теплоносителя в трубе. Измерение коэффициента теплоотдачи для различных сечений трубы при различных скоростях движения воздуха. Определение длины начального термического участка.

    лабораторная работа [545,9 K], добавлен 19.06.2014

  • Определение силы взаимодействия двух точечных тел. Расчет напряженности электрического поля плоского конденсатора при известных показателях площади его пластины и величины заряда. Нахождение напряжения на зажимах цепи по показателям сопротивления и тока.

    контрольная работа [375,3 K], добавлен 06.06.2011

  • Понятие конвективного теплообмена (теплоотдачи). Схема изменения температуры среды при конвективном теплообмене. Система уравнений, которая описывает конвективный перенос. Основной закон теплоотдачи, расчет ее коэффициента. Критерии теплового подобия.

    презентация [207,9 K], добавлен 28.09.2013

  • Сила Лоренца - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Магнитные силовые линии; влияние индукции магнитного поля на силу Ампера. Применение силы Лоренца в электроприборах; Северное сияние как проявление ее действия.

    презентация [625,3 K], добавлен 14.05.2012

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

  • История возникновения силы трения - процесса взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. Возникновение сил трения скольжения и покоя на стыке соприкасающихся тел, способы уменьшения.

    реферат [1,2 M], добавлен 30.07.2015

  • Законы сохранения энергии. Мера кинетической энергии при поступательном и вращательном движении. Консервативные и неконсервативные силы. Сила тяжести и упругости. Импульс замкнутой системы материальных точек. Движение пули после столкновения с шаром.

    презентация [481,6 K], добавлен 21.03.2014

  • Контактный и пирометрический методы измерения теплового поля тонких полосковых проводников. Экспериментальное измерение температурного поля и коэффициента теплоотдачи полосковых проводников пирометрическим методом с помощью ИК-термографа SAT-S160.

    курсовая работа [1,3 M], добавлен 22.09.2014

  • Процесс теплопередачи через плоскую стенку. Теплоотдача через цилиндрическую стенку. Особенности теплопередачи при постоянных температурах. Увеличение термического сопротивления, его роль и значение. Определение толщины изоляции для трубопроводов.

    презентация [3,9 M], добавлен 29.09.2013

  • Потери теплоты в теплотрассах. Конвективная теплоотдача при поперечном обтекании цилиндра при течении жидкости в трубе. Коэффициент теплопередачи многослойной цилиндрической стенки. Расчет коэффициента теплопередачи. Определение толщины теплоизоляции.

    курсовая работа [133,6 K], добавлен 06.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.